
Mithras3D Team Description Paper 2013

Soccer Simulation 3D League

Nazanin Sadat Dastserri, Atieh Alsadat Moosavian, Armita Sabeti Ashraf,

Sara Javadzade No, Hanieh Sarlak, Sepideh BarzegarFallah, Fatemeh Hasani,

Ghazal Ebrahimi,Faranak Razeghi, Hanieh Rezaiefar, Parastoo Taleenia,

Zahra Mohamadi, Hanieh Hadinejad

Tehran, Farzanegan (1) High school

Abstract. In this paper we describe Farzanegan soccer simulation team

activities. After an introduction to the Soccer Simulation 3D League we will

describe our team architecture and its behavior which contains some skills used

in order to deal with several challenging problems in this field such as

balancing, movements, making decision.

Keywords: Inverse & Forward Kinematic, Modeling, Denavit Hartenberg.

1 Introduction

Farzanegan Highschool Laboratory has been working on RoboCup science many

years and achieved many remarkable successes in different Robocup Competition

Leagues. Our simulation group had been working on Rescue Simulation League and

Soccer Simulation 2D League, and subsequent to this our researches has been started

in Soccer Simulation 3D since 2009.

The RoboCup 3D Simulated Soccer League allows software agents to control

humanoid robots to compete against one another in a realistic simulation of the rules

and physics of a game of soccer. The platform strives to reproduce the software

programming challenges faced when building real physical robots for this purpose.

The Robocup simulation leagues focus on AI and team strategies developed by the

participant teams. The 3D simulation competition increases the realism of the

simulation environment by adding an extra dimension and more complex physics. The

interest in the 3D simulation competition is design of implementation of Multiagent

high-level behaviors.

2 Team Architecture

The base code was written in 2009, and after that our development and optimization

activities has been started on it. Classify agent behavioral layers which exist in base

code help us to design some methods to make good decisions.

Fig. 1. Team Architecture

2.1 Connection

This class is responsible for communicating with server. It synchronizes different

threads of execution with server timing. When the new information arrives, the con-

nection layer updates the agent’s WorldModel.

2.2 Command

This class makes the commands which we send to the server.

2.3 Mathematics

Here are our mathematical classes such as Vector and Matrix.

Simulation Server Connection

Agent Brain

 World Model

Make Decision

Agent Actions

2.4 Utilities

In this folder we have some useful classes such as config (which we use in order to

initialize some variables and change them easily.) converter (which we use in order to

convert different types of values to each other, for example degree to radian or Carte-

sian coordinate system to spherical coordinate system.) Logger, Timer and Types.

2.5 Kinematics

Here we have the Forward and Inverse Kinematic classes which will be explained

later.

2.6 WorldModel

Worldmodel contains main and basic calculations used in actions of robot like

walking, turning and decision. In this part we are dealing with position and rotation

status of each object on the field. And of Course for the agent itself, we calculate

useful information about joints of agent, forces which are applied towards it,

gyroscope, etc. In each cycle, server sends a string of information with specific format

and arrangement. First of all, we make a graph out of information that server sends.

After that, in each cycle of time, we extract the information and update our model of

world. Some information follows simple form of updating. For example, to update

angle of turning we just specify, individualize and then save raw data. But for

updating vector of accelerometer and amounts of gyroscope, we need some

calculations. Server gives amount of changes in accelerometer vector since last time,

but we need accelerometer vector itself. So we do one integral on it. More

complicated calculations are in localization of agents and ball. To check whether

robot is falling down or not or calculate the angle between agent and any point in

field, we save information that server gives us in each cycle and use complicated cal-

culations. For an example, raw information received from server contains seen objects

by robot, the way it sees them. Its moves and turns in neck joints and body situations

influence the numbers. So the first thing to do is to turn those relative positions to

universal positions using rotation matrixes which rotates back all those relative posi-

tions. Since neck turn does not depend on body rotation, we need different matrixes,

neck and body. Neck rotation matrix is calculated easily since it is consist of two

simple joints and we have the angles. But the body rotation matrix is somehow

more complicated. We briefly say that it can be calculated in two different ways, in

the first way we use gyroscope preceptor and in the second one we use relative infor-

mation from horizontal and vertical lines on the field.

2.7 Agent

The agents must contain some procedures which manage their behaviors. Robot needs

special skills to play better, such as kick, pass, dive, stand up (which itself has

different kinds depended on the way that the agent falls. Standup from front, back, left

side or right side), turn (rotates to place where is asked). These skills are written in

this part. This part is divided in to some layers in order to be more organized.

The Inheritance of Agent class is shown below:

Fig. 2. The Inheritance of Agent class

3 Walk

Walking of the robot is by using a loop of stable steps. The step for each leg is

divided into two movements: raising the leg and moving it forward, and then taking it

down during moving it forward again.

The magnitude of upward and forward motion is optimized by utilizing PSO

algorithm. [5]

We used Inverse Kinematics to commute these magnitudes into proper values for the

joint angles, which are given as inputs to the motion functions.

Inverse Kinematic is a method to compute a set of joint angles that satisfy the

end-effecter constrains.

For stability some physical factors must be considered. One of these factors is Center

of Mass (CoM). We can also use other dynamic feedbacks such as Zero Moment

Point (ZMP). In stable patterns this point must be within the supporting area. (The

convex hull of the robot's feet.)

