
Eagle Knights 2013: Small Size League
Team Description Paper

Marco Morales, Andre Possani, Alberto Candela Garza, Alan Córdova
Posadas, Alejandro Escalante Arrieta, Juan Carlos González Sosa ,Luis

Eduardo Pérez Estrada, Jorge Pérez Renteŕıa, Karen L. Poblete Rodŕıguez,
Hipólito Rúız Galeana, Javier Sagastuy Breña, Fabiola Terán, Jorge C.

Urteaga Reyesvera, Miguel Ángel Valenzuela Sánchez, Héctor Vidrio

Robotics Laboratory, Department of Digital Systems College of Engineering
Instituto Tecnológico Autonómo de México - ITAM, Mexico City, Mexico.

Abstract: In this paper we describe the architecture we have been using and
improving since 2009 for our RoboCup Small Size League 2013 team. Since 2012
we have improved our hardware and software. In hardware, we compute in a
different way the speeds of our motors, and we have a new PID robot controller.
In software, we are developing new components for decision making.

1 Introduction

In this document we provide an overview of the software and hardware of the
SSL Eagle Knights team. The Eagle Knights SSL team was founded in 2003
and participated officially for the first time in Robocup 2005. Our team was
the first Latin American team consistently obtaining top results in all its re-
gional RoboCup participation, 3rd and 2nd place in US Open 2003 and 2004,
respectively, and 1st place in Latin American Open 2004 and 2005. We have
also participated in the last eight RoboCup competitions: Osaka, Japan 2005;
Bremen, Germany 2006; Atlanta, USA 2007; Suzhou, China 2008; Graz, Austria
2009 ; Singapore 2010; Istanbul, Turkey 2011 and Mexico City, Mexico 2012.

The official website of Eagle Knights: http://robotica.itam.mx/ssl
Qualification video URL: http://youtu.be/DDUJYdTUnmA

2 Team Constitution

Our team is integrated by Faculty and undergraduate students from Instituto
Tecnológico Autónomo de México (ITAM).

– Faculty Advisor. Prof. Marco Morales, PhD.
– Faculty Member. Prof. Andre Possani, PhD.
– Hardware Division. Alberto Candela Garza (ME&IE), Jesús Cozáın (CE),

Alejandro Escalante Arrieta (CE&BAM), Jorge Pérez Renteŕıa (CE), Javier
Sagastuy Breña (CE&BAM), Jorge C. Urteaga Reyesvera (TE).

– Software Division. Alan Córdova Posadas (CE&TE), Luis Eduardo Pérez
Estrada (CE), Karen L. Poblete Rodŕıguez (CE&TE) ,Hipólito Rúız Galeana
(CE),Miguel Ángel Valenzuela Sánchez (CE&BAM).



– Administration and Public Relations. Sergio Francisco Góngora y Moreno(CE),
Juan Carlos González Sosa (CE&BAdmin),Fabiola Terán (CE), Héctor Vidrio
(CE).

3 System Overview

RoboCup [1] is an international joint project to advance research on artificial
intelligence and robotics through a grand challenge: design a robotics soccer
team able to defeat the FIFA world champion by 2050. The Small Size League
aims to this challenge by promoting research on multi-agent cooperation and
control. Two teams of six mobile robots up to 18 cm in diameter play soccer
on a 4.05 by 6.05 m carpeted soccer field. Aerial cameras send video signals to
a shared vision system[2] that estimates the position of the robots and of the
ball on the field. This information is then passed to an AI system that produces
control commands that are sent to each of the robots through a wireless link.
An external referee box indicates the state of the game to the central computer.

We currently have six robots that satisfy the constraints set in the SSL rules:

The height of each robot is 140 mm
The maximum diameter of its projection to the ground is 178 mm
The maximum percentage of ball coverage is 19%.

Since last year we have replaced the design of the motherboard. In 2012
we migrated the system completely from Texas Instruments TMS 320LF2812
boards to the Arduino MEGA 2560 microcontroller, in order to take advantages
of the facilities that they give us. Comparing to the TI boards, Arduino is a
trend board so it is easier to look for information when problems appear.

