
The Journal of Logic and
Algebraic Programming 51 (2002) 175–192

��� �����	
��

��
� 	��
	
����	
�
�����	��
��

www.elsevier.com/locate/jlap

Combining programs and state machines

Jan A. Bergstraa,b,∗, Alban Ponsea,c

a Programming Research Group, Faculty of Science, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

b Applied Logic Group, Department of Philosophy, Utrecht University,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

c CWI, Department of Software Engineering, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

State machines consume and process actions complementary to programs issuing actions. State
machines maintain a state and reply with a boolean response to each action in their interface. As state
machines offer a service to programs, their interface is also called a service interface. State machines
can be combined with several natural operators, thus giving rise to a state machine calculus. State
machines are used for abstract data type modeling. © 2002 Published by Elsevier Science Inc.

Keywords: Program algebra; State machine; Abstract data type

1. Introduction

In this paper, so-calledstate machinesare used to represent data structures and data
types in a context focusing on their role within programs. Although programs are given
the lead and data types are considered auxiliary in nature, the formalization of data types
is still of major importance for program understanding, and data type modeling requires as
much care as the analysis of programs and programming concepts. State machines admit
several interesting operators, so there is an algebra of state machines as well as there is an
algebra of programs. However, we here prefer to introduce a calculus of state machines.
The reason for this choice is that identity is defined in terms of set-theoretic constructions
rather than directly or indirectly by means of equational reasoning.

In this paper we focus on how state machines and programs (or, more precisely, program
behaviors) can interact. We distinguish two main approaches: first, a state machine may
support a program in its execution, for example as a memory device, yielding a (pro-
grammed) behavior. Secondly, a program may transform a state machine into another state
machine. We describe programs and their behavior in the setting of program algebra (PGA,
[4,5]).

∗ Corresponding author.
E-mail addresses:janb@science.uva.nl (J.A. Bergstra), alban@science.uva.nl (A. Ponse).

1567-8326/02/$ - see front matter� 2002 Published by Elsevier Science Inc.
PII: S1567-8326(02)00020-6

176 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

The paper is set up as follows: in Section 2 we provide an informal introduction to
the operational intuition of state machines and programs. Subsequently, in Section 3 we
provide some examples of state machines and discuss the calculus of state machines in
some detail. In Section 4 we consider two ways of interfacing state machines and program
execution. Then, in Section 5 we argue that state machines (or similar memory devices)
are indispensable in programming technology. Finally, in Appendix A we briefly elaborate
on specification techniques for state machines.

2. State machines, programs, and behaviors

In this section, we first introduce state machines. In order to model the interaction
between state machines and programs or program behaviors, we discuss a particular type of
primitive instructions and actions in the setting of program algebra. For general information
on program algebra we refer to [4,5].

2.1. State machines

A state machine is a pair〈�, F 〉 consisting of an interface� and a reply functionF.
The interface of a state machine consists of a collection of so-calledco-actions(where the
prefix “co” emphasizes the cooperative or complementary nature). We use

a(x)

as a general notation for co-actions. The bracket pair of a co-action can be empty as in
succ(). Co-actions that will occur in examples to come areset(true), println(hello)
andc1 : isZero(). An example of an interface of a state machine is

� = {a(n), b(n) | n < 1000}.
The reply functionF of a state machine〈�, F 〉 is a mapping that gives for each finite

sequence of co-actions from the interface� the reply produced by the state machine. This
reply is a boolean valuetrue or false unless inaction occurs (symbolized byD). We write
�+ for the set of non-empty sequences over�, and use “,” in the textual representation
of sequences as a separator between�-elements. Furthermore, the reply function should
satisfy the following requirement: if for someσ ∈ �+, F(σ) = D, then alsoF(σ, a(x)) =
D for all a(x) ∈ �. It will turn out convenient to assume thatF(a(x)) = D in casea(x) �∈
�.

The operational intuition of state machines is as follows: a program can make use of
the service offered by a state machine. These services are listed as co-actions in the service
interface of that state machine, and the state machine is identifiable by its name. Each
co-action in the interface of a state machine can be processed: the state machine updates
its state and produces a reply in the form of a boolean value which is returned to the
program that invoked the service. Furthermore, an error can occur, upon which the state
machine replies with the error valueD instead of an ordinary boolean. A state machine
will not process any subsequent requests after having run intoD. It is assumed that the
program starts the operation of the state machine with its first request for a service. The
state machine always starts from the same initial state.

The role of state machines. State machines emerge first of all as a tool for the description
of data structures. Well-known data structures such as memory registers, stacks, queues and

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 177

tables can all be modeled as state machines.1 Technically a state machine represents the
behavior of an automaton. If one forgets the use of inaction (D), a state machine character-
izes a formal language,2 perhaps based on an unusual alphabet of symbols. State machines
describe abstract data types in such a way that they can be used as part of an abstract
machine. There is no implication that a state machine must be realized either in hardware or
in software if it is used in a system description (however, it should allow immediate access
to the co-actions in its service interface). Its role is restricted to specification. In many cases
specifications involving data type state machines can be transformed into implementations
in a fully automatic and an algorithmically satisfactory way.3 For a set�, the collection of
all state machines with service interface� can be considered the semantics of the service
interface�. We will not discuss the set-theoretic size of this collection. It is quite large but
only a fraction of its conceivable elements has some relevance for computer programming.

