
Autonomously exploring indoor environments

with an UAS

Areg Shahbazian
Mick van het Nederend

Wessel Klijnsma

June 30, 2013

1

Contents

1 Introduction 2
1.1 National Aerospace Laboratory of The Netherlands 2
1.2 UAS . 2
1.3 Rescue workers scenario . 2
1.4 SLAM . 3
1.5 Autonomous exploration . 3
1.6 Product vision . 4

2 Product overview 4
2.1 Harris’ decomposition . 4
2.2 World representation . 4
2.3 Path-planning . 6
2.4 Exploration strategy . 6

2.4.1 Top layer . 7
2.4.2 Relevancy . 9
2.4.3 Bottom layer . 13
2.4.4 Pseudo code . 13

3 Future improvements 14
3.1 Path-planning . 14
3.2 Uniqueness of information . 14
3.3 Relevancy of information . 14
3.4 Performance . 15

4 Conclusion 15
4.1 Metrics . 15
4.2 Results . 16
4.3 Summary of developed product 16

5 References 17

1

1 Introduction

1.1 National Aerospace Laboratory of The Netherlands

The National Aerospace Laboratory (NLR) is a non-profit organisation in The
Netherlands that focusses on research on aerospace technology. It provides
scientific knowledge about aviation and space travel to the government, the
public sector and the industry.

The research facility was founded in 1919 as RSL in order to speed up the
development of aeronautics in The Netherlands. Although having limited re-
sources, a wind tunnel was built to test airplane designs.

Since 1919, the NLR has grown out to be one of the biggest research organ-
isitions in The Netherlands. The NLR now has about 650 employees divided
over three locations. Its research covers everything aerospace.

This project assignment was issued by a research group within the NLR that
focusses on technologies concerning Unmanned Arial Systems.[?] [?]

1.2 UAS

An UAS is short for Unmanned Aerial System. An UAS consists of three parts:

1. UAV: Unmanned aerial vehicle

2. DL: Data Link

3. RCS: Remote Control Station

The UAV part is the flying part of the system. There are various forms
in which this part can occur. There are helicopters, quadcopter, octocopter,
plane models, etc, ranging in size. They can be as small as small as a couple
of centimeters or as big as five meters. The choice of the UAV depends on
requirements like: the payload weight, speed, maneuverability.

The UAV is controlled from a Remote Control Station. In this station com-
mands are given to the UAV to for instance move to a position.

The link between the RCS and the UAV is called the data link. This can be
wireless data links like wifi or bluetooth.

Nowadays, UASs are big bussiness. They are being deployed to do various
tasks. The millitary uses them to drop bombs or for the surveyance of hostile
areas. Also in the public sector UAVs are no unkowns, one can imagine them
being used to film sports events from above or to provide an up-to-date map of
an area.

1.3 Rescue workers scenario

Imagine a scenario where there is a building on fire. The outside (bounds) of
the building is known because it can be seen from the street. The inside of the
building is unknown because it can’t be seen from the street and going inside
would be to dangerous because of the fire.

2

As a fireman, there is the constant dillema of risking your own live or sav-
ing another. Obviously, firemen are trained into dealing with these dangerous
situations, but that doesn’t mean that things never go wrong. It was reported
that in the United States 82 firefighters died in their line of duty. 1

In order to create saver working conditions for firemen and other rescue
workers, UASs can be used. They can be sent into burning or collapsing building
and provide rescue workers with valuable information of the environment.

Another sitution where UASs can be deployed to contribute to safety is in
cases where the inside of a building changes frequently. An example of such
a situation is a conference hall. For every conference there is a new floorplan.
Making these floorplans manually takes a lot of time. Letting a UAV fly accross
the conference hall creating a 3d model, saving the time it takes to do this
manually. Also 3d models will prove more usefull to rescue workers in case of
an emergancy than a 2d floorplan, because of the extra information a 3d model
has.

1.4 SLAM

In order to map unknown areas, an agent, in this case the UAS, needs to know
its position and have some data of this position to map to it. This data can
come from for instance RBGD (RGB + Depth) cameras or laserrange sensors.
It provides the visual information needed to create the map.

