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Abstract. HELIOS2013 is a 2D soccer simulation team which has been
participating in the RoboCup competition since 2000. We recently fo-
cus on an online multiagent planning using tree search methodology.
This paper describes the overview of our search framework and oppo-
nent modeling approach to improve the search result.

1 Introduction

HELIOS2013 is a simulated soccer team for the RoboCup soccer 2D simulation
league. The team has been participating in the RoboCup competition since 2000,
and won 2 championships and 2 runner-ups in the past 4 years of RoboCup
competitions. Moreover, the team have released a part of their source codes in
order to help new teams to participate in the competitions and to start the
research of multiagent systems.

We recently focus on an online multiagent planning using a tree search
methodology. In this paper, we briefly introduce our search framework and an
approach for predicting opponent positions in order to improve the accuracy of
search results.

2 Related Works

We have released several open source software packages that help us to develop
a simulated soccer team®. Now, we are mainly maintaining following software
packages:

— libresc: a base library for a simulated soccer team.

— agent2d: a sample team program using librcsc. Newbies can use agent2d as
a start point for developing their own team.

— soccerwindow?2: a high functional viewer, which can be used as a monitor
client, a log player and a visual debugger.

! Available at: http://sourceforge.jp/projects/rctools/
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Fig.1. An example of action sequence. This image shows the chain of four actions:
1) pass from Player 10 to Player 7, 2) dribbling by Player 7, 3) pass from Player 7 to
Player 9, and 4) Player 9 shoots to the goal.

— fedit2: a formation editor for agent2d. fedit2 enables us to design a team
formation using human’s intuitive operations.

They are implemented from scratch without any source codes of other sim-
ulated soccer teams. However, several idea were inspired from other released
codes, such as CMUnited[1], FC Portugal[2], YowAI[3], TsinguAeolus[4], UvA
Trilearn[5, 6] and Brainstormers[7, 8]. We would like to thank those teams for
their effort and achievements.

In previous years, we proposed a team formation model that uses Delaunay
triangulation [9] and a multiagent planning framework [10] described in the next
section. They have been already available in the released software.

3 Online Multiagent Planning using Tree Search

We developed a framework to search for the suitable action sequence in a contin-
uous state-action space using a game tree search methodology. The framework
enables an agent to plan cooperative behavior which involves other agents. The
first version of search framework was developed in 2009, and we have been con-
tinuously improving it in various way. For more details of this framework, please
refer [10,11].

3.1 Framework for Searching for Action Sequences

In order to simplify the problem, we consider only ball kicking actions in offensive
situations. This means that a cooperative behavior can be represented as a se-
quence of kick actions that are taken by multiple agents. Under this assumption,
a cooperative behavior can be generated by tree search algorithms.

The framework generates and evaluates a number of action sequences per-
formed by multiple agents. Generated actions are stored as a node of a search
tree. A path from the root node to a leaf node represents an action sequence that



Initial state:
Player #10 holds the ball.

Fig. 2. Example of search tree. A multi-branch tree search is performed. Each node
corresponds to an action-state pair instance. The predicted state maintained in the
preceding node is used to generate new nodes.

defines an offense plan taken by multiple agents. Figure 1 shows an example of
an action sequence.

The concept of the tree search used in this framework is shown in figure 2.
As shown in this figure, a multi-branch tree is used in the tree search. Each node
in the tree corresponds to an action-state pair. The result action sequence is
obtained by traversing a path from the root node to a leaf node.

In the current implementation, we employed the best first search algorithm [12]
as a tree search algorithm. Each node has a value calculated by an evaluation
function based on the corresponding action-state pair instance. Since we use the
best first search algorithm, the convergence of search is not guaranteed.

3.2 Current Problems

Some experiments show that the maximum tree depth has no correlation to
the team performance. We guess that the oscillation in the action sequence
generation caused by the poor accuracy of predicted state produced these results.
This means that it is necessary to establish the method to predict future state
more accurately. We are now trying to construct the model for predicting the
opponent positions in order to solve this problem.