2.2. Programs

Programs are constructed using various types of primitive instructions, the most funda-
mental of which is thevoid basic instruction. In this paper, such instructions have more
syntactical structure than in e.g. [4,5], in order to be able to provide a specific description
of the interaction between the behavior of a program and a state machine. As a general
notation for void basic instructions we use

f.a(x)

wheref is the so-calledfocusof the instruction, anda(x) is its co-instructionpart (upon
execution also calledco-action; program behaviors are discussed in the next section).
The bracket pair of an instruction can be empty or instantiated with some value. E.g.,
smbr.set(true) is an instruction that we will meet again in this paper, containing the
focussmbr and the co-instructionset(true). Another example of a primitive instruction
is Console.println(hello), having focusConsole and co-instructionprintln(hello).
We write

a, b, . . .

for void basic instructions whenever we do not care about their particular focus co-instruc-
tion structure.

A basic composition construct in the setting of program algebra isconcatenation, writ-
ten “;”, and taken to be associative: ifX andY are programs (or ‘program terms’), so is
X;Y . Furthermore, if alsoZ is a program, then(X;Y);Z andX; (Y ;Z) denote the same
program, and brackets will not be used in repeated concatenations.

The primitive instructions and their operational intuitions considered in this paper are
the following:

Void basic instruction.When executed, a void basic instruction generates a boolean
value and the associated behavior may modify a state. After execution, a program has to

1 In [1] state machines appear under the name of processes, a phrase that is currently used for a far more
general kind of behavior. We refer to [2] for a discussion of abstract data type behavior motivating the role of
state machines in this paper. An extensive literature on observability in data types relates to very similar notions.

2 The language consisting of all sequences of co-actions for which the state machine produces the replyfalse
(or true, depending on conventions regarding initialization and the empy string).

3 The transformation used for that purpose, however, need not generate a system that has the same or virtually
the same architecture as the given specification. Only the externally visible behavior must comply with the
specification, all of its internal details in fact being private to the specification.

178 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

enact its subsequent instruction. If that instruction fails to exist, termination occurs. The
attribute void expresses that execution is not influenced by the returned boolean value.

Termination instruction.The termination instruction! yields termination of the program.
It does not modify a state, and it does not return a boolean value.

Positive test instruction.Associated to each void basic instructiona there is a positive
test instruction+a. When executed, the state is affected according toa, and in casetrue
is returned, the remaining sequence of actions is performed. If there are no remaining
instructions, termination occurs. In the case thatfalse is returned, the next instruction is
skipped and execution proceeds with the instruction following the skipped one. If no such
instruction exists, termination occurs.

Negative test instruction.Associated to each void basic instructiona there is a negative
test instruction−a. When executed, the state is affected according toa, and in casefalse
is returned, the remaining sequence of actions is performed. If there are no remaining
instructions, termination occurs. In the case thattrue is returned, the next instruction is
skipped and execution proceeds with the instruction following the skipped one. If no such
instruction exists, termination occurs.

As an example we introduce the basic program notation PGLE (see [5]), which is
defined by adding labels and goto’s to the instructions mentioned above, and employing
concatenation as the only programming construct. The added instructions are these:

Label catch instruction.The label catch instruction has the formLk for k some natural
number. Upon execution, this instruction is simply passed and cannot modify a state. If
there is no subsequent instruction to be executed, termination occurs.

Absolute goto instruction.This instruction takes the form ##Lk for k some natural num-
ber, and represents a jump to the leftmost occurrence of the label catch instructionLk in
the program. If there is no such instruction, termination occurs.

Furthermore, PGLE is characterized by the syntactic restriction that each test instruction
in a program is followed by either! or a ##Lk for somek.

Example 1. The program

ProgA=smbr.set(true); L0; +smbr.eq(true); ##L1; ##L2;
L1; smbr.set(false); Console.println(hello); ##L0;
L2; smbr.set(true); Console.println(goodbye); ##L0

is a particular example of a PGLE program that will be used in the sequel of this paper.

Programs as such do not have an interface, the difficulty being that it is not clear which
superset of the collection of actions featuring in a program behavior should be considered
the correct interface. Ideally an interface for a program combines two properties:
1. to include the actions mentioned in the program text, and
2. to allow easy communication.
Therefore an interface ought to have a low information content. The information content
can become lower by adding ‘redundant’ elements to the interface. The minimal collection
of instructions that are present in the text of a program4 X is denoted with�ps(X), the

4 A reference to program objects is needed if all formal definitions are to be presented.

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 179

collection being called apseudo interface. To see why�ps(X) is a pseudo interface rather
than a proper one consider this example:

ProgB = f.a(124); +g.b(358); L67; −f.a(98); f.a(358).
Now �ps(ProgB) = {f.a(98), f.a(124), f.a(358), g.b(358)} which is very implausible as
an interface. A reasonable program interface might be:

{f.a(n), g.b(n)|n < 1000}.
A program component5 is a pair consisting of a program interface and a program such that
all basic instructions used by the program are in the interface. This definition is meaningful
for all program notations in program algebra. Referring to the programProgB as given
above

[{f.a(n), g.b(n)|n < 1000}, ProgB]
is an example of a program component. (Recall that a state machine has a definite interface,
so ‘state machine components’ can be identified with state machines.)

2.3. Behaviors

Each program can be associated with aprogram behavior, and it is on the level of
behaviors, i.e. program execution, that we shall study the interfacing with state machines.
Below we provide a brief introduction to program behaviors (we refer to [5] for an extended
overview).D is the behavior of an inactive program. The cause of inaction is either the
absence of proper termination when needed or a cyclic succession of goto (or jump) in-
structions.S is the irreducible behavior of the termination instruction. Intuitively,a denotes
the atomic behavior describing the execution of this basic instruction. However, we shall
only consider atomic behavior in connection with the boolean reply it triggers: ifP andQ
are program behaviors anda is a boolean-returning action, then

P� a �Q

performs ana subsequently acting likeP if a returns true and likeQ if it does not. In the
special case thatP = Q, we write

a ◦ P

instead ofP � a � P . A finite program behavior always ends withS or D. Below we
provide some examples of (finite and infinite) program behaviors.

