Gazebo in the DARPA Virtual Robotics Challenge Simulating robots and environments for real-time competitions

The Future of Robocup Rescue Simulation Workshop March 1, 2016

DRC: Darpa Robotics Challenge

DRC Timeline

B

VRC: Virtual Robotics Challenge

VRC Overview

- Cloud-based competition.
- Simulate degraded communication.
- Focus on partial autonomy.
- Teams from 8 countries.
 - Brazil, China, Germany, Israel, Japan, Korea, UK, US

Simulation and VRC

Why Simulation Based VRC?

- Enables broader participation
- Robotics development tool
- Non-competitive technology
 - Don't reinvent the wheel make it open-source, available to all
- Simulator, a lasting legacy of the VRC

VRC Simulation Challenges

Atlas Model

• Models: Atlas (28) + MultiSense SL (1) + Sandia Hands (24) = 53 DOFs

Modeling Special Environments

"Mud" plugin

- Simulate viscous drag
- Vehicle seat for stabilizing robot-vehicle interactions

Dynamic Constraints

- Screws for threading simulation
- Harness constraints for robot controller initialization

Physics Engine Requirements Accuracy, fidelity vs performance

- Complete DRC tasks in simulation
- Simulation that "just works".

Unconditionally stable, divergence-free: with 10 ~ 40 contacts arbitrary joint torque applications arbitrary collisions, contacts, poses • Near real-time performance

Performance Metrics

• Got close to real-time performance, enough accuracy for task completion.

• Walking@VRC (~8 contacts.)

~1.15X RTF on typical "gaming" desktop (Intel i7 @ 3.5GHz nVidia GTX 750)

- ~0.75X on Softlayer cloud GPU machines (Intel Xeon @3.0GHz nVidia k20)
- Grasping@VRC with Sandia hand (~20~40 contacts.)

~0.85X desktop vs. ~0.65X cloud

Gazebo: Multiple Multibody Dynamics Solvers

Open Dynamics Engine Robotics, gaming bitbucket.org/odedevs/ode

Bullet Gaming, animation, Sony, AMD github.com/bulletphysics/bullet3

* DAR

Cloud Based Simulation Competition

CloudSim and GzWeb Gazebo Simulator in the Cloud

Not all cloud providers are equal

Amazon EC2 machines

Simple to setup Pay by the hour Initial tests showed adequate performance

Last minute change

All Amazon machines virtualized \rightarrow Unpredictable latency Jump ship to Softlayer

VRC Security

Between teams

No snooping on teams

VPN: Secure communication between teams and clouds

Within team

A team should not directly access simulation Firewall Added white lists to Gazebo Randomized schedule: Teams complete tasks in random order

Silver lining

Adjustable control loop

Pause simulation to absorb network latency

Parameterized window from $0 \rightarrow n$ seconds

Cross-provider cloud infrastructure

Cloud simulation for Amazon, Softlayer, OpenStack

The entire system works!

VRC Practice (Dress Rehearsal)

Test cloud server management

Test scoring, logging

Test communication channels for participants, referees, tech support

Teams are on different time zones

Education

- FIRST: Use simulation for design, development, and testing
- Robocup:

soccer: Simulated Nao and simplified dynamics rescue: Large indoor and outdoor search and rescue environments @home: Autonomous robots operating in home environments logistics: Flexible material and information handling in industry

Future

Windows & OSX support

Open-source walking controller

GUI Tools: Model editor, plotting, video creator

Improve multiple physics engine support

THANK YOU!

