
Implementation of a communication

library among heterogeneous agents:

NAITO-Rescue 2013(Japan)

Dai Obashi1, Toshiyuki Hayashi2, Nobuhiro Ito1, Kazunori Iwata3

1 Department of Information Science, Aichi Institute of Technology, Aichi, Japan.
2 Department of Electrical and Computer Engineering, Nagoya Institute of

Technology, Aichi, Japan.
3 Department of Business Administration, Aichi University, Aichi, Japan.
chocolatelynx@gmail.com, haya815t@gmail.com, n-ito@aitech.ac.jp,

kazunori@aichi-u.ac.jp

Abstract. The RoboCup Rescue Simulation (RCRS) is a multi-agent
environment that simulates postdisaster relief. The agent competition of
the RoboCup Rescue Simulation league is a place to evaluate various
multi-agent techniques.
In this paper, we introduce two solutions for a disaster-relief multi-agent
team for RoboCup 2013. First, we introduce a communication library
among heterogeneous agents, in order to improve the reusability of source
code for multi-agent teams. The library provides an information sharing
protocol among the heterogeneous agents and, through our experiments,
we can confirm that these agents could communicate with each other.
Next, we introduce the structure of the multi-agent team that would use
our library. Our team has adopted the x-means method for each agent
to decide his own area, thereby avoiding overlapping with another agent
for a distinct area. We then show the results of these experiments.

1 Introduction

The RoboCup Rescue Simulation (RCRS) is a multi-agent environ-
ment that simulates postdisaster relief [1]. The aim of the RCRS is
to find effective strategies for dealing with disaster situations by de-
veloping artificial intelligence agents, and to expand the progress of
artificial intelligence and robotics using new technologies introduced
during the development of these agents.

The RCRS is an environment to reproduce real world disaster sce-
narios with agents to simulate rescue team operations. The environ-
ment is composed of disaster information such as fires and blockades,
and geographical information such as buildings and roads. Agents



consist of modeled rescue teams so the fire brigade agent must ex-
tinguish fires, the police force agent must clear road blockages and
the ambulance team agent must rescue victims. The fire station,
police office, and ambulance center must manage the relevant fire,
police, and ambulance teams. To find an effective strategy, many re-
searchers and developers have been working toward the development
of multi-agent teams.

The agent competition of the RoboCup Rescue Simulation league
is a place to evaluate various multi-agent techniques. In this paper,
we introduce two solutions, namely a communication library and an
approach for the design of our agents for a disaster-relief, multi-agent
team for RoboCup 2013. In Chapter 2, we introduce the Communica-
tion Library. The purpose of this library is to improve the reusability
of source code for multi-agent teams. The library provides an infor-
mation sharing protocol among the heterogeneous agents and we can
confirm through our experiments that these agents that used our li-
brary could communicate with each other. In Chapter 3, we describe
an agent developed using our library. Our team adopted the x-means
method for each agent to decide his own area. This method can avoid
overlapping of agents for a distinct area and this is confirmed by ex-
periment. In Chapter 4, we present our conclusions.

2 Communication Library

2.1 Communication problem in the RCRS

The current RCRS has several problems, including low reusability of
agents. Researchers and developers have to develop an entire multi-
agent team to apply their effective strategies to the RCRS. Therefore,
it is important to reuse the agents of the RCRS in order to simplify
the development of multi-agent teams. However, reusability is low
because developers individually design unique communication stan-
dards for their own agents. To solve this problem, it is necessary to
unify communication standards.

2.2 Overview of Communication Library

In order to solve the problems in the RCRS, a prototype of the
RoboCup Rescue Simulation Communication System (RCRSCS) li-



brary has been developed [2]. The RCRSCS library provides a pro-
tocol for designing and implementing actions for agents and their
teams. When a multi-agent team is designed with the communica-
tion library, we can prepare a center agent, which is a leader agent,
and other agents, which are member agents. The center (leader)
agent can give global instructions to member agents. These mem-
bers can behave autonomously according to the instructions from
the center agent. As a result, the RCRSCS library achieves an im-
provement in reusability of the multi-agent teams. The RCRSCS
library is structured on the basis of the concept of FIPA ACL [3],
one of the multi-agent communication languages, and this structure
is shown in Figure 1.

Fig. 1. Structure of RCRSCS library

Communications consist of multiple messages. Each message con-
sists of the Message Type and multiple data. Each data consists
of Data Type and multiple values.

The Message Type is classified into one of three; the Infor-
mation Message is used for sending information obtained from



the disaster area to other agents and center agents, the Task Mes-
sage is used for task (instruction) messages from a center agent to
other agents while the Report Message is used for reporting the
result of the given task back to the center agent. Each message is
divided into detailed information about buildings, blockades, etc.

When a message is sent, it is automatically converted into a bit
sequence so a message passing through the library does not waste
resources, although message length per simulation step is restricted
by the RCRS rules [4].

2.3 A problem of the RCRSCS library

The prototype RCRSCS library contains some problems, as follows:

1. Types of Task Messages are insufficient.
2. In message passing, some settings for multicast are required.
3. There is little documentation.
4. There are still some bugs.

In this paper, we focus on point 1. The prototype library assumes
the following two points:

– There are center agents.
– There is damage caused by the disaster, which agents should

overcome.

In terms of the first point, a center (leader) agent should be elected
in the case where none exist. For the second point, we must assume
a situation where all damages caused by the disaster have been re-
covered. To solve these problems, it is necessary to design new Task
Messages.