In general, we write|X| for the behavior of programX if we do not care in what
program notationX is written. It is then simply assumed that|X| yields a behavior as
described above. In order to be able to describe some examples in detail, we define below
thebehavior extractionfunction | . . . |pgle on PGLE programs:|X|pgle yields the behavior
of PGLE programX. Let X = u1, . . . , uk. Then |X|pgle = |1, X|g, where the auxiliary
function|_, _|g is defined as follows:

|j,X|g = S if j > k or j < 1 oruj = ! for 1 � j � k,

|j,X|g = a ◦ |j + 1, X|g if uj = a,

5 We use ‘program component’ independently of the phrase ‘software component’. There is no implication that
a program component contains a program in binary form.

180 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

|j,X|g = |j + 1, X|g � a � |j + 2, X|g if uj = +a,

|j,X|g = |j + 2, X|g � a � |j + 1, X|g if uj = −a,

|j,X|g = |j + 1, X|g if uj = Ln,

|j,X|g = |m,X|g if uj = ##Ln andm = target(n,X),

and the auxiliary functiontarget(n,X) yields the smallestm such thatum = Ln, and 0 if
there is no suchum in X = u1; ...; uk.

In the case that for somej these equations yield a cyclic succession without any atomic
behavior, we set|j,X|g = D.

We provide some simple examples, followed by our ‘running example’:

|a|pgle = a ◦ S,
|L0; a; b; ##L0|pgle = P whereP can be defined byP = a ◦ (b ◦ P),

|+a; L0; ##L0; b|pgle = a ◦ D.

Example 2. The PGLE programProgA as defined in Example 1, i.e.

ProgA=smbr.set(true); L0; +smbr.eq(true); ##L1; ##L2;
L1; smbr.set(false); Console.println(hello); ##L0;
L2; smbr.set(true); Console.println(goodbye); ##L0

defines the behavior|ProgA| = Q, whereQ can be defined by the following equations:

Q= smbr.set(true) ◦ M,

M = L ◦ M � smbr.eq(true) � R ◦ M,

L= smbr.set(false) ◦ Console.println(hello),

R = smbr.set(true) ◦ Console.println(goodbye).

adopting the conventions that◦ is right associative and binds stronger than _� a � _.

The pseudo interface of a program behavior simply contains all actions that the behavior
performs. We omit the precise definitions. For a behaviorP we denote its pseudo interface
with �ps(P). If X is a PGLE program with behavior|X|pgle, then�ps(|X|pgle) ⊆ �ps(X).
A strict inclusion may hold, as for instance inX = !; a.6

3. Examples of state machines and state machine calculus

In this section a small collection of important state machines is presented as well as the
operator set of state machine calculus.

3.1. Four data type state machines

Below we provide some examples of state machines that we consider fundamental and
that are certainly useful in a number of circumstances (these examples and their names may

6 The interface condition for program components can be stated as follows: for[I,X] to be a program
component it is required that�ps(|X|) ⊆ I .

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 181

be considered the initial segment of a library of useful state machines). Our specifications
of these state machines are informal, but can of course be formalized in much more detail
(we return to this matter in Appendix A). We writeNN for the natural numbers (andnn in
specific identifiers). The co-actions in the state machines below will be called by actions
(instructions) having the same co-action part. Interfacing programs and state machines is
discussed in Section 4.

Boolean register.This state machine has namesmbr (abbreviating state machine boolean
register), and is defined by

〈{set(true), set(false), eq(true), eq(false)}, Fbr〉.
where the reply function will replyfalse to the co-actionseq(true) andeq(false) until
the firstset(true) is called. Thereafter the state of the register istrue. At each co-action
of the formset(true) or set(false) the reply function repliestrue.7 The state of the
state machine is flipped whenever it receives a ‘set co-action’ to the opposite truth value.
The co-actionseq(b) do not change the state but will return a replytrue wheneverb is the
current value of the register, andfalse otherwise.

NN register.smnnr = 〈{set(i), eq(i) | i ∈ NN},Fnr〉 can contain arbitrary natural num-
bers. The reply function is self-evident. It generalizes the reply function ofsmbr to the
parameter domainNN instead of{true, false}.

NN counter.smnnc = 〈{succ(), pred(), isZero()}, Fnc〉. Again the reply function is
clear from the mnemonics of the interface actions, as is the convention to replytrue as a
default, under the assumption that the counter always starts with value zero. In particular
it is assumed that, having become zero, the actionpred() leaves its argument at zero.

NN stack.smnns = 〈{push(i), pop(), topEq(i)|i ∈ NN}, Fns〉. The reply function is
clear from the mnemonics of the interface actions, as is the convention to replytrue as a
default, under the assumption that the stack always starts empty. In particular, the action
pop() leaves the empty stack empty, and pops the top element from the non-empty stack.

As a rule, the co-actions in the above concrete examples will be called by actions (in-
structions) that carry a plausible name, e.g.,smbr.set(true) is an action of which the focus
characterizes reference to a boolean registersmbr, while the co-action partset(true)
models the request to set the value of the register totrue.

