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The RoboCup Challenge for the Al

By the year 2050,

develop a team of
fully autonomous
humanoid robots
that can win
against the
human world
soccer champion
team.
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Emotion Expression of an Affective State Space;

a humanoid robot displaying a dynamic emotional state during a soccer game
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Method

Inside the scenario of watching a soccer game, identify 6
strong stimuli and map them on the affective space:

o Attempt missed (Annoyed direction | Calm direction)
e Attempt saved (Sad direction | Content direction)
e Goal (Joy direction | Angry direction)



Method
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The influence of the stimuli on humans is validated with a
questionnaire (22 participants):

e Attempt missed (V—-20,A+20|V+10, A-10)
e Attemptsaved (V—-15,A-5 | V+15,A-5)
e Goal (F(bgoal) | F(bgoal))



Method
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Logic is added how positive and negative effects aggregate
and how aggregated values fade away. Regions in the
affective space are assigned to 9 Nao's emotional
expressions.




Results

Dirk Kuyt scores a goal during the soccer match
‘The Netherlands-Ghana’



Resumé

* Emotions can be expressed by a robot, not
just on stimuli-response, but on an affective
state which shows dynamic behavior during
the game.
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e Such dynamic emotional system can enhance
the interaction between robots and humans.



Rock, Paper & Scissors!

X
Nimrod Raiman, Silvia-Laura Pintea ¢

X

Universiteit van Amsterdam
Informatica Instituut
intelligent autonomous systems

Project report, June 2010



Method

e Use face detection to detect skin color

input = [B[ER ]




Method

e Use color histogram to a skin probability image




Method

e Use erosion & dilation to retain hand
e Rescale ea of interest to standard 70x70
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Train

 Use hands in different orientations (1400 per
sign) to train eigen-hand models




Orientation independence

e The hands were convoluted with
four Gabor wavelets

* The resulting ‘fingerprint’-vector was classified
with the K nearest neighbors technique



Resumé

Different machine learning techniques were tried:
kNN outperformed PCA and SVN in stability

 The preprocessing highly influence the final result
(1.2 % error)

e Reduction of the resolution to 20x20 reduces the
sensitivity to translations



Dynamic Tree Localization
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Localization

Used Method

Pro’s

Con's

Teams using

(augmented)
MCL

Proven to be accurate,
Can handle kidnap problem,
Can handle complex belief.

Comp. expensive!

Austrian-Kangaroos,
B-Human,

Cerberus,

Edinferno,
Noxious-Kouretes,

TJArk

MCL & MOsr

Better results than MCL /sr

CMurfs

MCL & neg. Inf.

Faster elimination of
particles than MCL

TT-UT Austin Villa

MCL & KF Less comp. exp. than MCL rUNSWift
AUX PF & SIR SPQR+UCHhile
distance to Simple Not accurate L3M,

goal poles

NTU RobotPal

UKF & MH

Smooth and performs well

Nao Devils Dortmund

multiple EKFs

Low computation cost

SPlteam

Constraint
localization

Low computational cost,
More adequate than PF

Nao Team Humboldt

Rao-Black & KF

Low computational cost
Fast (re)localization

UPennalizers

Location Simple Reliability issues Wrighteagle Unleashed!
Sensitive
Behavior

Local Model Simple No communication | WPI Warriors

between the robots

Cox &CI & UKF

High potential

Not vet stable

RoboEireann

Table 1: Short overview of used methods in SPL 2011




Global localization based on kD tree

# | Visualizer for Dynamic Tree Localization | = |3 |




Global Localization Algorithm

Algorithm 1 Main structure of the Dynamic Tree Algorithm

tree = CreateRootAndRootChildren()
loop

observation = GetObservation( )

tree = UpdateTree(tree, observation)

tree = CheckCollapse(tree)

tree = CheckExpand(tree, maxTreeDepth)
end loop

Observations are based on
landmark detection
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Resumé

Dynamic Tree Localization has the advantage:
*All possible states are incorporated
*Handles kidnapping in natural way
*Can handle multiple hypotheses

*Fast converge fast to small regions



Recognizing Attack Patterns
Clustering of Optical Flow Vectors
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Methodology

The approach is divided into three steps:
Calculating optical flow (computer vision)
Finding patterns (machine learning)

Detecting patterns in real scenes (computer
vision and classification)



Optical flow

e Optical flow in regions close to the waistband
and the ball are selected.



Temporal documents

Optical flow vectors:

1.Quantized into categories (up, down, left and right)
2.Location quantized into cells of 10x10 pixels
3.Converted to bag-of-words representation
4.Bag-of-words indexed by timestep
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Dimensionality Reduction
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Probabilistic Latent Sequential Matching Il used to
reduce to 25 latent classes.




Prediction / Anticipation

= ]

1IIr

—

Each document is compared to one of the 5 learned
motifs.

If the same motif is selected for several sequential
timesteps, the corresponding action is selected:
walk, dive



 Performance tested through 15 penalty shootouts,
for various Nz and 7z .



Results

N. /T, Hit Miss Goalkeeper
interferes

5/ 10 B J 1

5 [ 20 0 4 2

10 /10 0 3 3

10 / 20 11 4 I

* Alimited set of motifs and timestep works

bests.




Resumé

e Effectiveness of activity mining is shown

e Machine Learning doesn’t outperform
a heuristic approach.




