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Abstract 

It is known that a queue is not finitely definable in ACP with handshaking communication 
(Baeten and Berg&a, 1988). In this paper, two finite specifications of a queue in ACP with 
abstraction and handshaking are proved correct relative to a standard specification of a queue 
that employs an infinite data type for representing its contents. The proofs are given in the 

proof theory of &RL, and the only ‘T-laws’ used are XT = x and X(Z(JJ + z) + y) = x(v + z). 
Therefore the proofs are adequate for both ‘branching bisimilarity’ and ‘observation equivalence’. 
Additionally, it is shown that standard concurrency follows from RSP for a class of processes 
guardedly specifiable in ACP with abstraction. 

1. Introduction 

The purpose of this paper is to record correctness proofs of two finite specifications 

of a queue, introduced below. Both these specifications are already known for some 

time. However, of the first one no proof has been published yet (as far as we are 

aware), and only slight variants of the second one were proved correct. Furthermore, 

the specifications and proofs are given in the proof theory of &RI, [lo-121, and could 

in that form be used as challenges for proof checking. Axioms and rules of pCRL can 

be found in Appendix A of [9a] this issue. 

Additionally, the paper offers a small theoretical result on RSP (Recursive Specifi- 

cation Principle), a fixed point rule mostly adopted in proofs on recursively specified 

processes in the setting of ACP with abstraction (see [2,5] for a general introduction 

to ACP with abstraction and RSP). This result states that RSP implies the standurd 

concurrency identities for processes specified by linear equations (and therewith com- 

mutativity and associativity of II). This is remarkable, because axioms for standard 

concurrency are often explicitly adopted in correctness proofs that already use RSP. 
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Queues and correctness 

Proving that some specification indeed defines a queue presupposes a standard deji- 

nition of a queue. Correctness then boils down to proving equality with this standard 

definition using specific axioms and rules. Given that a queue is a process that re- 

ceives data of type D along some in-port, and can send data in the same order in 

which they were received along some out-port (FIFO-like, i.e. First In, First Out), we 

use sequences of D-elements, typed Sequence, to represent the contents of a queue at 

any moment in its execution. For a queue with in-port i and out-port j, this standard 

specification is given in @XL by the following recursion equation (cf. [2]): 

Q”(q : Sequence) = d&(ri(d). Qu(d.4)) 

+sj(right-eh(q)) . Q’j(Zeft-rm(q)) a non-empty(q) D 6, 

where the symbol . in d.q represents the function that inserts a new D element at 

the left of a sequence; Pa b D Q abbreviates if b then P else Q fi (notation from 

[14]); non-empty(q) is the Boolean expressing whether q does not equal E, the empty 

sequence; right-elt extracts the right element of a sequence, e.g. right-eZt(d.(e.e)) = e; 

left-rm extracts the remainder of a Sequence element, e.g. left-rm(d.(e.&)) = d.E. The 

functions left-rm and right-elt are by definition total: left-rm(e) = E and right-elt(s) = 

do for some arbitrary do E D. 

The parameter q in e”(q) represents the execution state of the queue. For example, 

one can depict Qq(d.(e.&)), a state that can be reached by having received first e and 

then d along port i (actions ri(e), ri(d)), as follows: . . . . . . . . . . . . . . . . . . . . . . . . 
d.(e.&) 

Now e’j(d.(e.E)) can either receive some new datum e’ along port i (action ri(e’)) and 

evolve into Qy(e’.(d.(e.e))), or can send e along port j (action sj(e)) and evolve into 

@(d.~). In Section 3, we provide a detailed specification of the data type Sequence 

in ,uCRL style. 

Starting point for this paper is to adopt the process Q?(E) as the standard definition 

of the (empty) queue with in-port i and out-port j. 

Two jinite queue speci$cations in ACP with abstraction and handshaking 

Staying in the realm of ACP with abstraction and handshaking communication, * 

one can specify the queue above by using only the process operations of ACP,(A, y), 

* Handshaking is the case in which all communications are binary, axiomatized by the han&haking axiom 
x 1 y 1 z = 6. 



A4. Bezem. A. Ponsel Theoretical Computer Science 177 (1997) 487-507 489 

instead of basing it on data type specification and data/process interaction. Two such 

specifications of a queue will be proved correct, i.e. equal to e”(s). The only ‘r-laws’ 

used in this proof are 

(Bl) xz =x, 

(B2) x(r(v + z) + v) = X(Y + z), 

which were defined in the setting of ‘branching bisimulation’ [20,21]. (These laws 

are implied by the r-laws for ‘observation equivalence’ [ 161.) In the following we 

introduce two finite queue specifications. 