3.2. State machine calculus

Five operators and a constant for state machines are useful in many cases: service
interface (�s(H)), non-interfering combination (H1 ⊕ H2), co-action prefixing (p :H), re-
striction (��H), export (��H), which is complementary to restriction, and the empty
state machine (∅).
• If the state machineH consists of the pair〈�, F 〉, then the service operator�s(H) gives

its service interface�, thus�s(H) = �.
• The non-interfering combination operator (⊕) takes two state machines as operands, say

H1 andH2. The service interface consists of those co-actions occurring in only one of
the two service interfaces:

�s(H1 ⊕ H2) = (�s(H1) ∪ �s(H2)) − (�s(H1) ∩ �s(H2)).

Let Fi be the reply function forHi . The reply functionF for H1 ⊕ H2 inspects the last
instruction of its argument list. If that instruction is fromHi all actions ofH3−i (i.e. in

7 This is an arbitrary default reply for a co-action that only serves to update the register.

182 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

�s(H3−i) are removed and the reply is computed by means of an application ofFi to
the remaining list.

• Co-action prefixing (p :H) prefixes each co-actiona(x) of a state machine (H) with “p:”
for some name (or “part”)p and modifies its reply function:

p :〈�, F 〉 = 〈p :�, p :F 〉
wherep :� = {p :x | x ∈ �}, andp :F(σ) = F(σ ��) whereσ �� is the operation that
projectsσ into �+ (i.e., strips off all prefixesp : from theσ -elements).

• The restriction (��H) of state machineH is obtained by removing all interface actions
in � from the interface ofH and by dropping all input streams, i.e., elements of�+,
featuring an action in�.

• The export operator (��H) does the converse of restriction: it drops all interface
actions outside�.

• The empty state machine is denoted with∅. This is the unique state machineH with
�s(H) = ∅, playing but a formal role in the calculus of state machines.
Several identities concerning non-interfering combination are valid:

H ⊕ ∅ = H,

H ⊕ H = ∅,
H1 ⊕ H2 = H2 ⊕ H1,

p :(H1 ⊕ H2)= (p :H1) ⊕ (p :H2),

(H1 ⊕ H2) ⊕ H3 = H1 ⊕ (H2 ⊕ H3) if �s(H1) ∩ �s(H2) ∩ �s(H3) = ∅.

Remark 3. The non-interfering combination provides a disjoint combination of the facil-
ities of the two state machines, provided their service interfaces are disjoint. If the service
interfaces overlap an ambiguity must be avoided and for that reason actions in the overlap
are not offered by the non-interfering combination. The facilities of several copies of the
same state machine can be combined after preparatory co-action prefixing, for instance:

p1 :smbr ⊕ p2 :smbr ⊕ p3 :smbr,
where the interface actions ofp1:smbr are

{p1 :set(true), p1 :set(false), p1 :eq(true), p1 :eq(false)}.

For restriction and export there are several universally valid identities:
(distribution identities)

�� (H1 ⊕ H2)= (� �H1) ⊕ (��H2),

� � (H1 ⊕ H2)= (� �H1) ⊕ (� �H2),

(special cases)

�s(H)�H = H,

∅ �H = H,

∅ �H = ∅,
�s(H1)� (H1 ⊕ H2)= H1 if �s(H1) ∩ �s(H2) = ∅,

(interaction with the service interface operator)

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 183

�s(��H)= �s(H) − �,

�s(� �H)= � ∩ �s(H),

� �H = (�s(H) − �)�H,

��H = (�s(H) − �)�H.

4. Interfacing programs and state machines

In this section we address the issue of interfacing programs and state machines. The
subject of interfacing being open-ended in nature, our discussion focuses on two especially
important cases. Then we discuss some applications of the state machine calculus that was
defined in the previous section.

4.1. Use and apply

Program components have a program interface and state machines have a (definite)
service interface. We consider two ways of interfacing a program (behavior) and a state
machine:

Use.In a “use interface” the task of a state machineH is to support programX in its
operation, which will express its value by executing actions that are not processed byH.
Upon termination of the execution ofX, H is forgotten and so is the state it is in.

Apply. In an “apply interface” the task of a programX is to transform the state of a
state machineH. Upon termination of the execution ofX, the result of the computation
materializes in the state ofH.

Both cases ‘use’ and ‘apply’ are captured by means of special purpose operators with
an explicit reference to some focus.

In the case of ‘use’, the special operator/f produces the behavior of the program’s
instructions referenced by focusf alongside a given interface. More precisely, theuse-
operator/f combines a program behaviorP and a state machineH producing a behavior,
written P/fH . The actions in this behavior cannot have focusf. “Use” refers to the fact
that the program issues instructions to the state machine only for the sake of getting replies
returned. The use-operator simply drops the state machine after program termination or
inaction. SoP/fH is meaningful only for program behaviorsP that issue actions of the
form g.a(x) for f /= g.

In the case of ‘apply’, the special operator•f for some focusf determines the state in
which a program leaves a state machine after termination. Theapply-operator•f connects
a program behaviorP and a state machineH, and yields a state machineP •f H . This
requires�ps(P) ⊆ f.�s(H), and raises the notorious question how to applyD to a state
machine. A simple, though rather unelegant, solution is to introduce a default state machine
D with universal interface that replies to each action with the (new) replyD. Then one may
assume thatD applied to any state machineH (includingD) producesD, andP applied to
(the default state machine)D for any behaviorP also producesD. “Apply” refers to the fact
that the program issues instructions to the state machine only for the sake of state machine
transformation. SoP •f H is meaningful only for program behaviorsP that issue actions
of the formf.a(x) and that terminate.

