# A humanoid robot to embody Artificial Intelligence research



### Arnoud Visser

NAO European Tour, CWI, Amsterdam, 16 October 2012



Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems

# The RoboCup Challenge for the AI

By the year 2050,

develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team.



### Robocup World Championships





### Emotion Expression of an Affective State Space;

a humanoid robot displaying a dynamic emotional state during a soccer game



### Alexander van der Mey, Frank Smit, Kees-Jan Droog and <u>Arnoud Visser</u>

Proc. of 3rd D-CIS Human Factors Event, p. 47-49, November 2010



Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems



Inside the scenario of watching a soccer game, identify 6 strong stimuli and map them on the affective space:

- Attempt missed (Annoyed direction | Calm direction)
- Attempt saved (Sad direction | Content direction)
- Goal (Joy direction | Angry direction)



The influence of the stimuli on humans is validated with a questionnaire (22 participants):

- Attempt missed (V 20, A + 20 | V + 10, A -10)
- Attempt saved (V − 15, A 5 | V + 15, A 5)
- Goal (F(bgoal) | F(bgoal))



Logic is added how positive and negative effects aggregate and how aggregated values fade away. Regions in the affective space are assigned to 9 Nao's emotional expressions.

### Results



Dirk Kuyt scores a goal during the soccer match 'The Netherlands-Ghana'

 Emotions can be expressed by a robot, not just on stimuli-response, but on an affective state which shows dynamic behavior during the game.



• Such dynamic emotional system can enhance the interaction between robots and humans.

### Rock, Paper & Scissors!



### Nimrod Raiman, Silvia-Laura Pintea

Project report, June 2010



Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems

• Use face detection to detect skin color



• Use color histogram to a skin probability image



- Use erosion & dilation to retain hand
- Rescale ea of interest to standard 70x70



# Train

• Use hands in different orientations (1400 per sign) to train eigen-hand models



### **Orientation independence**

• The hands were convoluted with four Gabor wavelets



• The resulting 'fingerprint'-vector was classified with the K nearest neighbors technique

Different machine learning techniques were tried:

- kNN outperformed PCA and SVN in stability
- The preprocessing highly influence the final result (1.2 % error)
- Reduction of the resolution to 20x20 reduces the sensitivity to translations

### **Dynamic Tree Localization**

### Hessel van der Molen

H. van der Molen,

"Self-localization in the RoboCup Soccer Standerd Platform League with the use of a Dynamic Tree", Bachelor Thesis, Universiteit van Amsterdam





Universiteit van Amsterdam Intelligent Systems Laboratory

### Localization

| Used Method     | Pro's                      | Con's              | Teams using            |
|-----------------|----------------------------|--------------------|------------------------|
| (augmented)     | Proven to be accurate,     | Comp. expensive!   | Austrian-Kangaroos,    |
| MCL             | Can handle kidnap problem, |                    | B-Human,               |
|                 | Can handle complex belief. |                    | Cerberus,              |
|                 |                            |                    | Edinferno,             |
|                 |                            |                    | Noxious-Kouretes,      |
|                 |                            |                    | TJArk                  |
| MCL & MOsr      | Better results than MCL/sr |                    | CMurfs                 |
| MCL & neg. Inf. | Faster elimination of      |                    | TT-UT Austin Villa     |
|                 | particles than MCL         |                    |                        |
| MCL & KF        | Less comp. exp. than MCL   |                    | rUNSWift               |
| AUX PF & SIR    |                            |                    | SPQR+UChile            |
| distance to     | Simple                     | Not accurate       | L3M,                   |
| goal poles      |                            |                    | NTU RobotPal           |
| UKF & MH        | Smooth and performs well   |                    | Nao Devils Dortmund    |
| multiple EKFs   | Low computation cost       |                    | SPIteam                |
| Constraint      | Low computational cost,    |                    | Nao Team Humboldt      |
| localization    | More adequate than PF      |                    |                        |
| Rao-Black & KF  | Low computational cost     |                    | UPennalizers           |
|                 | Fast (re)localization      |                    |                        |
| Location        | Simple                     | Reliability issues | Wrighteagle Unleashed! |
| Sensitive       |                            |                    |                        |
| Behavior        |                            |                    |                        |
| Local Model     | Simple                     | No communication   | WPI Warriors           |
|                 |                            | between the robots |                        |
| Cox &CI & UKF   | High potential             | Not yet stable     | RoboEireann            |