3.1 Forward Kinematic

Our purpose in this algorithm is determining the position of the joints and other points

with knowing the angles of the joints.[2] One of the methods which helps us to

achieve this purpose is Denavit Hartenberg.[3] In fact, this method goes from joint to

joint in four steps, multiplying a matrix in the previous matrixes in each step.

1
st
 Step: a displacement along Z axis

2
nd

 Step: rotation around Z axis

3
rd

 Step: displacement along X and Y axes

4
th

 Step: rotation around X axis

After going joint to joint, the final matrix must be multiplied by the inverse of the

total rotation matrix in order to obtain the coordinates in the universal coordinate

system.

Joint
Controller

Body
Controller

Robot Basic Agent Agent
Advanced

Agent
Our Player

3.2 CoM(Center of Mass)

We used the forward Kinematic method to find the centers of the bodies of the Nao

robot (for example each hand itself has two bodies, and each Leg itself has three bo-

dies.). Then we can compute Center of mass of the whole robot with this formula:

 (𝑚𝑖 ∗ 𝑝𝑖)/ 𝑚𝑖

When mi is mass of the body and pi is the position of the center of the body.

3.3 Inverse Kinematic

Robot control actions are executed in the joint coordinates while robot motions are

specified in the Cartesian coordinates. Conversion of the position and orientation of a

robot from Cartesian space to joint space, called as inverse kinematics problem,

which is of fundamental importance in calculating desired joint angles for robot de-

sign and control.

The algorithm uses the displacements of each joint then gives us joint angles. For a

robot with n degree of freedom, at any instant of time joint variables is denoted by

θi = θ(t) , i =1,2,..,n , and position variables Xi =X(t) , i =1,2,..,n . The relations between

the position X(t) and joint angle θ(t) can be represented by forward kinematic equation,

X(t)=f(θ(t)).

The Inverse Kinematic exactly does the visa versa thing, it means that it gets the posi-

tion and produces the appropriate angles.

We had simplified the problem with some assumptions. For example we have omitted

the first joint in our calculation temporarily and will add it later. And we tried to have

the ankle parallel to the ground. So we find these equations:

 𝛼 = 𝑎𝑟𝑐 tan
𝑀

𝑍

 𝛽 = 𝑎𝑟𝑐 cos((l1
2 − l2

2 − l"2)/(−2 ∗ l2 ∗ l”))

 𝜃3 = 𝛼 + 𝛽

 𝜃4 = −𝑎𝑟𝑐 cos((𝑙"2 − 𝑙1
2 − 𝑙2

2)/(−2 ∗ 𝑙1 ∗ 𝑙2) + 180)

 𝜃5 = −𝜃3 − 𝜃4

 𝜃2 = −𝑎𝑟𝑐 tan
𝑌

𝑍

 𝜃6 = −𝜃2

 Fig. 3. Lateral view of Nao

leg

Nao is a humanoid robot with 6 DoF (Degrees of Freedom) in each leg. Joints 1, 2

and 3 are in the same place and joints 5 and 6 are in another same place .We use heap

vector as the place of joints 1, 2 and 3 and ankle vector as the place of joints 5 and 6

to solve inverse kinematic equations. Then we check equations answer for confidence

that whether the answers produced are in the limited operating or not. Therefore, use

Inverse kinematics formula for determining joint angles for each joint. This is imple-

mented as a periodic state machine.

 Ankle vector

 Heap vector

Something that can make problem is that when the first engine angle is not zero the

angles produced by these equations may be not appropriate completely. We have

solved this problem with using Forward Kinematic before the Inverse Kinematic and

then updating the joints positions and the Ankle and Heap Vector. So, we are able to

change the first engine’s angle manually and still have appropriate motions with using

Inverse Kinematic for other engines.

4 Online Modeling

In order to observe the robot actions better we have modeled the Nao robot in

OpenGL which works parallel to the Simspark server with getting some outputs from

the agent.

Fig. 4. Agent

Modeling

 Controller Inverse kinematic

Joint angles

And also in order to observe the worldmodel calculations we modeled the ground as a

2dmonitor in OpenGL.

Fig. 5. World Modeling

5 Future Works

In the worldmodel part we are working on minimizing the errors. In order to do this

we want to add some filters to our calculates.

In the walking method we are working on our equations in order to add the first

engine to the calculations and omitting some of the limitations that we use them now.

And also we are optimizing the skills and decision making of the Agent. We are

working to use the CoM that we have calculated in order to make more stable

motions.

Coordinating heterogeneous multi-agent systems can be a difficult task so we are

studying a procedure that is based on a developed meta-Model for a multi-purpose,

adaptable, strategic coordination layer. [6]

Reference

1. Atieh AlSadat Moosavian , Sara Javadzadeh No , Armita Sabeti Ashraf ,Nazanin Sadat

Dastserri, Farzanegan Team Description Paper 2011 Soccer Simulation 3D league

2. http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-

kinematics.pdf

3. Ravi Balasubramanian, The Denavit Hartenberg Convention

4. Rcssserver3d user manual

5. Cord Niehaus, Thomas R¨ofer , Tim Laue, “Gait Optimization on Humanoid Robot using

Particle Swarm Optimization”.

6. João Certo,Nuno Lau, Luís Paul Reis, “Multi-Agent Coordination through Strategy” .

7. http://www.wikipedia.org/

http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-kinematics.pdf
http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-kinematics.pdf