SLAM is short for Simulatanous Localisation And Mapping. The thesis by
NLR intern Robbert [3] Proost describes a method in which a Pelican is used in
combination with a Kinect to do SLAM. The RGBD data from the Kinect sensor
is mapped to to location which is determined by a visual odometric algorithm.
Visual odometry uses visual input to calculate the position by extracting and
analysing features from the images provided by the camera.

1.5 Autonomous exploration

The method developed by Proost requires manual control over the UAV. Con-
trolling a UAV like the Pelican without crashing it, requires a lot of experience
and skill of flying with such vehicles.

This means that in order use SLAM in combination with a UAV in rescue
situations, trained people with this experience and skill are needed, and need to
be paid. Autonomous control of the UAV would mean that less of these people
are needed, making it easier for rescue services to start using UASs in their
work.

This project focusses on researching and implementing methods which can
be used to autonomously explore unkown areas using an UAV. As these methods
will differ depending on the situation in which they will be used, this project
aims to develop a method which works in at least one of these situations.

1http://apps.usfa.fema.gov/firefighter-fatalities/fatalityData/incidentDataReport?idrYearStart=2012idrYearEnd=2012

3

The situation on which this project focusses, is the one in which UAV is
used to create a 3d floorplan of a conference hall. This means that bounds, the
outside walls, of the conference hall are known and that some assumptions on
what to expect in the unknown area between the bounds can be made.

1.6 Product vision

For researchers who want to use a mini UAS to autonomously explore partially
known, like conference halls, we document about and implement the possibil-
ities and new ways of pathfinding and exploration strategies which minimize
occlusions in the generated 3d maps. Unlike the current systems which have to
be controlled manually, our product will require no human controlling.

2 Product overview

2.1 Harris’ decomposition

The problem described above is a well-known one within robotics. Harris [4]
developed a handy way to decompose this problem into three smaller ones.

1. World and knowledge base representation

2. Path-planning

3. Exploration

The first item implies that a clever method needs to be found to create the
internal representation of the map. In this case, this is done using octrees,
described below. The mapping of the area, the knowledge base representation
and data collecting and storage, will be done by Proost’s software.

Then there’s the path-planning: a way of going from A to B, the point B
being being decided by the exploration strategy. It is important that the agent
avoids obstacles and re-plans its path when it encounters one.

Finally, a global exploration strategy is required. The NLR required this
aspect to be parameterizable, as different uses require different measures. A
tradeoff between speed and thoroughness is inevitably to be made, and efficiency
should always be high.

2.2 World representation

The physical world is observed with a RGBD-camera with a limited range. A
sensor like this can observe surfaces and represent them as point-clouds. A point
cloud is a data structure of 3D-points in a space. This data structure can be
converted into a octree data-structure.

The octree data-structure can best be explained as a nested 3D-grid. The
world is divided into big, equally big cubes, which in turn are divided into eight
big cubes themselves, all of which are again divided into eight big cubes. This

4

continues for as long as the level of preciseness requires. This data-structure
is one that distinguishes between three different states that a block can be in.
Some places in the world can be occupied, meaning there is some rigid volume
in that area. Other places can be known to be free, meaning there is no rigid
matter. Finally, some areas are represented as unknown, meaning there is no
explicit information acquired by a sensor about that area.

Figure 1: The structure of octrees

Since the three characteristics of a volume described above provide enough
information for navigation tasks, the octree data-structure is a convenient way
to represent the world. The data can be stored in different resolutions, resulting
in different scales of accuracy of the world representation.