2.4 New Task Messages

We designed new Task Messages to solve the problems described
above and these are shown in Table 1.

The Scout Area Message is an order for agents to search for
damage and civilians in a specified area. The Decide Leader Task
Message is an order to elect a center (leader) agent if one is required.



Table 1. New Task Message

Task Message Elements

Scout Area Task Message agent ID, scout work area ID list
Decide Leader Task Message agent ID

2.5 Evaluations for the library

We confirmed the effectiveness of our improved library through ex-
periments. We asked a few teams to implement a multi-agent team
using our library. We used the agents as samples and created mixed
agents by combining them. Then we performed ten simulations for
each agent. To evaluate our library, we compared the sample agent
with the mixed agent for the ratio of the number of Task and Re-
port Messages. If the mixed agents could correctly communicate
with each other, the number of Report Messages became equal
to the number of Task Messages, because one Task Message re-
quires one Report Message. The sample agent had the ability to
perform the contents of received Task Messages.

The results of the experiments are shown in Table 2,

Table 2. The average ratio of the report and task messages

Team Report Message / Task Message (%)

Sample Agent 73.53
Mixed Agent 74.49

which shows the total number of Report and Task Messages
in 300 steps of simulation. From Table 2, we can confirm that the
result of the sample agent is close to that of the mixed agent. The
ratio of Report and Task Messages is not 100% because an agent
can not receive the Report Message if the agent died during the
message passing, nor can the agent receive the message when the
simulation is finished.

As a result, we can confirm that our library performed properly.



We implemented our multi-agent team as a sample agent for our
library. In the following section, we describe an approach for our
agent.

3 Agent

3.1 Common approach to every agent

The agent’s priority is to search for damage (fire, victim, block-
ade) caused by the disaster. Each agent is responsible for a specific
area so as to avoid searching in the same place, agents use the x-
means method to decide their own area. Inputs of the x-means are
the coordinates of buildings. X-means [5] is a clustering technique,
which minimizes BSI (Bayesian information criterion). As a result,
the buildings are divided into clusters according to the distance be-
tween buildings. Each cluster consists of buildings that are closer to
its neighbors than the average distance of each building. Agents used
our communication library.

3.2 Fire Brigade

Fire Brigades extinguish small fires in a specific order. First, the
Fire Brigade selects small fires that they can extinguish. Second,
they select fires in their own area and finally, other fires. The x-
means clustering ensures that the distance between the buildings of
one area and another is sufficient to contain the slow spread of fires.

3.3 Ambulance Team

The highest priority is to rescue civilians; therefore, the Ambulance
Team has to rescue as many as possible. To decide which civilian the
Ambulance Team has to rescue, we introduce the following approach.
(1) = (The number of steps required to rescue a civilian) +

(The number of steps required to get to the nearest refuge)
(2) = (The number of steps that the civilian can survive through)
If (1) < (2), the Ambulance Team rescues the civilian on the basis
of the abovementioned two factors, in ascending order.



3.4 Police Force

First, the Police Force clears blockades that agents are buried under.
Second, they clear blockades on the main roads, which are decided
by the Min-Cut method [6].Third, they clear blockades that prevent
agents from passing through. Fourth, they clear other blockades.
Inputs of the Min-Cut are the vertices and edges of a graph. The
coordinates of the intersection of roads are regarded as vertices of a
graph, while connections between the roads are regarded as edges.
The weight of all the edges is one. The Min-Cut is a method to
find the minimum cut of an undirected, edge-weighted graph. The
minimum cut is a set of edges that divide into two or more connected
graph components. In other words, if the roads (edges) of minimum
cut become unavailable, the agent can not get to their destination.
Therefore, the minimum cut is regarded as the main roads.

3.5 Result

By clustering buildings, agents are placed evenly and properly on the
map. Therefore they can search for damages caused by the disaster
more quickly.

Blockades don’t prevent agents from passing through so much,
because the Police Force clears blockades on the main roads based on
a priority basis. But the main road becomes congested, while agents
can’t search for damages, except for damages around main roads.
We’ll improve planning path problem in near future.

4 Conclusion

In this paper, we have introduced two solutions for a disaster-relief
multi-agent team of RoboCup 2013. Because we have improved the
expressive ability of the RCRSCS library, the problems of the pro-
totype library are solved. We have confirmed the effectiveness of our
improved library through experiments. In the future, we will confirm
the effectiveness by using various algorithms.



References

1. RoboCup Rescue Simulation League. http://roborescue.sourceforge.net/.
2. Takefumi Ohta, Fujio Toriumi, ”RoboCupRescue2011-Rescue Simulation League

Team Description <SUNTORI(Japan)>”, 2011.
3. Michael Wooldridge, ”An Introduction to MultiAgent Systems”, pp.140-146, Wiley,

2009.
4. RoboCup Rescue Simulation League Agent Competition 2010. Rules and Setup.

http://roborescue.sourceforge.net/2010/rules.pdf, p.4, 2010.
5. Dan Pelleg, Andrew W. Moore, ”X-means: Extending K-means with Efficient Es-

timation of the Number of Clusters”, Proceedings of the Seventeenth International
Conference on Machine Learning, pp.727-734, 2000.

6. Mechthild Stoer, FrankWagner, ”A simple min-cut algorithm”, Journal of the ACM,
vol.44, pp.585-591, 1997.