In [6], Bergstra and Klop presented the following intricate ACP,(&) specification 

of a queue using six recursion equations and one auxiliary (hidden) port: 

Q” = c (q(d). (Qk Ilk Sj(d> . p>> f or all {i,j,k} = {1,2,3}, 
dED 

where e’/ represents a queue with in-port i and out-port j; x Ilk y is short for 

z{ck(d)ldED} O a{rL(d),sk(d)ld6D}(x II U); ri(d)lSi(d) = S(d) for i E {w) and d E D 

(and no other communications are defined). 

Result 1.1. In the proof theory of pCRL with (Bl) and (B2), Q’j = Qj(r-:) JEW 

i,j E {1,2,3},i fj. 

In the same style as the specification of Qj above, one can specify a queue with 

in-port 1 and out-port j by using only four equations, employing an auxiliary port i 

and linked one element buffers. The one element buffer B’j is a process that can receive 

some datum d along port i, after which it can only send d along port j, after which 

this behaviour is repeated. This specification is the following: 

QB’j = C@,(d). (QBli Iii sj(d). B?‘)) 
d:D 

Bii = C(ri(d) . sj(d) . B”) 
d:D 

for all {i,j} = {2,3}, 

with the communications and Iii as defined above. 

In [ 131, Hoare already proved that queues can be specified as ‘linked’ one ele- 

ment buffers. Similar results were proved by Van Glabbeek and Vaandrager [19], and 

Brinksma [9]. Most close to pure ACP,(A, y) is the specification from [ 191 that employs 

chaining operators >> and >>>. 

Result 1.2. In the proof theory of pCRL with (Bl) and (B2), QB’j = Q’j(&) for 

j E {2,3]. 

Van Glabbeek showed that with unbounded communication, so without the restriction 

to handshaking, queues are finitely definable in ACP(A, y) [18]. In the paper [l], Baeten 
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and Bergstra raise the problem of finite queue specifications in the setting of ACP 

with handshaking. Starting from results in [7], they prove that a queue over more than 

one data element is not finitely definable in ACP(A, y) with handshaking. Furthermore, 

they show that adding renaming operators solves this problem. The two finite queue 

specifications introduced above imply that adding abstraction also solves this problem. 

Observe that these specifications are not so simple, in particular both do not comply 

to the linear format from [8]. For a further overview on queue specifications in ACP, 

we refer to [2]. 

Plan of this paper. In the next section we prove that the two finite queue specifi- 

cations are guarded, guaranteeing that each identifier Qij, QEJ’j uniquely determines a 

process. In Section 3, a proof of Result 1 .l is provided and in Section 4, Result 1.2 

is proved. In Section 5 attention is given to standard concurrency in the presence of 

RSP. An appendix on RSP in the setting of &RL completes the paper. 

Note on RSP. In the set-up of &RL, i.e. processes that may interact with data, 

RSP applications are based on systems of equations that are guarded and that go with 

a substitution mechanism that allows data modification (see Appendix). In this respect, 

the &RL version of RSP differs from the usual ACP version and all such applications 

are therefore displayed in a very detailed way. 

2. Guardedness 

Our first task is to show that each of the two specifications under consideration indeed 

specifies some process, i.e. has a unique solution for each identifier. This is only the 

case if these specifications are ‘guarded’. For example, X = a . z(,>(X) clearly does 

not specify a process: any process aP with P not containing a is a solution for this 

specification. There are various definitions for guardedness of recursive specifications. 

Here we use a liberal version, defined in two stages (taken from [4]). We employ the 

standard operational semantics of &RL (see [12]), and speak of steps that can be 

performed by a declared, closed process expression. 

Definition 2.1. Let P be an expression containing X. An occurrence of X in P is 

z-guarded if P has a subexpression a . Q, where a E A U {z} and Q contains this 

occurrence of X. 

We call a recursive specification E = {Xj = q 1 j E J} z-guarded if by substituting 

expressions Tj for occurrences Xj in the right-hand sides (‘unfolding’) a finite number 

of times, one can obtain the situation that every occurrence of every Xj in the unfolded 

right-hand sides is z-guarded. 

The specification E is z-founded if none of the Xj gives rise to an infinite number 

of consecutive z steps. 