In our simulation of the problem we’ve represented both the world (the en-
vironment) and the knowledge base in octrees. Specifically, we used the octree
implementation described in [8]. A C++ library called Octomap 2 is provided
to read, write and use the data-structure. The library is open source and avail-
able. It also contains the octree-visualization software Octovis. Installation
instructions are given on the website and are fairly straightforward.
Our software was written and tested in a Linux environment (Ubuntu 12.04
LTS).
The main framework of our program works as follows. It represents a UAS-agent
as a 3d-coordinate with a depth sensor. The OcTree-data representing the com-
plete world (nothing left out) is loaded from a command-line argument. From
this map the nodes that should be visible from the agent-location are found,
using a specified sensor-range, and stored in a second OcTree, representing the
explored world. This is done every time the agent is relocated. In this way
a moving agent with a sensor is simulated and the OcTree data can be easily
visualized in Octovis.
Finding the OcTree-nodes that should be visible from the current position is
done using the rayCast function provided in the library. This function receives
a starting point, a direction-vector and a range as arguments and calculates
whether there is an occupied node in that direction, within the range. This is

2http://octomap.github.io/

5

done in a spherical form around the agent. It thus maps all occupied nodes
within the specified range from the agent that are not occluded by other occu-
pied nodes. The nodes that have been traveled through by the casted ray are
stored in the map as free nodes. All other nodes that have not been casted a
ray through remain unknown.
This framework is a simplistic approach that uses neither real-world data nor a
real UAS agent or a real sensor. It is generally implemented in a high-complexity
manner and simply provides minimalistic environment to simulate and test dif-
ferent algorithms. It has not been the aim of the writers to develop a real-time
simulation or visualization environment.

2.3 Path-planning

Because this project mainly focussed on developing an exploration strategy, we
created a fairly simple path planning algorithm to get from A to B. The most
important aspects are that it gets the agent to B, and it gets it there safely.
Safely in this context means that the agent will never be too close to a rigid
body. How ’too close’ then in its turn is defined, depends on the size of the
agent, the sensor range and the resolution of the octree, but it should be fairly
clear when you realize that it’s mostly a safety measure for measuring errors.

First, the direction towards B is computed. If it’s possible to take a step
into that direction without getting close to an obstacle it will do so. If not, it
will turn until a direction is found in which a safe step is possible. This process
is repeated until B is reached. If a bound (outer wall) is reached, the agent will
go back and search in the other turning direction.

The initial direction in which the agent turns is the one that is closest to the
center of the map, as we felt that this would yield better results.

Of course this is in no way a proper, failsafe algorithm. The proper al-
ternatives are discussed in ’room for improvement’, below. Still, it worked
surprisingly well.

2.4 Exploration strategy

The exploration algorithm we’ve developed for this problem needs to be very
adjustable, so other developers could use and alter it without too much work.
In addition, it has to be very parametrizable, so the user can change the input
to match the problem.

The algorithm is a hierarchical one, existing of two layers. The top layer
chooses an optimal goalposition, a place where the most valuable information
is gained upon reaching it. While traveling there, the bottom layer keeps check-
ing if it’s worth it to diverge from the current path to a subgoalposition nearby
the agent’s position, to obtain extra information in a relatively cheap way.

6

Figure 2: Path planning: The agent starts at position A and sees it can’t travel
into the direction of B, as it will get too close to a wall. It turns until a clear
path is found: A’. From there it still can’t reach B directly, so again it turns
until a clear path is found: A”. From here it can directly go to B, and it will.

2.4.1 Top layer

The goal position is an octree somewhere within the bounds of the room which
is regarded as the most valuable place to be at that point in time, in terms of
the score of the unexplored area surrounding that point. The score is computed
by three factors and is named the goalscore.

• Amount of information gained

• Uniqueness of information gained

• Relevancy of information gained

Amount of information
The first item, the amount of information gained, tells us how much of the

area surrounding the node still is unexplored. We’ve chosen this factor, as a
point that scores high here will logically provide more information than another
point that doesn’t. And because part of the objective is to explore as much
space as possible, this is relevant.

In our implementation we’ve iterated through the entire octree. However,
instead of checking all the nodes, and performing an operation on all of them,
only one thousandth of all the nodes was checked. All of them harbor an equal
distance of ten nodes until the following one in any dimension. This is done in
order to reduce the complexity.

7

Because it would also be too complex to simply count how many unexplored
nodes would be discovered from that point, an alternative estimation has to be
made. In six directions (one in every single dimension incrementing positively,
and their decrementing counterparts) it is checked how much distance can be
covered until a discovered part or bound is reached. Then, the sum of these
distances if obtained for each pair, so for each dimension. These three numbers
will then be multiplied with each other for the final ’Amount of information’
score.