#### Table 1: Short overview of used methods in SPL 2011 $\,$

### Global localization based on kD tree



# **Global Localization Algorithm**

Algorithm 1 Main structure of the Dynamic Tree Algorithm

```
tree = CreateRootAndRootChildren()
loop
   observation = GetObservation()
   tree = UpdateTree(tree, observation)
   tree = CheckCollapse(tree)
   tree = CheckExpand(tree, maxTreeDepth)
end loop
```



Observations are based on landmark detection

### Results



| tree depth | time taken | 95% confidence |
|------------|------------|----------------|
| 6          | 4.0 sec    | 0.9 sec        |
| 8          | 4.1 sec    | 0.8 sec        |
| 10         | 4.8 sec    | 1.2 sec        |

Dynamic Tree Localization has the advantage:

- •All possible states are incorporated
- •Handles kidnapping in natural way
- •Can handle multiple hypotheses
- •Fast converge fast to small regions

### Recognizing Attack Patterns Clustering of Optical Flow Vectors



Auke Wiggers

Bachelor thesis Artificial Intelligence, June 2012



Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems

# Methodology

- The approach is divided into three steps:
- Calculating optical flow (computer vision)
- Finding patterns (machine learning)
- Detecting patterns in real scenes (computer vision and classification)

### **Optical flow**



• Optical flow in regions close to the waistband and the ball are selected.

### Temporal documents

Optical flow vectors:

- 1. Quantized into categories (up, down, left and right)
- 2.Location quantized into cells of 10x10 pixels
- 3. Converted to bag-of-words representation
- 4.Bag-of-words indexed by timestep

Result: A temporal document.



### **Dimensionality Reduction**



Probabilistic Latent Sequential Matching II used to reduce to 25 latent classes.

# **Prediction / Anticipation**



Each document is compared to one of the 5 learned motifs.

If the same motif is selected for several sequential timesteps, the corresponding action is selected: *walk, dive* 

### **Experiments**



• Performance tested through 15 penalty shootouts, for various Nz and Tz.

### Results

| $N_z / T_z$ | Hit | Miss | Goalkeeper<br>interferes |
|-------------|-----|------|--------------------------|
| 5 / 10      | 8   | 3    | 4                        |
| 5 / 20      | 9   | 4    | 2                        |
| 10 / 10     | 9   | 3    | 3                        |
| 10 / 20     | 11  | 4    | 0                        |

• A limited set of motifs and timestep works bests.

- Effectiveness of activity mining is shown
- Machine Learning doesn't outperform a heuristic approach.



### Getting a kick out of humanoid robotics Using reinforcement learning to shape a soccer kick



Christiaan W. Meijer



Master thesis, Universiteit van Amsterdam, July 2012

Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems

### Machine Learning approach



 Find the parameters θ<sub>\*</sub> of the optimal policy (combination of actions which the highest cumulative reward)

$$\begin{split} \boldsymbol{\theta}_{*} = \mathop{\mathrm{argmax}}_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) \qquad \qquad \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t}) \end{split}$$

• To find the parameters one has to estimate the gradient  $\nabla_{\theta} J(\theta_t)$ 

| Algorithm 1 Policy gradient                                                                                              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_{\text{start}}$                                                   |  |  |  |  |
| 2: repeat                                                                                                                |  |  |  |  |
| 3: estimate $\nabla_{\theta} J(\theta_t)$                                                                                |  |  |  |  |
| 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_t + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)$ |  |  |  |  |
| <ol> <li>until stopping criteria are met</li> </ol>                                                                      |  |  |  |  |
| 6: return $\theta$                                                                                                       |  |  |  |  |