The specification E is guarded if it is both z-guarded and T-founded. 
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Though r-foundedness can easily be rephrased in a more formal way, we refrain here 

from doing this and just give a few examples. 3 The earlier mentioned specification 

X = a. z{,)(X) is r-guarded, but not r-founded: X can do an a step to r{,)(X), which 

can only perform an infinite number of consecutive r steps. On the other hand, the 

specification X = X is r-founded, but not r-guarded. 

We recall the queue specification of Bergstra and Klop: 

Definition 2.2. For all {i,i, k} = { 1,2,3} we define 

Q” = C ri(d)(Qzk Ilk sj(d>Qk’), 
dED 

where X ilk Y is short for z{ck(d)ldED} O a{rk(d).sa(d)ldED}(X 11 3’1, 

We shall prove that these six defining equations form a guarded system, thus ensuring 

that the eij’s are uniquely determined by RSP. Observe that the data parameter in ri(d) 

and sj(d) is irrelevant for this analysis. Therefore we shall omit it, as well as the C 

operator. Accessible states of gy will be parsed on their II_ structure. To this end the 

notion of (i,j)-tree is defined. 

Definition 2.3. For all {i,j,k} = {1,2,3} we define by simultaneous induction: 

1. Every Qy is an (i,i)-tree; 

Ii 

2. If 7’ is an (i,j)-tree and T’ an G, k)-tree, then 
A 

T T’ is an (i, k)-tree; 

Iii 

3. If T is an (i,j)-tree, then 
A.. 

T ske/“ 1s an (i,k)-tree. 

Obviously, leaves of an (i,j)-tree are either of the form @‘j’ or of the form Sj,@‘j’. The 

left-right ordering of an (i,j)-tree induces an ordering of its leaves. From 

now on we speak about leftmost, rightmost and adjacent leaves with respect to this 

ordering. 

Lemma 2.4. For every (i, j)-tree T the following holds: 

1. T can do a step ri originating from its leftmost leaf, which is of the form e’j’ 
for some j’ # i; 

2. T can do a step sj originating from its rightmost leaf if and only if this rightmost 
leaf is of the form sjQ.‘j for some i’ # j; 

3 A precise definition of T-foundedness can be found in [3]. In fact, the definition of guardedness can be 

further relaxed to z-guardedness and semi-r-foundedness, but we do not need this here. In [8] a related 
definition of guardedness is introduced. 
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3. T can do a step z originating from two adjacent leaves of the form sjlQ”j’ and 

@‘lk’ (i’ # j', j’ # k’) if and only if T has two such adjacent leaves; 
4. T can do no other steps than those listed above. 

Proof. By simultaneous induction on the structure of the (i, j)-tree T. 

Case T E @y: obvious. 

A 
Case T G T’ T” with (i,k)-tree T’ and (k, j)-tree T”. By the induction hy- 

pothesis the lemma holds for T’ and T”. 
As for 1: T can do the step ri of T’ since i # k. 
As for 2: T can do a possible step sj of T” since j # k, and the condition is 

equivalent for T and T” since they share their rightmost leaf. 

As for 3: T can do all steps r that T’ and T” can do, when the adjacent leaves are 

either both leaves of T’, or of T”. Moreover, if the rightmost leaf of T’ is of the form 

skQtk, then, by the induction hypothesis 2, T’ can do a step Sk. Also, by induction 

hypothesis 1, T” can do a step rk originating from its leftmost leaf. Now observe that 

the rightmost leaf of T’ and the leftmost leaf of T” are adjacent, so we are happy 

to see that Sk and rk communicate into ck, which results in a z step of T due to the 

definition of Ilk. 

As for 4: follows from the induction hypotheses 14 for T’ and T” plus the obser- 

vation that Sk and rk above are encapsulated due to the definition of Ilk. 

A. 
Case T = T’ sjQkJ with (i, k)-tree T’: similar but simpler than the previous 

case (only z steps from T’). 0 

Lemma 2.5. Zf T is an (i, j)-tree, then all accessible states of T are (i, j)-trees. 

Proof. By induction on the number of steps, it suffices to verify that each of the steps 

1-3 from the previous lemma results in an (i,j)-tree. 
As for 1: The leftmost leaf of T, which is of the form Qy’, is replaced by the 

(i, j/)-tree Qk?Q I k’j’ with {i, j’, k’} = { 1,2,3}. The result is again an (i, j)-tree (to 

be proved by ind:ction on T). 
As for 2: The rightmost leaf of T, which is of the form s&‘j, is replaced by the 

(i’, j)-tree Q’j. (Note that s&j itself is not an (i’, j)-tree, but this doesn’t matter.) 