Figure 3: Amount of information gain A = (x + x′) + (y + y′) + (z + z′)

Uniqueness of information
Secondly, the uniqueness of the information. This is an indicator about how

’special’ this information is. In practice: from how many other possible goal
positions can this information be retrieved? This is valuable, because nodes
that are exploreable from quite a few other positions have a higher chance of
being explored along the way anyway.

To calculate the uniqueness value of a potential goalpositionG in an ideal
world, the following elements should be computed:

1. count(G), Amount of nodes n discovered from G (amount of information

8

gained)

2. For each of those nodes ni, the amount of goalpositions besides G that
would explore it: score(ni)

Then the following formula can be used:

count(G)∑
i=0

1
score(ni)

count(G)
(1)

From a potential goal position G, the uniqueness score is the average of the
inverse of its node scores.

Figure 4: Uniqueness example. Every node has it’s value:
- Red: reached by < 5 other potential goal positions
- Orange: reached by 6 − 10 other potential goal positions
- Brown: reached by > 10 other potential goal positions
- White: already explored
- Black: unreachable

The uniqueness value then is:
1
2 + 1

7 + ... + 1
1

61

Unfortunately, this method is too complex to use in reality. We couldn’t
implement it for that reason, as the compilation time became too high. We
couldn’t come up with a simplification of this computation either, so we had to
leave it out in the final implementation.

2.4.2 Relevancy

Altough not implemented during this project, but of great importance to explo-
ration algorithm is the relevancy of information.

9

When an UAS is searching for a next location to navigate to, it might be the
case that multiple locations have similar values for information gain, meaning
the locations are equally unknown. In that case priorities should be set on what
kind of places are more important to explore. When dealing with different situ-
ations regarding the purpose of the exploration, the type of area to be mapped
and the available prior knowledge, it might be handy to have parameters which
could be adjusted to meet the requirements of the user.
For future improvements of the described framework we will discuss several
strategies to categorize different viewpoints and we will try to emphasize the
importance of each strategy in different situations and parameterize the prop-
erties of these strategies.

Different situations

Areas

To describe different situations two types of indoor areas will be distin-
guished. The first type is a big open space with little to no subspaces (closed
spaces within the main space). An example would be an empty warehouse or a
large hall. The second type of area is the opposite of the first, so one with lots
of subspaces, for example an office/apartment building or a school.

Purposes

The purpose of the exploration of an unknown area can also differ. One can
have the goal to simply map the inside of a building in order to furnish it or
make efficient use of the available space. For example mapping the inside of a
warehouse to decide how to store the goods in an efficient way. Another explor-
ing purpose could be search and rescue. When for example an office building
has caught fire and the purpose of the exploration is to provide information for
rescuing forces to safely enter and leave different areas of the building. Our
strategies will mainly focus on the search and rescue purpose of exploration.

Prior knowledge

In most situations the dimensions of a building will be known. Most indoor
areas have blueprints available and clear borders can be set to the total space to
be explored. However, in some situations this information could be unavailable.
For example, when exploring an underground structure for military purposes,
it could be necessary to map the outside contour of the structure.
When general information about the building is available one could focus the
exploration on finding paths between different places inside the building and the
available entrances/exits. Also the need for finding out which (emergency) exits
are available and which are blocked from inside could make the exploration task
somewhat goal-based.

10

Strategy parameters

Height

One obvious parameter that can influence the relevance of the gained in-
formation is the height at which the UAS is traveling. When the goal of the
exploration is making a complete map of the area, the height is only bounded
by the height of the area, meaning the height of the ceiling.
In the case of search and rescue, the main purpose of the area-mapping would
be to provide navigating information for ground-agents (human or ground robot
with more battery capacity than UAS). In this case there is little need for in-
formation about the area above a certain height. Of course the desired height
to map from can vary within the same area at places where the ground elevates
or lowers, for example above stairs. It could be convenient to provide the UAS
with a fixed height value which is then, if possible, reached by measuring the
height of the ground directly underneath it at the current location and adjusting
the flying height.