### Machine Learning techniques

• Finite difference:

 $[\mathbf{g}_{\mathrm{FD}}^T \hat{J}(\boldsymbol{\theta})]^T = (\Delta \Theta^T \Delta \Theta) \Delta \Theta^T \hat{J}$ 

• To find the paramete $\theta_*$ ; one has to estimate the gradient

$$\begin{aligned} \boldsymbol{\theta}_{*} = \operatorname*{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} J(\boldsymbol{\theta}) & \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t}) \end{aligned}$$

 $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)$ 

| Algorithm 1 Policy gradient                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------|--|
| 1: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_{\text{start}}$                                                   |  |
| 2: repeat                                                                                                                |  |
| 3: estimate $\nabla_{\theta} J(\theta_t)$                                                                                |  |
| 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_t + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)$ |  |
| <ol><li>until stopping criteria are met</li></ol>                                                                        |  |
| 6: return $\theta$                                                                                                       |  |

### Rewards

• Stand on one leg:

$$f_{\text{foot\_pressure}}(p_l, p_r, t) = \begin{cases} p_r - p_l, & \text{if } 1.0 < t < 1.5\\ 0, & \text{otherwise} \end{cases}$$

• Shoot without falling:

$$f_{\text{proportional}}(x) = f_{\text{max\_ball\_velocity}}(x)(1 + wf_{\text{torso\_angle}}(x))$$

### Results



### **Kicks**





#### oneleg edited.mpg



robocanes edited.mpg



optimized edited.mpg

balanced edited.mpg

- Finite Difference was most stable method
- Shaping didn't give a boost (although it helped stability)



### Conclusion

• A humanoid robot has much to learn



 The correspondence to a human makes it possible to project emotions on the robot and understand its perspective



#### **Publications**

#### 2012

- Sander Nugteren, Nao Recognition and coordination, Project report, Universiteit van Amsterdam, August 2012.
- Becht, Inge, Maarten de Jonge, and Richard Pronk. A Dynamic Kick for the Nao Robot. Project Report. Universiteit van Amsterdam. July 26, 2012.
- Christiaan Meijer, <u>Getting a kick out of humanoid robotics : Using reinforcement learning to shape a soccer</u> <u>kick</u>, Master's Thesis, Universiteit van Amsterdam, July 2012.
- Auke J. Wiggers, <u>Recognizing Attack Patterns: Clustering of Optical Flow Vectors in RoboCup Soccer</u>, Bachelor's Thesis, Universiteit van Amsterdam, June 2012.
- Sander van Noort and Arnoud Visser, <u>Extending Virtual Robots towards RoboCup Soccer Simulation and</u> <u>@Home</u>, Proceedings of the 16th RoboCup Symposium, Mexico, June 2012. To be published in the <u>Springer Lecture Notes on Artificial Intelligence series</u>.
- Camiel Verschoor, Duncan ten Velthuis, Auke Wiggers, Michael Cabot, Anna Keune, Sander Nugteren, Hendrik van Egmond, Hessel van der Molen, Richard Rozeboom, Inge Becht, Maarten de Jonge, Richard Pronk, Chiel Kooijman, and Arnoud Visser, <u>Dutch Nao Team – Team Description for RoboCup 2012</u>, to be published on the Proceedings CD of the 16th RoboCup Symposium, Mexico, June 2012
- Sander van Noort, <u>Validation of the dvnamics of a humanoid robot in USARSim</u>, Master's thesis, Universiteit van Amsterdam, May 2012.
- Sander van Noort and Arnoud Visser, <u>Validation of the dynamics of an humanoid robot in USARSim</u>, Proceedings of the Performance Metrics for Intelligent Systems Workshop (PerMIS'12), March 2012.
- Duncan ten Velthuis, Camiel Verschoor, Auke Wiggers, Michael Cabot, Anna Keune, Sander Nugteren, Hendrik van Egmond, Tim van Rossum, Hessel van der Molen, Richard Rozeboom, Inge Becht, Maarten de Jonge, Richard Pronk, Chiel Kooijman, Roman Slaap and Arnoud Visser, <u>Dutch Nao Team – Team</u> <u>Description for Robocup 2012 – Mexico City, Mexico</u>, Amsterdam, January 11, 2012.