The result is again an (i, j)-tree (to be proved by induction on T). 
As for 3: Combines 2 and 1 on adjacent leaves. The result is again an (i, j)-tree. 

0 

Corollary 2.6. All accessible states of Q’j are (i, j)-trees. 
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The converse of this corollary is not true: 

is an (i, k)-tree which is not accessible from Q”k. 

Corollary 2.7. The operational behaviour of an (i, j)-tree is completely determined 

by its list of leaves. 

Proof. By Lemmas 2.5 and 2.4. The conditions on the clauses l-3 of Lemma 2.4 are 

expressed in terms of the leaves only. 0 

By the corollary above we can restrict attention to the leaves of an (i, j)-tree. We 

distinguish between Q-leaves of the form Q’j’ and Q,-leaves of the form sj’ Qi’j’. 

We represent sequences of leaves by sequences of natural numbers in the following 

way: 

(Gl,... ,nk) = Q”~-1QSQ”2-‘Qs...Qnk-I-1Qs~, 

where k 3 1, 1 < i < k --f n, 3 1, and QJ’ represents a subsequence of p Q-leaves 

(~30) and QS represents a Q,-leaf. 

By inspection of the steps l-3 form Lemma 2.4 and the corresponding steps of the 

proof of Lemma 2.5 one gets the following transition system for (i, j)-trees: 

h + l,n2,...,m) L c&~l,m,.*.,~k), 

(n1,..., w-1,0) a (R,...,kl) provided k > 1, 

cm,..., ni+2 ,..., nk) 5 (n, ,..., ni_1 +2,n, + l,..., nk) provided i > 1, 

(n1,..., n,k + 1) -I-, (q,..., Q-1 +2,nk) provided k > 1. 

This transition system allows us to prove that the defining equations of eij are r- 

founded. Let (ni,. . . , nk), with k 2 1, represent such a state. Define: 

ti = iii - 1 f 2ti+l for all 1 <i < k. 

Then we have ti = (ni - 1)2’ + (ni+i - 1)2’ + .. . + (nk-_l - 1)2k-1-i + nkzk-’ for 

1 <i < k. It is easily seen that for k > 1 the maximum number of consecutive z 

steps from the state (nl ,...,nk) is given by t2 + ... + tk, ending always in a state 

(t1+1,1,1,..., l,O). If k = 1, then the state is (nk) and there are no z steps possible. 

In both states (tl + 1, 1, 1, . . . , 1,0) and (nk) the process can only continue by an ri or 

sj step. We conclude that the defining equations of Qj are t-founded. 

Observe that the defining equations of Qy are trivially T-guarded. Now we have the 

following theorem. 



494 M. Bezem, A. Ponsei Theoretical Computer Science I77 (1997) 487-507 

Theorem 2.8. The de&zing equations of Qy are guarded 

Remark 2.9. Theorem 2.8 justifies an application of RSP in an algebraic proof that 

Qy is a ‘real’ queue. This justification requires an analysis of the operational semantics 

of Qy. It is therefore questionable whether the algebraic proof is to be preferred over 

an argument showing that the operational semantics of Qj is weakly or branching 

bisimilar to that of the ‘real’ queue. Such an argument can be obtained without much 

difficulty from the above analysis, by giving the atomic actions their data parameters 

back. Of course it still holds that the algebraic proof is valid in every model, but the 

validity of RSP in a given semantics has to be verified carefully. 

We now recall the queue specification inspired by [ 131: 

Definition 2.10. For all {i,j} = {2,3} we define 

QB” = g@,(d) . (QB’i Jli sj(d) . I?“)), 

B” = C(ri(d) ’ sj(d) ’ B”), 
d:D 

In a similar way as Theorem 2.8 is proved, one can argue that this specification is 

guarded. Here one obtains a tree structure that is much simpler: QB” for i E {2,3} is 

a (1, i)-tree, and if T is a ( 1, i)-tree with leftmost leaf QBlk, then replacing this leaf 

by the tree 

Ii 

h 
QB” 

A. 
skBjk or by the tree QB’/ BJk (with {Cj} = {2,3}) again yields a (1, i)-tree. 

Without further proof we claim: 

Theorem 2.11. The de$ning equations of QB” are guarded 

3. The Berg&a-Klop specification defines a queue 

In this section we prove that the specification of Bergstra and Klop discussed earlier 

indeed defines a queue (Result 1.1). We give this proof in an algebraic fashion, in the 

proof theory of @XL. 