Accessibility

When performing a search and rescue exploration task in an area with lots
of subspaces, the user might want to set a higher priority to mapping ways be-
tween the subspaces than mapping the inside of a subspace. This strategy can
be intuitively justified by stating that a rescue agent, once inside a subspace,
can manually “map” the inside of it and that it would rather have ready infor-
mation about how to get to another subspace (Figure 5). Of course a distinction
between subspaces should be made first. This can be done by using mapped
vertical surfaces above a certain height that act as borders between subspaces.
The accessibility of a given viewpoint could for example be expressed by the
amount of rigid surfaces that stand in a straight line between the current posi-
tion and a calculated next viewpoint. This value could be used as a parameter
and adjusted by the user, depending on the capabilities of the rescue-agent.

Redundancy

Indoor search and rescue operations are sometimes performed in situations
where the environment changes dynamically. For example, in a building that
has been exposed to a big fire or an earthquake, it could happen that large
objects collapse and fall down on pathways that were mapped by the UAS and
considered accessible. This calls for an exploration strategy which guarantees
multiple ways to and from every known location. This type of redundancy can
be implemented as a parameter that represents a maximum distance. As soon
as this distance between the known areas and the UAS has been reached, it
starts to look for an alternative way back to a known area (Figure 6). This
narrows down the choices of next viewpoints, since the ones too far away will
not be explored first. A minimum distance between the forward and the back-

11

Figure 5: The probability of the x points being visible from the agent position
is: P (x1) = 0 and P (x2) ≥ 0. Therefore it is more relevant for the UAS to
explore x1

ward paths should be retained to prevent both paths from being blocked after
a single collapsing event.
The parameter described above can also be used to represent the maximum
distance to travel before looking for an alternative way back to an exit point.
The location of such a point can be attained from the explorations or provided
beforehand if blueprints or similar information about the building are available.

Figure 6: Making redundant backways to a known position may result in circle-
like shapes of the explored path, with the maximum-distance parameter as di-
ameter

12

2.4.3 Bottom layer

As stated before, the bottom layer in the hierarchy looks whether or not it’s
worth it to diverge from the current path. The current path leads to the goal
position, which is computed by the top layer. The point to which might be
diverged, is called a subgoalposition. The user will provide the agent with a
double, the distractionvalue. This number will decide how quickly the agent is
’distracted’ into subgoal positions.

The area in which is searched for a subgoal position is a subspace around
the agent. In our implementation this exists out of two directions perpendicu-
lar to the current direction of the path, and perpendicular each other. Along
those directions, and their negative counterparts, a handful of points is checked
for their information gain, uniqueness and relevancy score. The point with the
highest combined score will be the potential subgoal position, with its sub-
goal score. The agent will actually travel towards the subgoal if and only if
subgoalscore ∗ distractionvalue > goalscore.

Figure 7: The bottom layer of the hierarchy looks for potential subgoals in
transit to its destination. Whether or not it will go to the subgoal, depends on
the ratio between the product of the subgoal score and the distraction value,
and the goal score. (A is the current position, S is the subgoal and the yellow
area is the searchspace for the subgoal.

The hierarchical structure, and the distraction value were suggested by our
academic mentor, Leo Dorst. The strength of it, is that it mainly focusses on
unique and relevant places, as the amount of information gained will not be very
high most of the time (as the area directly around the agent is mostly explored).
The advantage of this is, that this kind of information is typically difficult to
obtain from a random place in the room. Therefore taking a small detour can
differ a lot in the end.

2.4.4 Pseudo code

13

Algorithm 1 Exploration strategy

distractionV alue = 5
goalScore = 0
for all goalPosition as g do

score = g.informationGain ∗ g.uniqueness ∗ g.relevancy
if score > goalscore then
goalScore = score
goalPosition = g

end if
end for
while not at g do
s = currentPos.getBestSubGoal
subScore = s.informationGain ∗ s.uniqueness ∗ s.relevancy
if subScore ∗ distractionV alue < goalScore then
s.travel

else
planNextNode(currentGoal)

end if
end while

3 Future improvements

3.1 Path-planning

The path-planning algorithm used in this implementation only works in very
basic environments without any subspaces. In order to be able to find a path in
more advanced environments, one could use a more sophisticated path-planning.
One of these path-finding algorithms is D*.