### Disclaimer



### Quite some Nao robots got hurt during this research

### Tai Chi Chuan



### Tai Chi Chuan



Movement of the Right Hip (yaw / pitch):Good correspondence, except for decelerationDifferences in the order of natural variance

### Upper body during Tai Chi Chuan



### Upper body during Tai Chi Chuan



**Right side** 

### Tai Chi Chuan



Movement of the Right Ankle (roll):

•Good correspondence, except halfway experiment

•Again hardware limits for combination roll / pitch encountered

### Tai Chi Chuan



Movement of the Right Ankle (roll) for NaoSim:Also for the official simulator the hardware limits are not modeled

# Validation of the dynamics of an humanoid robot in USARSim



### Sander van Noort & Arnoud Visser

Performance Metrics for Intelligent Systems workshop (PerMIS'12), College Park, MD, March 2012



Universiteit van Amsterdam Informatica Instituut intelligent autonomous systems

### USARSim: A wide variety of worlds



<section-header>





### USARSim: A wide variety of Robots



### Humanoid robot NAO



#### Aldebaran Robotics, France

### **Constrained Kinematic Chains**



5 Kinematic chains; 21 Degrees of Freedom.

### **Denavit Hartenberg representation**

 Offset and range of each joint

| LShoulderPitch = | $\begin{bmatrix} \cos \vartheta_1 \\ \sin \vartheta_1 \\ 0 \\ 0 \end{bmatrix}$ | 0<br>0<br>1<br>0 | $\sin \mathfrak{P}_1$<br>$-\cos \mathfrak{P}_1$<br>0<br>0 | 0.0900 cos 9 <sub>1</sub><br>0.0900 cos 9 <sub>1</sub><br>0.08<br>1 |  |
|------------------|--------------------------------------------------------------------------------|------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--|
| LShoulderRoll =  | $\begin{bmatrix} \cos \vartheta_2 \\ \sin \vartheta_2 \\ 0 \\ 0 \end{bmatrix}$ | 0<br>0<br>1<br>0 | $\sin 9_2 - \cos 9_2 = 0 = 0$                             | 0.0100 cos 9 <sub>2</sub><br>0.0100 cos 9 <sub>2</sub><br>0.01<br>1 |  |
| LElbowYaw =      | cos 9 <sub>3</sub><br>sin 9 <sub>3</sub><br>0<br>0                             | 0<br>0<br>1<br>0 | sin 9 <sub>3</sub><br>- cos 9 <sub>3</sub><br>0<br>0      | 0.1097 cos 9 <sub>3</sub><br>0.1097 cos 9 <sub>3</sub><br>0.01<br>1 |  |
| LElbowRoll       | $=\begin{bmatrix} \cos 2 \\ \sin 2 \\ 0 \\ 0 \end{bmatrix}$                    | 94<br>94         |                                                           | $\begin{pmatrix} 4 & 0 \\ 9_4 & 0 \\ & 0.00 \\ & 1 \end{bmatrix}$   |  |