The data type Sequence. In Table 1 we (partly) specify the data involved. The data 

type D, the elements of which are stored in the queue, is left unspecified apart from 

an arbitrary constant do. Notably D is not assumed to be finite. 

The data type Sequence has two constructors, E for the empty sequence, and a binary 

(infix) function . : Sequence x D + Sequence for inserting a D-element to the right of a 
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Table 1 
The data type Sequence specified in &RL 

sort Boo1 

D 

Sequence 

func t, f:-+Bool 

d,:+D 

E :+ Sequence 

: Sequence x D + Sequence 

right-elt : Sequence + D 

lefi-rm : Sequence --) Sequence 

non-empty : Sequence +Bool 

: D x Sequence + Sequence 

var d,e,f : D 

q, r : Sequence 

rew right-e/t(c) = do 

right-elt(q.d) = d 

left-rm(e) = 6 

left-rm(q.d) = q 

non-empty(e) = f 

non-empty(q.d) = t 

d.c = 6.d 

d.(q.e) = (d.q).e 

sequence. Though this function is not used in the standard specification, it is convenient 

in our proofs. The fimction right-elt extracts the right element of a sequence, and gives 

the arbitrary element do E D in case of emptyness, left-rm gives the left remainder of 

a sequence, and non-empty tests on inequality with E. The standard queue specification 

employs the function : D x Sequence -+ Sequence modelling insertion of a D-element 

at the left side of a sequence, which is specified in the last two lines. 

As a consequence of our choice of constructors, the induction principle for the data 

type Sequence reads as follows: 

(Induction Principle) @(E) A Vd E D Vq E Sequence [4(q) 4 &q.d)] 

+ 4 [d44)1. 

Lemma 3.1. Let d : D and q : Sequence. 
(1) non-empty(q) = t -+ right-eZt(d.q) = right-eZt(q), 

(2) non-empty(q) = t + left-rm(d.q) = d.left-rm(q), and 

(3) non-empty(q) = t + left-rm(q).right-eZt(q) = q. 

Proof. By induction. By way of example we give a proof of clause 3: If q = E, then 

3 follows trivially (from f = t anything can be derived). In case q = q’.d, clause 3 

follows also trivially from the equations defined in Table 1 and -+ introduction. 0 
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Proof of Result 1.1. Recall that for i, j E { 1,2,3}, i # j our standard definition of a 

queue with in-port i and out-port j is Q?(E) with specification 

Q”(q : Sequence) = d5(rj(d) . Q’j(d.4)) 

+sj(right-eft(q)) . Q”(Zeft-m(q)) a non-empty(q) D 6. 

We prove that 

@j(s) = g(ri(d). (Qik(s) I(k sj(d). Qk’(c))) for all {i, j,k} = { 1,2,3}. (1) 

Because Qj (see Definition 2.2) has a guarded specification of exactly the same form 

(see Theorem 2.8), it follows by a trivial RSP application that 

Q?’ = Q”(e). 

Hence e’j also defines a queue with in-port i and out-port j. The rest of this section 

is devoted to the proof of Identity (1). 

Identity (1). By symmetry, it suffices to prove (1) for Q13(s). For readability, assume 

for the remainder of this section that the following variables are globally declared: 

d,e, f : D 

q,r : Sequence. 

Define the auxiliary processes 

Wq, r, 4 = CCrl (e> . J3e.s r, d)) 
e:D 

+dd) . Y(q, r>, 

Vq, r) = C<rl (e) . Ue.q, r)) 
e:D 

fs3(right-e/t(r)) . Y(q, fef-rm(r)) a non-empty(r) D 6 

+z . Y(Zeft-m(q), right-elt(q).r) a non-empty(q) D 6. 

Note that this specification is guarded: the summand starting with r . Y(. . .) does not 

give rise to an infinite r trace, since the length of the first Sequence argument in Y(. . .) 

decreases and the condition tests on emptyness. 

The process X(q,r,d) represents Q13 ‘in state qrd’ with its contents split up in a 

‘Q’*(q) p-f, a ‘Q23(r) part’ and a ‘,sj(d) part’. The process X(q,r,d) can receive 

data and store these in its leftmost argument, or send the d in its rightmost argument 

and evolve into Y(q’,r). See also Fig. 1. 