3.2 Uniqueness of information

An implementation which can determine the uniqueness of information will lead
to a more efficient algorithm.

3.3 Relevancy of information

As mentioned in the previous section, the relevancy of information was not
included in the implentation. By including this in future implemenations, the
exploration algorithm will be more adjustable to the needs that arise in different
situations.

Also, different parameters of relevancy can be thought of. In many cases the
height parameter will sufficiently express the relevancy but exceptions can be
thought of. Ladders and ropes present in the area will not be mapped in this
way.
Using an accessibility parameter that divides a space into subspaces using ver-

14

tical obstacle-surfaces will bring with it the risk of seeing accessible obstacle
(stairs or climbable fences) as not accessible. Finally, a redundant strategy that
makes the map more robust will also require more time and thus battery power.
This will have a negative effect on the efficiency of the mapping.

3.4 Performance

The writers of this report and of the software code had no prior experience with
the OcTree data-structure or with the C++ language. The goal of the software
is conceptual, meaning it implements a framework for addressing the indoor
exploration problem. The implementations of the functions used have a high
complexity (often O(n)) and require much runtime. In future developments,
where this kind of framework is linked with real world sensors or actuators or
used to make real-time simulations, the performance issue could be addressed
by computer-programmers with more experience.

4 Conclusion

4.1 Metrics

In order to evaluate the performance of our exploration-algorithm we used one
main metric that could express its efficiency. Since the agent is relocated step by
step, using a fixed step-size, the number of steps and thus the distance covered
can be used to rate the number of nodes discovered. The metric unit used to
evaluate the performance is thus the number of discovered nodes per step.

Desired results would be high values of mapped octree-nodes per step, since
in real life situations time is valuable. By varying the distraction-value different
ratios were measured.

Besides the information gain, other metrics that could be used to determine
the efficiency of the exploration-algorithm like:

• Time spend

• Distance covered

Also tweaking different parameters can be used to see the effect on the
metrics. Examples of these parameters are:

• Sensor range

• The world map, the performance of the exploration algorithm can differ
depending the environment

• Relevancy, different useages of the system require different kinds of in-
formation. Whereas rescue workers would only be interested in a global
overview map of an environment, military forces may require very detailed
information.

15

4.2 Results

As can be seen in Figure 8, thedistractionvalue seems to have an influence on
the information gain. Within the range of the distractionvalue between 1 − 5
the optimum lies at values > 3. This means tweaking the distraction value is
important assure efficiency of the algorithm.

Figure 8: Nodes discovered per distraction value

4.3 Summary of developed product

During this project one method of autonomous exloration was implemented.
This implementation works in basic room without much subspaces. During the
implentation insight was gathered on concepts that can influence the perfor-
mance of exploration algorithms in different situations.

Also a platform was created on which future implementations of exploration
algorithms can be tested and benchmarked.

16

Thanks
We would like following people that have helped us during the project and

have made this project possible:

• Gerald Poppinga, our client at the NLR

• Leo Dorst, our academic mentor from the UvA

• Robbert Proost, intern at the NLR

• Raquel Fernandez, coordinator of the project

5 References

References

[1] The National Aerospace Laboratory website: www.nlr.nl

[2] The wikipedia entry for NLR: http://en.wikipedia.org/wiki/National Aerospace Laboratory

[3] Proost, R. (2013). Simultaneous Localisation and Mapping in 3D environ-
ments using a mini-UAS

[4] Harris, C., Hants, R. (2007). Strategies for Visual Exploration of Buildings

[5] Stenz, A. (1994). Optimal and Efficient Path Planning for Partially-Known
Environments

[6] Surmann, H., Andreas, N., Herzberg, J. (2003) An autonomous mobile robot
with a 3D laser range finder for 3D exploration and digitalization of indoor
environments

[7] Joho, D., Stachniss, C., Pfaff, P., Burgard, W. (2007) Autonomous Explo-
ration for 3D Map Learning

[8] Hornung, A. et al (2012) OctoMap: An Efficient Probabilistic 3D Mapping
Framework Based on Octrees

17