We shall define the use-operator and the apply-operator on the level of behaviors, al-
though both can be defined on programs rather than behaviors as their first arguments. We

184 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

will only use that extension in combination with the behavioral abstraction operator| − |.
A subscript will then indicate the program notation of the program and the notation works
as follows:

|X/fH |L = |X|L/fH,

(X •f H)L = |X|L •f H.

The difference between the use-operator and the apply-operator is a matter of perspect-
ive: the use-operator considers the state machine a transformer of behaviors (or programs)
and determines another behavior, whereas the apply-operator considers the program a
transformer of state machines and therefore produces a state machine (unless some er-
ror occurs). In the perspective of the apply-operator the state machine is input and the
modifications that are applied to it during a computation are the essence.

4.2. Semantic equations for use and apply

State machine effect notation.Let P be a program behavior and letH be a state machine.
We wish to defineP/fH as the behavior ofP usingH. An action ofP with focusf should
be processed byH. An auxiliary notation has to be introduced beforehand. For a state
machineH = 〈�, F 〉 and a co-actiona(x) in its interface, the state machine�/�a(x) H is
defined by

�
�a(x)

H = 〈�, F ′〉

with F ′(σ) = F(a(x), σ) for all interface action sequencesσ . The default state is covered
by �/�a(x) D = D. Furthermore, forσ ∈ �+ we define�/�σH asH after having sub-
sequently processed the co-actions inσ , so

�
�ρ, a(x)

H = �
�a(x)

(
�
�ρ

H

)
.

Semantic equations for the use-operator.The defining rules forP/fH are these (using
H = 〈�, F 〉):

S/fH = S,

D/fH = D,

(P � g.a(x) � Q)/fH = (P/fH) � g.a(x) � (Q/fH) if g /= f,

(P � f.a(x) � Q)/fH = P/f
�

�a(x)
H if a(x) ∈ � andF(a(x)) = true,

(P � f.a(x) � Q)/fH = Q/f
�

�a(x)
H if a(x) ∈ � andF(a(x)) = false,

(P � f.a(x) � Q)/fH = D if a(x) �∈ �.

With theconditional operatorof [9], which we define forb ∈ {true, false,D} by

x � b � y =


x if b = true,
y if b = false,
D if b = D,

(cf. [6,7]) we can summarize the last four equations into a single one, provided we adopt
the convention thatF(w, a(x)) = D in casea(x) �∈ �:

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 185

(P � f.a(x) � Q)/fH =
(
P/f

�
�a(x)

H

)
� F(a(x)) �

(
Q/f

�
�a(x)

H

)
.

The equations for the use-operator/f determine a behavior by means of a step-wise
processing of the actions of the program. Only the actions with focus different fromf will
contribute to the resulting behavior. Below we consider a use-application on the PGLE
program considered in Examples 1 and 2.

Example 4. Consider the program

ProgA = smbr.set(true); L0; +smbr.eq(true); ##L1; ##L2;
L1; smbr.set(false); Console.println(hello); ##L0;
L2; smbr.set(true); Console.println(goodbye); ##L0

from Examples 1 and 2 and the state machinesmbr defined in Section 3.1. It easily follows
that|ProgA|pgle/smbrsmbr traverses the cycle

(Console.println(hello), Console.println(goodbye)).

Abbreviating|ProgA|pgle/smbrsmbr to P, we may write

P = Console.println(hello) ◦ Console.println(goodbye) ◦ P.

The use-operator can play a key role in projection semantics. In some cases a projection
for a program notation can only be found at the cost of the introduction of an auxiliary
state machine which the projected program may use (we return to this matter in Section 5).
Semantic equations for the apply-operator.UsingH = 〈�, F 〉, the definition ofP •f H is
as follows:

S •f H = H,

D •f H = D,

P •f D = D,

(P � g.a(x) � Q) •f H = D if f /= g,

(P � f.a(x) � Q) •f H =
(
P •f �

�a(x)
H

)
� F(a(x)) �

(
Q•f �

�a(x)
H

)
.

If application of these rules fails to lead to a converging computation, the computation of
P onH is said to diverge, which is written asP •f H = D.

The apply-operator plays a key role in the description of batch processing. In the form-
alization of batch processing both inputs and outputs of programs are packed in a state
machine. A batch program is seen as a state machine transformer, semantically captured
by the apply-operator.

4.3. Focus renaming and focused instruction refinement

It is reasonable to repeatedly use the use-operator, as in(P/fH1)/gH2, or more briefly,
P/fH1/gH2. Note that by definition,P/fH1/fH2 = P/fH1. Also in the case thatf /= g,
the repeated use application inP/fH1/gH2 can be combined into a single one using
‘focus renaming’ and ‘focus-dependent co-action prefixing’ (or ‘focused instruction
prefixing’).

186 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

Let P be a behavior, then thefocus renaming

[f �→ g]P
is asP, except that all actions of the formf.a(x) are renamed intog.a(x). So,[f �→ g]S =
S, [f �→ g]D = D, and

[f �→ g](P � h.a(x) � Q)

=
{
([f �→ g]P) � g.a(x) � ([f �→ g]Q) if f = h,
([f �→ g]P) � h.a(x) � ([f �→ g]Q) otherwise.

(Of course, in any program algebra notation, focus renaming can be defined straightfor-
wardly and satisfies|[f �→ g]X| = [f �→ g]|X|.) Observe thatP/fH = ([f �→ g]P)/gH

if g is fresh inP. We shall use the notation

[f1 �→ g1, f2 �→ g2]P
for [f2 �→ g2]([f1 �→ g1]P). Observe that iff1 /= f2, then

[f1 �→ g1, f2 �→ g2]P = [f2 �→ g2, f1 �→ g1]P.