The process Y(q,r) is meant to represent Q’*(q) 112 Q23(r), and apart from perform- 

ing rl and sg steps, it explicitly ‘transfers’ q to r by performing r steps until q is E. 
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I . . . I . 3 
q 1: r ::d: 
. . 

t- 
I , 

Fig. 1. The auxiliary process X(q, r,d). 

Fig. 2. The auxiliary process Y(q,r). 

The process Y(E,E) externally behaves as Q13(s). The process Y(q,r) is depicted in 

Fig. 2. 

The following lemma, which plays an important role in our proof, states that these 

(internal) z steps do not change the external behaviour of z . Y(q,r). 

Lemma 3.2. For all q,d,r it holds that z. Y(q.d,r) = z Y(q,d.r). 

Proof. By double expansion, x at D y = x, the last equation in Table 1 and Lemma 

3.1(l) and (2) derive 

7. Y(q.d,r) = z. (C(q(e) . Y(e.(q.d),r)) 
t?:D 

+ss(right-eZt(r)) . Y(q.d,left-m(r)) a non-empty(r) D 6 

+z . Y(q, d.r)) 

= z . CC (rl(e) . Y((e.q).d, r)) 
CD 

+s3(right-eZt(r)) . Y(q.d, left-m(r)) a non-empty(r) D 6 

CCrl (e) . Y(e.q, d.r)) 
e:D 

+z . +sj(right-elt(r)) . Y(q,d.left-m(r)) a non-empty(r) D 6 
1. 

) 

+sJ(d) . Y(q, E) a not(iton-empty(r)) D 6 

1 fz . Y(left-m(q), right-eZt(q).(d.r)) a non-empty(q) D 6 ] 

Regarding d as the left element of r gives a similar identity, obtained with expansion 

and Lemma 3.1( 1) and (2), followed by application of the following consequence of 

B2: 
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(conversely, this identity implies B2, using BPA and Bl ). 

7. Y(q,d.r) = z. (C(q(e) . Y(e.q,d.r)) 
e:D 

+.q(right-elt(r)) . Y(q,d.Zeff-m(r)) a non-empty(r) D 6 

+s3(d) . Y(q, E) a @non-empty(r)) D 6 

+z Y(Zef-m(q), right-eZt(q).(d.r)) a non-empty(q) D 6) 

= z . (Z$(yl(e) . Y(eh7,d.r)) 

+q(right-elf(r)) . Y(q,d.Zef-m(r)) a non-empty(r) D 6 

1 g(rl(e) . Y(e.q, d.7)) 

+z . I 
+s3(right-e&(r)) . Y(q,d.Zeft-m(r)) a non-empty(r) D 6 

+.sj(d) . Y(q, E) a not(non-empty(r)) D 6 

+z . Y(Zeft-m(q), right-eZt(q).(d.r)) a non-empty(q) D 6 

Now consider the guarded equation Nl defined by 

4s d, r) = z . CC<rl (e) . n(e.q, 4 r>> 
e:D 

+s,(right-elf(r)) . d, Zeft-rm(r)) a non-empty(r) D 6 

+z . +sJ(right-eZt(r)) . Y(q,d.Zeft-m(r)) a non-empty(r 

+s3(d) . Y(q, E) a not(non-empty(r)) D 6 

+T . Y(Zeft-m(q), right-eZt(q).(d.r)) a non-empty(q 

)Db 

)Dd 

Applying z-law Bl in the derivations above, it follows that both 

l$(e) . Y(e.q, d.r)) 

N1 [Aqdr . z . t-)/n] and [ilqdr . z . Y(q, d.r)/n] are derivable. Hence RSP im- 

plies that z . Y(q.d,r) = z Y(q,d.r). 0 

The structure of the proof of Identity (1) is as follows: 

Q13W = C(rl(d). Q13(W) 
d:D 
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showing which identities remain to be proved. The proofs given below all concern 

generalizations of these identities. 

Identity (2). From Lemma 3.2 it follows that 

5. Y(d.&,q) = T. Y(&.d,q) = z. Y(8,d.q). 

By expansion, Bl and the axioms for conditionals this leads to 

y(~q) = C(rl(d). Y(d.E,q)) 
d:D 

+sj(right-elt(q)) Y(E, left-m(q)) a non-empty(q) D 6 

= z(rl(d). Y(E,d.q)) 

+s3(right-eh(q)) . Y(E, left-m(q)) a non-empty(q) D 6. 