Also, we are working on specific parts of our software, mainly in the interface
between the expert system and the highest level of hardware. Due to the change
of the microprocessor we made, the architecture of the software system needed
to be adapted. We are still using the same system of intelligence based on the
CLIPS language developed by NASA, for programming intelligence systems.

Finally, we are planning to make some changes in the planning and control
layers of our systems, that is why we are developing a Rapidly Exploring Random
Tree (RRT) that will substitute the sequence planning module we use, it is still
on testing phase.

3.1 Interfaces to the league’s software

– The Shared Vision System digitally processes two video signals from the
cameras mounted on top of the field. It computes the position of the ball and
robots including the orientation of our robots and the opponents. Resulting
information is transmitted to the AI system[2].
The vision system should be robust enough to compensate for errors since
the overall performance of the team depends on it. The main object features
used by the vision system are the colors defined in the rules of the SSL [1].



The ball is a standard orange golf ball. Each robot has a 50-mm circular
patch, this patch is blue in one team and yellow in the other team. The
main tasks of the vision system are:

• Capture video in real time from cameras mounted on top of the field.
• Recognize the set of colors specified by the rules of the objects of interest

on the field (robots and ball).
• Identify and compute the orientation and position of robots in the team.
• Compute the position of robots of the opposite team.
• Track the objects on the field and compute their moving vector.
• Transmit information to the AI system.
• Adapt to different lighting conditions (color calibration procedure).

In the past, when we used our own vision system, we implemented a number
of algorithms to make our system more robust to different light conditions.
These algorithms include the use of a neural network to classify camera
image pixels to a discrete set of color classes that is robust under different
light conditions[3].

– The referee box. This module controls the flow of the game, the robots
are restricted to obey its commands. The Referee communicates the different
states that could occur during the play, sending a set of predefined commands
to the AI system through a serial link.

4 Software

Our software comprises eight modules: Game Control, Vision System Commu-
nications, Artificial Intelligence, Simulation System, Robot Control, Collision
Detection,Transceiver Communications and User Interface.

4.1 Game Control

This module receives referee commands through a serial interface and returns
the state of the game.

4.2 Interface to the Shared Vision System

This module provides information about the state of the game scenario corre-
sponding to the position, angles and motion vector of the robots and of the
ball.

4.3 Artificial Intelligence System

It receives the information from the Vision System and makes strategic decisions.
The actions of the team are based in a set of roles (such as goalkeeper, defense,
and forward) that exhibit behaviors according to the current state of the game.
These behaviors are encoded as rules of an expert system.



Fig. 1. Eagle Knights SSL System Architecture

This module receives the position and orientation of all the objects in the
field (robots and ball), game state, robots roles. It estimates the future position
of each robot and the actions they should take. A Kalman Filter is used to
estimate the heading of the ball. The strategies are programmed as rules on
an expert system. Each rule encodes the actions that each robot can take in
their assigned role: goalkeeper, defense, first forward, second forward, and third
forward. For example, defense and goalkeeper rules are defined to block the ball
from its moving path, while second forward rules are defined to try a pass to the
first forward, and first forward rules are defined to shoot to the goal. The expert
system organizes the rules into a tree and assigns a score to each node based on
the antecedents of the rule and its priority.

The execution of the rule is a high level command for the robot to perform
(e.g., passing, shooting, or blocking) that includes its linear and angular velocity
and the use of the kicker and dribbler devices. These commands are converted
into spline trajectories from which a speed vector is obtained for each robot to
follow.

A geometrical exploring tree is used to avoid collision with robots of the
opposite team [4]. Trajectories are computed based on splines. The AI system
sends commands back to the robots through a wireless link.



4.4 User Interface

This module allows to visualize status information including: position, orienta-
tion and speed of the robot, game referee messages, control commands sent to
the robots. It also allows to configure the AI system parameters.

4.5 Simulation

This module simulates robots and vision feedback in order to test system func-
tions of the AI, collision detection and robot control modules without the actual
vision system or robots being present. It allows to debug and test the artificial
intelligence module. The field is visualized using a Python coded interface.

4.6 Transceiver Communications Module

This module builds the packets that must be sent. It send them using the
transceiver. The information sent to each robot is the moving vectors and the
angular speed of each one.