Furthermore, one can extend ‘co-action prefixing’ (see Section 3.2) tofocused co-action
prefixingon behaviors (or programs) by fixing a focus and an interface. This operation is
written asp : f.�, and

p : f.�(P)

refines each actionf.a(x) of Pwith a(x)∈� tof.p : a(x). So,p : f.�(S) = S, p : f.�(D) =
D, and

p : f.�(P � g.a(x) � Q)

=
{
(p : f.�(P) � g.p :a(x) � (p : f.�(Q)) if f = g anda(x) ∈ �,
(p : f.�(P)) � g.a(x) � (p : f.�(Q)) otherwise.

(Of course, in any program algebra notation, focused instruction prefixing can be defined
straightforwardly and satisfies|p : f.�(x)| = p : f.�(|X|).) We write

φ ∪ ψ

for the application of focused instruction prefixingsφ andψ if their foci differ (the applic-
ation order is immaterial in this case).

The following result states that repeated applications of use operators can always be
combined into a single one.

Theorem 5. LetHi = 〈�i , Fi〉 for i = 1, 2, and let P be a behavior in which focusg does
not occur. If f1 /= f2 for foci f1 andf2, then

P/f1H1/f2H2

= [f1 �→ g, f2 �→ g](f1 : f1.�1 ∪ f2 : f2.�2)(P)/gf1 :H1 ⊕ f2 :H2.

Proof. We have to argue thatL = R with L = P/f1H1/f2H2 andR = [f1 �→ g, f2 �→
g](f1 : f1.�1 ∪ f2 : f2.�2)(P)/gH for H = f1 :H1 ⊕ f2 :H2. Clearly, neitherL nor R
can perform actions with focusfi or with focusg. So, provided that actions of the form

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 187

g.fi.a(x) yield the same reply inR as the associatedfi.a(x) actions inL, it follows thatL
andRare (stepwise) behaviorally equivalent.

If in R some actiong.f1 :a(x) is processed by�/�σH , then the sequence off1 :-
prefixed co-actions inσ andf1 : a(x) determine the reply ofH. Now �/�σ ��1H1 com-
putes by definition of⊕ and co-action prefixing the same reply ona(x). As H2 is not
addressed inL, it follows that both behaviors coincide in this case.

If in R some actiong.f1 :a(x) is processed by�/�σH a similar argument applies.
�

With the commutativity of focus renaming and focused instruction prefixing for differ-
ent foci f1 andf2, and the commutativity of⊕, it follows from Theorem 5 above that
P/f1H1/f2H2 = P/f2H2/f1H1.

Similarly a repreated application of the apply-operator is possible. Under strict condi-
tions demanding that ‘;’ represents sequential composition betweenP1 andP2, the fol-
lowing is valid:P1 •f (P2 •f H) = (P2;P1) •f H. We will not further address the issue of
repreated apply applications, and finish this section with the observation thatP •f H =
([f �→ g]P) •g H if g is fresh inP.

5. Memory is indispensable

In simple cases it is possible to incorporate the ‘use functionality’ of a state machine
in programs, and to define a projection semantics for programs using co-actions of the
state machine service interface. In this section we consider such a projection in detail for
PGLE (briefly described in Section 2.2) and the boolean registersmbr (see Section 3.1).
From this and another example (involving a state machine with an infinitary structure) we
conclude that state machines or similar memory devices are indispensable in programming
technology.

5.1. Projection semantics for PGLE with use

Consider a PGLE programX using co-actions from�s(smbr). We can viewX as a
program in PGLEsmbr, an ad hoc version of PGLE equipped with the following semantics:

|X|pglesmbr= |X|pgle/smbrsmbr.

Alternatively one may ask for a projectionpglesmbr2pgle such that the meaning of
PGLEsmbr programs can be determined using the projection semantics without any men-
tion of state machines and their ‘use’:

|X|pglesmbr= |pglesmbr2pgle(X)|pgle.

So the question is to design a projectionpglesmbr2pgle satisfying the following con-
straint. For allX, |X|pgle/smbrsmbr = |pglesmbr2pgle(X)|pgle.

Let X = u1; . . . ; uk. We assume that termination ofX takes place only at “!”, and that
all goto’s use labels that occur in label catches in the program. Then we define

pglesmbr2pgle(X) = ψfalse
1 (u1); . . . ;ψfalse

k (uk);ψtrue
1 (u1); . . . ;ψtrue

k (uk)

with the auxiliary operatorsψb
i determined by the rewrite rules below. The general idea is

that eachψb
i (u) is a pair consisting of a label catchLi or Lk + i that pinpoints the position

188 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

of the instruction and the value ofb (false, respectivelytrue), and a second instruction.
This may yieldLj ; ##Lj + 1, where the second instruction clearly is redundant; however,
we include such redundant instructions in order to expose the systematics of this projection