$$LHipYawPitch = \begin{bmatrix} \cos \mathsf{f}_{1} & -\frac{1}{4}\pi \sin \mathsf{f}_{1} & \frac{1}{4}\pi \sin \mathsf{f}_{1} & 0.0461 \cos \mathsf{f}_{1} \\ \sin \mathsf{f}_{1} & \frac{1}{4}\pi \cos \mathsf{f}_{1} & -\frac{1}{4}\pi \cos \mathsf{f}_{1} & 0.0461 \cos \mathsf{f}_{1} \\ 0 & \frac{1}{4}\pi & \frac{1}{4}\pi & 0.07 \\ 0 & 0 & 1 \end{bmatrix}$$
$$LHipRoll = \begin{bmatrix} \cos \mathsf{f}_{2} & 0 & \sin \mathsf{f}_{2} & 0.0134 \cos \mathsf{f}_{2} \\ \sin \mathsf{f}_{2} & 0 & -\cos \mathsf{f}_{2} & 0.0134 \cos \mathsf{f}_{2} \\ 0 & 1 & 0 & 0.03 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$LHipPitch = \begin{bmatrix} \cos \mathsf{f}_{3} & 0 & \sin \mathsf{f}_{3} & 0.0050 \cos \mathsf{f}_{3} \\ \sin \mathsf{f}_{3} & 0 & -\cos \mathsf{f}_{3} & 0.0050 \cos \mathsf{f}_{3} \\ 0 & 1 & 0 & 0.00 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$LKneePitch = \begin{bmatrix} \cos \mathsf{f}_{4} & -\sin \mathsf{f}_{4} & 0 & 0.0880 \cos \mathsf{f}_{4} \\ \sin \mathsf{f}_{4} & \cos \mathsf{f}_{4} & 0 & 0.0880 \cos \mathsf{f}_{4} \\ \sin \mathsf{f}_{4} & \cos \mathsf{f}_{4} & 0 & 0.0880 \cos \mathsf{f}_{4} \\ 0 & 0 & 1 & 0.00 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$LAnklePitch = \begin{bmatrix} \cos \mathsf{f}_{5} & -\sin \mathsf{f}_{5} & 0 & 0.1001 \cos \mathsf{f}_{5} \\ \sin \mathsf{f}_{5} & \cos \mathsf{f}_{5} & 0 & 0.1001 \cos \mathsf{f}_{5} \\ 0 & 0 & 1 & 0.00 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$LAnkleRoll = \begin{bmatrix} \cos \mathsf{f}_{6} & 0 & \sin \mathsf{f}_{6} & 0.0100 \cos \mathsf{f}_{6} \\ \sin \mathsf{f}_{6} & 0 & -\cos \mathsf{f}_{6} & 0.0100 \cos \mathsf{f}_{6} \\ 0 & 1 & 0 & 0.00 \end{bmatrix}$$

0

1

0

### Constrained movement of joints



### Gravity



Default values for the Unreal Engine had to be corrected with a factor 2.5

| G (uu/s) / Dist (uu)      | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |
|---------------------------|------|------|------|------|-------|-------|
| -2452.5uu (rbs 1, ld 0.1) | 1.06 | 1.06 | 1.08 | 1.1  | 1.13  | 1.19  |
| -2452.5uu (rbs 1, ld 0.0) | 1.03 | 1.02 | 1.01 | 1.01 | 1.01  | 1.00  |

### **Advanced experiments**



Three full body movements:

- •A kick
- •Balance act (Tai Chi Chuan)
- •Single step

### Balance act



Diagnostic movement: Tai Chi ChuanReal robot: all motors and joints still functionalSimulated robot: weight correctly distributed over body

### A kick



Movement of the Right Knee (pitch):

•Good correspondence, except for deceleration

•More variance with the real robot, compared to the simulated robot

# 21 joints



### A kick



Movement of the Right Ankle (roll):

- Good correspondence, except for around 1.5 s
- Angle drifts away from requested angle

### Shell limits



Reason for discrepancy Right Ankle roll during kick:

• Hardware limits, depended on Right Angle pitch

# **Full application**



A proxy server was built which allows to command the Nao via its natural interface (NaoQi). NaoQi has e.g. a C++ and Python interface.

### RoboCup Soccer



The Python code of an actual RoboCup team (Dutch Nao Team) was used to play a game of soccer.



# Presented a validated humanoid robot in USARSim UDK



Demonstrated a methodology to validate such robot with a sequence of experiments





Validated the dynamics of multiple kinetic chains in contact with the ground