4 Predicting Opponent Positions for Generating Action
Sequences
4.1 Overview

As stated in the last section, One of the characteristic features of HELIOS is the
use of action sequences in determining the next action. The process of generating



action sequences involves the prediction of all players from both teams. In the
last year’s implementation, the prediction of opponent players was done in a
simple way: The opponent players are assumed not to move from their current
positions during the generation process of action sequences. In this paper, we
introduce the prediction of opponent positions that is achieved by using neural
networks.

4.2 Neural Networks for Learning Opponent Positions

Three-layered neural networks are used to learn the opponent positions. One
neural network corresponds to the mapping from a field status to the position of
an opponent player. Thus, there are 11 neural networks in total for learning the
mapping of 11 opponent players. Each neural network has five input units, ten
hidden units, and two output units. The field status of a particular time step
is represented by a five-dimensional vector that includes the current position of
the ball, and the smallest time step to reach the ball among all players, and the
estimated ball position after the smallest time step. The output of the neural
network is the predicted position of an opponent player for the corresponding
field status.

4.3 Experiments

In order to evaluate the effectiveness of the neural network for predicting the
opponent positions, a series of experiments are performed. The coach agent is
used to train the neural networks as it can access the perfect information on the
soccer field during the match. The coach agent collects the training patterns dur-
ing the play_on status of the first half (i.e., the first 3000 time steps) and records
the input-output information that are used in the back-propagation learning of
11 neural networks. During the half-time break, the coach agent performs the
training of 11 neural networks and sends the weights of trained neural networks
to all teammate players. The performance of trained neural networks are eval-
uated by measuring the distance (i.e., prediction error) between the predicted
opponent positions and their actual ones for the training patterns. This experi-
mental setting is applied for the performance evaluation of the neural networks
against six teams from RoboCup2012 and agent2d.

The experimental results are shown in Table 1. From this table, it can be
seen that the opponent positions are predicted with the error of around 10m. It
should be noted that the prediction performance of neural networks is almost
the same for any opponent teams.

Next, the performance of neural networks is evaluated for unseen patterns.
That is, each field player uses the trained neural networks that are sent from
the coach agent in the second half. In the second half, neural networks remains
unchanged and not trained any further. The neural networks are used to predict
opponent positions by the kicker player who possess the ball. The prediction per-
formance of the trained neural networks for the second half is shown in Table 2.
Table 2 also shows the prediction performance of the conventional HELIOS2012



Table 1. Performance evaluation of trained neural networks for the first half.

Opponent || Average prediction error (m) | Standard deviation

agent2d 10.53 7.89
WrightEagle 11.88 8.04
Marlik 11.07 9.01
Ri-one 11.26 6.84
Oxsy 13.62 9.21
YuShan 13.57 9.30
NADCO-2D 10.85 8.00

that only assumes the position of opponent players are fixed during the genera-
tion of action sequences. From this table, it is found that the neural networks do
not work much better than the conventional prediction method in terms of aver-
age errors. However, the low values of the standard deviation show the stability
in the prediction by the trained neural networks.

Table 2. Performance evaluation of trained neural networks for the second half.

Opponent HELIOS2012 | HELIOS2012+Neural networks
agent2d 15.00 (£78.2) 17.80 (427.14)
WrightEagle||15.06 (£101.76) 17.56 (+25.30)
Marlik 27.55 (£100.17) 24.97 (£31.25)
Ri-one 12.92 (£70.30) 16.89 (£16.10)
Oxsy 18.27 (£78.86) 21.40 (+16.82)
YuShan 10.51 (£+44.19) 16.65 (+18.20)
NADCO-2D|| 19.55 (£84.31) 20.06 (+28.61)

5 Conclusion and Future Works

This paper described the research focus and the current effort of HELIOS2013.
We have been applying a game tree search methodology for online multiagent
planning. Now, we are trying to construct the model for predicting opponent
positions in order to improve the accuracy of search results. The prediction
model still needs to be improved, but the experiments showed promising results.

As future works, we have to establish more effective search algorithm. We
are now trying to introduce various game tree search algorithms such as Monte
Carlo Tree Search [13].
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