By a trivial application of RSP we obtain 

Q3(q) = Y(E, s>. (2) 

Zdentity (3). First observe that 

X(r.e, q, d) = X(r, e.q, d) 

by RSP: consider the guarded equation N2 defined by 

n(r,e,q,d)= C<rl<f)~n<f .r, e, q, 4) + dd) . Y(r, e.q). 
.f:D 

Now Nz[h-eqd .X(r.e,q,d)/n] is derivable (use Lemma 3.2), and so is 

N2 [h-eqd.X(r, e.q, d)/n] (immediate). 

With the above observation, further derive 

~(~,q,d)= C(rl(e) .X(e.~,q,d)) +a(d>. J'(&,q) 
e:D 

Because 

Y(E,q.d) = CCrl<e>. Y(e.E,q.d)) +~(d). Y(E,q) 
CD 

2 z(rI(e). Y(E,e.(q.d))) +a(d>. Y(E,q), 

we can apply RSP on the guarded equation M2 defined by 

n(q, 4 = C<rl(e) . 4e.a 4) + a(4 . UC, 4). 
e:D 
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Now Mz[Aqd. X(~,q,d)/n] is derivable, and so is Mz[Ilqd. Y(E, q.d)/n] (with the last 

rewrite rule in Table 1). It follows that 

Y(E, q.d) = w-5 q, 4. (3) 

Identity (4). First a trivial result on the commutativity of 11, namely Q’*(q) 11 

Q23(r) = Q23(r) II Q'*(q). C onsider the guarded equation Ns with only two occur- 

rences of the identifier n: 

n(s,r) = dCD(ri(d) 4Q'*(W II Q23(r))) 

+sz(right-eZt(q)) . (Q’*(Zef-rm(q)) 11 Q23(r)) a non-empty(q) D 6 

+~~(~2(d). (Q23(d.r) II Q'*(d)) 

+s3(right-e/t(r)) . (Q23(Zef-rm(r)) II Q’*(q)) a non-empty(r) D 6 

+c2(right-elf(q)) . n(Zef-rm(q), right-eZt(q).r) a non-empty(q) D 6. 

It follows easily that both N3[lqr. Q’*(q) )I Q23(r)/n] and N3[Aqr. Q23(r) II Q’*(q)/n] 
are derivable, whence this result follows with RSP. This trivial type of identities also 

follows from a general result on ‘linearly specified’ processes proven in Section 5. 

With RSP and the identity above one proves 

X(q,r,d) = Q'*(q) II2 ~3(4. Q23(4, (4) 

Y(q,r) = Q'*(q) II2 Q23(r), (5) 

simply by one expansion of all processes involved: for the system of guarded equations 

Ms defined by 

n(s, y, 4 = C<rl(e) f4e.s y, 4) 
e:D 

+sdd) . m(q, ~1, 

4s r> = IJrl (e) . m(e.q, r)) 

+q(right-eZt(r)) . m(q, left-rm(r)) a non-empty(r) D 6 

+z . m(Zef-rm(q), right-eZt(q).r) a non-empty(q) D 6, 

the derivability of 

M3 [Aqrd. X(q, y, d)ln 3 J.qr n Y(% r)/ml, 

&[Lqrd. (Q'*(q) II2 ~3(4. Q23(r))ln > W4Q1*(d 112 Q23(W4 

follows immediately. This finishes the proof of Identity (1 ), and hence the proof of 

Result 1.1. 0 

From the proof above it follows that two queues in parallel and connected via a 

hidden port externally behave as a single queue (cf. [3, 151): 
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Corollary 3.3. For all {i&k} = {1,2,3} it holds that @j(e) = pk(c) Ilk @j(z). 

Proof. Q’~(E) E Y(E,E) 5 Qk(&) Ilk Q~(E). 0 

4. Queues as linked one element buffers 

In this section we prove for our standard queue specification that for all {i,j} = 

(2931 

Q”(E) = g(ri(d) . (Q”(E) IJj si(d). @)), (6) 

where B’j is specified by the guarded equation Bij = CdLD(ri(d) . sj(d) . B’j). By RSP 

it then follows immediately that QB” (see Definition 2.10, and for its guardedness 

Theorem 2.11) also defines a queue with in-port 1 and out-port i. This proves Result 

1.2. 

By symmetry, it suffices to prove (6) for Q13(.s). The proof is in the same style as 

that of the previous result, and is given with less detail (though we maintain the claim 

on exactness). 