4.7 Motion Planning Module

This is a new module that we are developing in order to integrate trajectory com-
putations with strategic decisions. This module will provide two main functions:
role assignment, and collision evasion.

Role Assignment We adapted motion planning techniques [6, 7] to perform
dynamic role assignment in order to improve tactic decisions. This method re-
ceives the desired ball trajectory and state of the objects to produce trajectories
for each robot. From the desired ball trajectory we compute a set of feasible plans
that are ranked according to several criteria that include the relative position
of the robots to the ball, their role, and their likelihood to help into moving the
ball forward or to block it. The highest-ranked plan is chosen and executed. This
method allows for planning from the perspective of the ball instead of the roles of
the players. The goal is to better identify successful strategies. This method will
be integrated with the expert system selection of actions through an arbitration
process such that the motion plan is followed when it does not connect with the
expert system.

Collision Evasion Allows our robots to avoid obstacles in real time (six robots
in more than 60 fps). It receives the current and goal robot positions and plans
evading paths through a geometrical exploring tree (GET), a variation of the
rapidly exploring random trees [5]. A GET constructs a tree in each processing
iteration rooted in the robot start position which is defined as an exploring node.
Then, the tree grows as follows: a new node at a small predefined distance from
the exploring node and on the segment that goes from the exploring node to



the goal is generated. If there are no obstacles interfering with the new point
then the tree is extended and the new point replaces the last exploring node.
Collision is computed based on the geometry of the obstacles, in the case of a
circular obstacle a possible intersection between the circle and the vector “A” is
calculated like shown in Figure 3. In case of an intersection the distance between
the obstacle and the new extension is validated to be smaller than a radio “R”.

In the example shown in Figure 3 there are two intersections: “P1” and “P2”.
When the tree reaches the radio “R” , it will generate two possible routes at each
side of the obstacle. These two points are now considered as exploring nodes.
While the exploring node can not freely reach the goal then it continues sur-
rounding the obstacle until there is not intersection or another obstacle. In this
case a new obstacle is defined as the exploring node obstacle and the exploration
continues surrounding the new obstacle as shown in figure 4.

Fig. 2. Collision detection of a circular obstacle and the robot 1 trying to reach the
ball

Fig. 3. The tree finds the goal avoiding multiple obstacles

5 Hardware

Last year (2012) our robots were significantly rebuilt. This year we have been
fine-tuning those modifications, as well as adding new features.



Each robot has five Faulhaber 2224P0212 motors with gearheads 14:1 (four
motors for the wheels and one for the dribbler) [6], a low resistance solenoid, a
microcontroller, a Zigbee radio, a single printed circuit board and two Lithium
Polymer batteries.

5.1 Microcontroller

Last year we replaced the Texas Instruments DSP for the Arduino MEGA 2560
microcontroller. We also had to make new programs for this platform in order
to support the functionality previously provided by the DSP.

5.2 Wireless Communication

In previous years, wireless communication was controlled by pairs of Radiometrix
RPC-914/869-64 transceivers. Now, we have fully emigrated to XBee Series 1
radios, at a frequency of 2.4 GHz. One radio sends the information from the AI
system to all the robots, which also have (each and every one of them) an XBee
radio integrated. We used the X-CTU software to configure and test the XBee
modules. They use either a 16-bit or 64-bit source address. We use an Arduino
library to handle the serial interface required for the communications.

5.3 Omni-Directional Drive Control Module

This module receives the movement vector including linear and angular speeds
from the radio. To control the motor speeds two steps are completed:

– Actual motor speeds are read from the motor encoders. From these, actual
linear and angular speed vector of the robot are computed.

– The robot receives through the radio link the desired linear and angular
speeds.

– There are three independent PID algorithms: one for linear speed in x, one
for linear speed in y, and one for angular speed. They use the actual and
desired linear and angular speeds to compute speed corrections for each
motor. These speed corrections are used to compute the duty cycle of PWM
signals for the control of each motor. An illustration of this process is shown
in Figure 1.