ψb
i (Lj) = (Lk + i; L2k + 2j + 1) � b � (Li; L2k + 2j + 2),

ψb
i (##Lj) = (Lk + i; ##L2k + 2j + 1) � b � (Li; ##L2k + 2j + 2),

ψb
i (smbr.set(true)) = L(k + i � b � i); ##Li + k + 1,

ψb
i (+smbr.set(true)) = L(k + i � b � i); ##Li + k + 1,

ψb
i (−smbr.set(true)) = L(k + i � b � i); ##Li + k + 2,

ψb
i (smbr.set(false)) = L(k + i � b � i); ##Li + 1,

ψb
i (+smbr.set(false)) = L(k + i � b � i); ##Li + 2,

ψb
i (−smbr.set(false)) = L(k + i � b � i); ##Li + 1,

ψb
i (smbr.eq(true)) = (Lk + i; ##Lk + i + 1) � b � (Li; ##Li + 1),

ψb
i (+smbr.eq(true)) = (Lk + i; ##Lk + i + 1) � b � (Li; ##Li + 2),

ψb
i (−smbr.eq(true)) = (Lk + i; ##Lk + i + 2) � b � (Li; ##Li + 1),

ψb
i (smbr.eq(false)) = (Lk + i; ##Lk + i + 1) � b � (Li; ##Li + 1),

ψb
i (+smbr.eq(false)) = (Lk + i; ##Lk + i + 2) � b � (Li; ##Li + 1),

ψb
i (−smbr.eq(false)) = (Lk + i; ##Lk + i + 1) � b � (Li; ##Li + 2),

ψb
i (u) = L(k + i � b � i); u otherwise.

The description of this transformation is disappointingly long. Different strategies can be
applied to simplify the projection. Nevertheless we prefer the description in the given form
as it clearly demonstrates the ‘raw data’.

Example 6. (Continued) Recall the program

ProgA = smbr.set(true); L0; +smbr.eq(true); ##L1; ##L2;
L1; smbr.set(false); Console.println(hello); ##L0;
L2; smbr.set(true); Console.println(goodbye); ##L0

from Examples 1, 2, 4, where it is stated that for|ProgA|pgle/smbrsmbr = P ,

P = Console.println(hello) ◦ Console.println(goodbye) ◦ P. (1)

As ProgA is in PGLEsmbr, we can apply the projectionpglesmbr2pgle(ProgA) as defined
above. We list the outcome in Fig. 1 in two columns, the left one giving theψfalse

i values,
and the right one theψtrue

i values. It easily follows that the behavioral characterization(1)
holds, which demonstrates the correctness of our projectionpglesmbr2pgle(ProgA).

5.2. Memory counts

If a combination of disambiguated boolean register state machines is used via distinctive
use applications/smbr1, /smbr2, /smbr3, . . ., the mentioned projection can be applied step by
step. At each of these steps the program becomes about four times as long causing an
exponential blow-up of the length of the program. From a philosophical point of view this

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 189

Fig. 1. pglesmbr2pgle(ProgA).

may be considered no issue. As soon as programs become part of technology, however,
the matter is vital. It can be concluded that already in the simplest of conceivable cases
(a number of copies of a boolean register state machine), it is totally impractical to avoid
the use of a boolean register in favor of a longer program. Although our transformation
may be less than optimal, the essential problem is that using a number of different possible
state machine states can only be expressed in terms of the program itself if an exponential
blow-up of the length of the program is accepted. (In the case ofsmbr, a solution to this
problem is provided by Theorem 5.) Furthermore, a projection semantics without the use
of state machines does not exist in the case that a program (a behavior) essentially uses a
state machine that has a infinitary internal structure. For example, consider the behavior
recursively defined byP for actionsa andb:

P = a ◦ Q1,0,

Qi+1,j = b ◦ Qi,j+1,

Q0,j = a ◦ Qj+1,0

(so P performsa ◦ b ◦ a ◦ b2 ◦ a ◦ b3 ◦ . . .). It is not hard to find a PGLE program, say
ProgC, that uses a two-counterH = c1 : smnnc ⊕ c2 : smnnc (see Section 3 for the defini-
tion of theNN countersmnnc and the operation⊕) and displays this behavior: assume that
the actionsa, b have a focus different fromsmnnc. Then set

ProgC= L0; a; smnnc.c1 : succ();
L1; +smnnc.c1 : isZero(); ##L2;

b; smnnc.c1 : pred(); smnnc.c2 : succ(); ##L1;
L2; +smnnc.c2 : isZero(); ##L0;

smnnc.c2 : pred(); smnnc.c1 : succ(); ##L2

190 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

Now |ProgC|pgle/smnncH = P reaches infinitely many different states. A projection of
ProgC into PGLE cannot preserve this property: it is easy to prove that any behavior defin-
able by a PGLE program has a regular (or ‘finite’) control structure. Here lies a second
argument for the use of state machines (or data structures) external to a program.

It can be concluded that programming cannot be understood without the use of pro-
gram independent memory. Memory outside the program has been formalized using state
machines.

Appendix A. Specification techniques for state machines

The simplest way of denoting a program is to write it. Programs are typicallyconstruc-
tedby means of the successive application of a limited number of construction principles to
a limited number of primitives. Another obvious category of objects admitting description
by construction are the natural numbers. Numbers also allowspecification: the construction
n = 97 corresponds to ‘n equals the largest prime number below 100’. The second descrip-
tion is typically a specification. Specification is performed by means of the presentation of
a list of properties. (Some other mathematical objects, for instance the structure of the real
numbers in classical mathematics, are specified rather than constructed.) As it turns out
state machines lack any direct means of construction: state machines must be specified.
In general, the specification of a state machine poses two questions at the same time: (1)
which specification technique should be used, and (2) how should the technique be used in
a particular case.

Below we list some options for state machine specification; for more information we
refer to [8].

Informal specification.An informal specification of a state machine (or of a class of
state machines) will be definite about the interface of instructions that can be issued to the
state machine.8 The informal part is in the description of the reply function. There is no
doubt that the combination of a precise interface description with an intuitively appealing
description of a reply function is very useful in practice.