Getting a kick out of humanoid robotics
Using reinforcement learning to shape a soccer kick
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Machine Learning approach
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 Find the parameters#. of the optimal policy (combination of
actions which the highest cumulative reward)

&, = argmax J(#) B =0, +aVyalJie)
He=o

e To find the parameters one has to estimate the gradientVeJ(6;)

Algorithm 1 Policy gradient
1: & — B
2. repeat
3 estimate VgJ{ @)
1: 8 — 8,4 I'QTH-J':'H!]

5. until stopping criteria are met
fi: return &




Machine Learning techniques

* Finite difference:

ghnJ(0)]" = (AeTAB)ABT

* To find the paramete?-s one has to estimate the gradient

#, = argmax J(8) @, =0,+aV,J8)
e

VoJ(6;)

Algorithm 1 Policy gradient
1: & — B

2. repeat

3 estimate VgJ{@)

1: 8 — 8,4 I'QTH-J’:HJ]

5. until stopping criteria are met
fi: return #




Rewards

e Stand on one leg:
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* Shoot without falling:
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Kicks
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Resumé

 Finite Difference was most stable method

e Shaping didn’t give a boost
(although it helped stability)
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Conclusion

e A humanoid robot has much to learn

 The correspondence to a human makes it
possible to project emotions on the robot
and understand its perspective
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Disclaimer

Quite some Nao robots got hurt during this research







Tai Chi Chuan




Tai Chi Chuan

Real
i Simulated

Difference

0 10 20 30 40 50
Seconds

Movement of the Right Hip (yaw / pitch):
*Good correspondence, except for deceleration
Differences in the order of natural variance



Degrees

Upper body during Tai Chi Chuan
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Upper body during Tai Chi Chuan
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Tai Chi Chuan
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Movement of the Right Ankle (roll):
*Good correspondence, except halfway experiment
*Again hardware limits for combination roll / pitch encountered



Tai Chi Chuan

Real
Simulated
Difference

Seconds

Movement of the Right Ankle (roll) for NaoSim:
*Also for the official simulator the hardware limits are not modeled



Validation of the dynamics
of an humanoid robot
iIn USARSIM
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USARSIim: A wide variety of worlds
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USARSIm: A wide variety of Robots




Humanoid robot NAO

TACTILE SENSORS

SPEAKERS (X2) AND
EARLEDS

INFRARED EMMITER/
RECEIVER AND EYELEDS

HEAD JOINT

CHEST BUTTON

HIP JOINT

PREHENSILE
HANDS

ANKLE JOINT

BUMPERS (X2)

—— FRONT & REAR
MICROPHONES

CAMERAS (X2]

LATERAL
MICROPHONES [X2]

SHOULDER JOINT

SONARS [X4)

ELBOW JOINT
BATTERY

WRIST JOINT

KNEE JOINT

Aldebaran Robotics, France



Constrained Kinematic Chains
.

HeadYaw ShoulderPitch
——F{—/—HeadPitch e
— T | ——— shoulderRoll
\ / ElbowYaw
S /"i/‘._.-— ElbowRoll
\ o HipYawPitch

__/f \t HibRoll
HipPitch

5 Kinematic chains; 21 Degrees of Freedom.



Denavit Hartenberg representation

e Offset and range
of each joint
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Constrained movement of joints
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Gravity

7460 &
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Default values for the Unreal Engine had to be corrected with a factor 2.5

G (uu/s) / Dist (uu) 1024 | 2048 | 4096 | 8102 | 16384 | 32768
~2452.5uu (tbs 1,14 0.1) || 1.06 | 1.06 | 1.08 | 1.1 | 1.13 | 1.19
~2452.5uu (rbs 1,14 0.0) || 1.03 | 1.02 | 1.01 | 1.01 | 1.01 | 1.00




Advanced experiments

Three full body movements:
A kick

*Balance act (Tai Chi Chuan)
*Single step



Balance act

Diagnostic movement: Tai Chi Chuan
*Real robot: all motors and joints still functional
«Simulated robot: weight correctly distributed over body



A kick
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e g
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Q Difference
20

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
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Movement of the Right Knee (pitch):
*Good correspondence, except for deceleration
*More variance with the real robot, compared to the simulated robot
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i Real /r w
Simulated !
i Difference
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
Seconds

Movement of the Right Ankle (roll):

Good correspondence, except for around 1.5 s
Angle drifts away from requested angle



Shell limits

Right Ankle

T T
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RanklePitch (deg)

Reason for discrepancy Right Ankle roll during kick:
« Hardware limits, depended on Right Angle pitch



Full application

UsarNaoQi UDK
/ Frame Receiver |« > Image Server — Rendering
NaoQiProxy :
T \ Message Receiver |« —»|  UsarSim Scripts ~ g—j» Unreal Engine
MaoQi > Robot Controller PhysX Proxy } PhysX

A proxy server was built which allows to command the Nao
via its natural interface (NaoQi). NaoQi has e.g. a C++ and Python
interface.



RoboCup Soccer

The Python code of an actual RoboCup team (Dutch Nao Team) was
used to play a game of soccer.



Resumé

Presented a validated humanoid robot
iIn USARSIm UDK



Resumé

Demonstrated a methodology to validate
such robot with a sequence of experiments



Resumé

Validated the dynamics of multiple kinetic
chains in contact with the ground
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