Computation of motor speeds through multiplexing and
Timer/Counter

One of the problems we faced last year was in speed computation for the motors.
The encoders were attached to processor inputs that generated an interrupt at
every pulse generated by each encoder. Since the frequency of interrupts was
so high, the processor had little time to manage communications and the PID
resulting in very slow control actions for our robots. We addressed this problem
in the following way:



Fig. 4. Motor control using Pulse Width Modulation (PWM) and Proportional-
Integral-Derivative controller (PID)

– We now use the Timer/Counter system of the microcontroller in order to
compute the frequency of encoder pulses without needing interrupts.

– We implemented 4x1 multiplexor that allows us to use a single input for
the four motors. Our program alternates the computation of speed for each
motor intime.

5.4 Kicker Control System

Another issue we are addressing this year is the design of our kicker. So far we
have pinpointed several issues in the booster of our kicker system that we have
already addressed with promising results. Currently, our kicker is able to kick,
although one piece of the design still burns randomly. Our plan is to solve all
the issues in this area by the time of RoboCup 2013.

In order to kick the ball, we use a push type solenoid. Solenoid kicker system
needs a high power supply. For size restrictions robots have four 7.4V/ 700mA
batteries, equivalent to 31 Watts of power. With this amount of power we obtain
less than the solenoid requires for a minimum performance. The main idea in
power elevation is to store energy, then discharge it when solenoid is activated.
To solve this power problem we implement a layered system as follows:

Voltage transformation The 14.8 dc voltage obtained from the batteries is
increased using a voltage multiplier to reach 180 volts. The output is used to
charge up a bank of capacitors. The converter is controlled using a control pin
of the DSP with a relay and a transistor. The robot can kick approximately
every 25 seconds.

Discharge and solenoid activation An infrared sensor system in the bot-
tom of the robot senses if the robot has the ball. The microcontroller sends
a high-level output bit when the robot is in score position. To discharge the
capacitors into the solenoid, the Discharge layer uses both the microcon-
troller kick bit and the infrared ball detector output bit to discharge the



capacitors. Because the capacitors charge level is very high, the robot dis-
charges it using a power MOSFET. A signal from the microcontroller, is sent
to the RELAY to control the flow of current through it and thus controlling
the kick.

6 Research timeline for RoboCup 2012

In RoboCup 2012 we had a fully functioning team that was able to play in all
the games. Our performance was still lower than we want, so this year we have
addressed several issues and we still have a research agenda in order to reach
a good performance in RoboCup 2013. The issues that we have addressed so
far are: conflicts in interrupt handling in the microcontroller caused by high-
frequency signals from motor encoders; and, power management in the booster
for our kicker system; training and retention of team members.

In the coming months we will work on the following projects: addition of
dribbler motor; applying recent design changes to the motherboard of our robots;
fixing some trajectory control issues detected during the preparations for the
qualification materials; integration of the motion planning system and the expert
system that takes role decisions.

7 Conclusions

As a conclusion we revise the final status of the improvements made to the
project before the deadline of this TDP. The sequence planner is in a viable
state, we keep testing this module in order to get the robots into a more com-
petitive state before the competition. Until this moment we have implemented
the software in 4 of the 6 robots that we have and both divisions of the team,
hardware and software, are joining their respective parts of the project.

8 Acknowledgements

This work is supported by the Asociación Mexicana de Cultura, A.C. and the
Instituto Technológico Autónomo de México.

References

1. RoboCup SSL, laws of the F180 league 2012. http://small-size.informatik.uni-
bremen.de/rules:main.

2. S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso. SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII, pages 425–436, 2009.

3. Ernesto Torres and Alfredo Weitzenfeld. RoboCup small-size league: Using neural
networks to learn color segmentation during visual processing. In ENRI-LARS,
Salvador, Brasil, 2008.



4. Basu A. Elnagar, A. Local path planning in dynamic environments with uncertainty.
pages 183 –190, Oct 1994.

5. S. M. LaValle and J. J. Kuffner. Rapidly-Exploring Random Trees: Progress and
Prospects. In Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR),
pages SA45–SA59, Hanover, NH, USA, March 2000.

6. Micromo. http://www.faulhaber-group.com/uploadpk/e 201 MIN.pdf.