Property-oriented specification.This technique includes many more specialized tech-
niques using restricted logics. Point of departure is the observation that a state machine is
itself a three-sorted algebra: a sort (�) of interface actions with a constant for each interface
action, a sort (C) of extended booleans, equipped with constants for both truth values and
for inaction, and a sort (�+) consisting of non-empty sequences of interface actions, the
reply function being a function in this algebra. Property-oriented specification comprises
writing an axiomatization for this three-sorted structure, preferably disallowing auxiliary
operators.

Property-oriented state machine specifications in first-order logic are difficult to find,
even for remarkably simple state machines. If auxiliary interface actions are allowed it
is always possible to find a direct specification of a state machine using equations only.9

However, the proof of this fact is long and complicated and the practical implication of the
result is not immediately clear. (We refer to [3] for the proof.)

8 With CORBA IDL industry has produced a description technique for such interfaces that may well be
sufficiently strong for many years to come.

9 It must be assumed that the state machine is computable. The case of a finite state-space is especially intricate.

J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192 191

Temporal logics can be used to provide property-oriented state machine specifications,
in some cases with remarkable elegance.

State-space model description.A state-space model for a state machine is obtained by
replacing�+ by �∗ in the sorts mentioned above, and adding another auxiliary sortS.
The sortS contains states in which the state machine may be during the execution of a
succession of interface actions. For the sort of states a constant and three operations are
needed:
(1) the initial state constantsinit determines in which state the state machine will start its

operation upon initialization,
(2) the effect functionE : S × � → S takes a state and an interface action and determines

the state in which the state machine will be after processing the interface action,
(3) the yield functionY : � × S → C whereC = {true, false,D} determines which reply

is produced when states is reached after processing an interface action,
(4) the cumulative effect functionCE : �∗ → S determines the state of the state machine

after a sequence of interface actions has been processed.
The connection between these operators and the state machineH = 〈�, F 〉 being specified
is then as follows (writing[] for the empty sequence):

CE([]) = sinit,

CE(w, a(x)) = E(CE(w), a(x)),
F (w, a(x)) = Y(a(x), CE(w)).

Obviously the operatorsCE andF can be derived whenE andY are known. Therefore these
techniques usually make no mention of any operators other thanE andY.

Technically a state-space description of a state machine amounts to a specification of the
algebra with sorts�, SandC and operationsE,CE,Y. It turns out that if additional functions
are allowed, the use of equations will suffice to obtain appropriate specifications of the
state-space model in all relevant cases.

From a certain level of complexity, state-space models are the only option if a formal
description of a state machine is needed. Regarding state space model descriptions the
following remarks can be made.

Parametrized state machinesThe notation for state space model descriptions of state
machines can be made more explicit, thus obtaining a parametrized family of state ma-
chines including the state machineH. Using the notation given above each states ∈ S

determines a state machineHs = 〈�, Fs〉. The definition ofFs makes use of an auxiliary
operationCEs :

CEs([]) = s,

CEs(w, a(x)) = E(CEs(w), a(x)),
Fs(w, a(x)) = Y(a(x), CEs(w)).

The connection betweenH and this state machine family readsH = Hsinit .
Notational conventions for effect functions.In practice the format given here is often

only present in disguise. Rather than having an effect functionE with a second argument
in �, a special operation (sayea(x)) will be used for eacha(x) ∈ �. If a(x) has parameters
these will be taken as additional parameters forea(x), usually preceding the state parameter.
Of course a more mnemonic notation thanea(x) is likely to be used. The yield functionY
is usually only specified for non-void actions, void actions having the yieldtrue by defin-
ition. In most cases non-void actions cannot change the state. Then it suffices to describe
these by means of a mappingya extracting a boolean value from a state argument. Again a

192 J.A. Bergstra, A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 175–192

more mnemonic notation is likely to be used, andya may be given the parameters ofa(x)
as additional parameters.

References

[1] J.A. Bergstra, Datatypen bezien vanuit de recursietheorie, in: J.C. van Vliet (Ed.), Colloquium Capita
Datastructuren, Mathematisch Centrum, Amsterdam, 1978, pp. 157–170 (in Dutch).

[2] J.A. Bergstra, What is an abstract data type? Inf. Proc. Lett. 7 (1) (1978) 42–43.
[3] J.A. Bergstra, J.-J.Ch. Meyer, Equational specification of finite minimal unoids, using unary hidden functions

only, Fund. Inf. 5 (2) (1982) 143–170.
[4] J.A. Bergstra, M.E. Loots, Program algebra for component code, Formal Aspects Comput. 12 (1) (2000)

1–17.
[5] J.A. Bergstra, M.E. Loots, Program algebra for sequential code, J. Logic Algebr. Programming 51 (2002)

125–156.
[6] J.A. Bergstra, A. Ponse, Kleene’s three-valued logic and process algebra, Inf. Proc. Lett. 67 (2) (1998) 95–

103.
[7] J.A. Bergstra, A. Ponse, Process algebra and conditional composition, Inf. Proc. Lett. 80 (1) (2001) 41–49.
[8] L.M.G. Feys, H.B.M. Jonkers, C.A. Middelburg, Notations for Software Design, Springer, Berlin, 1994.
[9] C.A.R. Hoare, I.J. Hayes, He. Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, I.H. Sorensen, J.M. Spivey,

B.A. Sufrin, Laws of programming, Commun. ACM 30 (8) (1987) 672–686.