Let d be a variable of type D and q be a variable of type Sequence. We define the 

following auxiliary processes: 

X(q,d) = C(rl(e).x(e.s,d))+S3(d) .7(q), 
e:D 

Y(q) = ~(rl(e) . Y(e.q)) + z . x(/ef-m(q), right-e/t(q)) a non-empty(q) D 6. 
e:D 

Both these are specified such that 

X(0) = (Q12(d 112 a(d). B23), 

y(q) = (Q’2Gd II2 B23) 

follow trivially (cf. Identity (4) in the preceding proof). The structure of the proof of 

Identity (6) is as follows: 

Q13(~) = g(rl(d). Q13(d.E)) 

!f? 26-l(d) .T(d.E)) 

= ~~(Tl(d) 9 (Q12(4 II2 n(d) . B23D 
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In the following, generalizations of the two marked identities are proved. 

Identity (7). Consider the guarded equation A44 defined by 

n(q, 4 = 7 . CCCrl(e) .n(e.q, 4) 
CD 

+z . (I$ (e) ‘3 e.q, d)) + a(d) . y(q))). 

From B 1, B2 and the last equation in Table 1, it follows that both Md[lqd l z.x(q, d)/n] 

and M+[Aqd. z . Y(q.d))/n] are derivable. Hence by RSP we find 

z. Y(q.d) = z .X(q,d). (7) 

Zdentity (8). By expansion, B 1 and Lemma 3.1(3) derive 

r. Y(q) = z. (C(rt(e) . Y(e.q)) 
CD 

+z . T(left-m(q), right-e/t(q)) a non-empty(q) D 6) 

= z . CG(rl(e) . Y(v)> 

+z 

.[ 

g(rl(e) . Re.W~m(q), Wzt-elt(q))) 

1 
a non-empty(q) D 6) 

+s3(right-eZt(q)) . F(Zeft-m(q)) 

(7) 
= 7. Cl$l(e). 7Ce.q)) 

- 
C(rl(e) . Y((e.left-rm(q)).right-e/t(q))) 1 a non-empty(q) D 6) +r . e:D 

+s3(right-elt(q)) . F(left-m(q)) 
J 

(3.1.3)2. (C(rl(e) . Y(e.q)) 
e:D 

+z 
.I 

g(Yi (e) .T(e.q)) 

1 +s3(right-eZt(q)) . 1 a non-empty(q) D 6). 

F(Zeft-m(q)) 

With Bl and B2 it follows easily that r . Q13(q) has a similar expansion. 4 Hence we 

have by RSP that 

z. @j(q) = z. Y(q). (8) 

This finishes the proof of Identity (6), and hence the proof of Result 1.2. 

4 Derive the law 5 (x + y a b D 6) = z (x + z(x + y) a b D 6) by case distinction on b. 
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5. RSP and standard concurrency 

Standard concurrency (SC) is the axiomatic support for the identities 

x II Y = Y II x, 

(x II Y) II z = x II (Y II z) 

expressing commutativity and associativity of I( ( see [2,5, lo]). The axioms given in 

Table 2 and those of ACP allow one to derive these identities. All axioms in Table 2 

are valid for closed (recursion-free) terms, and can be proved by structural induction 

using the commutativity and associativity of the communication function on atomic 

actions. 

The notion SC is a relative one. In the setting of observation congruence, the axiom 

SC5 is not sound: for example 

because the left-hand term has a summand (alc)b which need not be equal to 6 and 

which is absent in the right-hand term. Therefore, the alternative SC.5a is used in the 

setting of observation equivalence. 

ACP and standard concurrency. Linear systems of recursion equations concern a 

syntactical characterization of certain processes. A system (X,)y=i of recursion equations 

is linear if it consists of equations of the form 

for i = l,..., n, where Uij,bi are sums of atomic actions or equal 6. A process is 

regular iff it satisfies a (finite) linear system of recursion equations. 

First observe that regular processes are closed under 11, [, 1, do, and that this can 

be proved with RSP: expansion with linear systems as arguments always yields a 

linear system. RSP can also be used to prove commutativity and associativity of ]I for 

regular processes (and therewith the identities characterized by the standard concurrency 

axioms). This is because linearly specified processes expand recurrently in the scope 

of the parallel operator, giving way to RSP applications, as we show below. 

Table 2 

Axioms of standard concurrency (SC), with a E A 

SC1 (xUy)[r = XU(Y II z) I SC4 (x I Y) I = = x I (Y 12) 

SC2 x[S = x6 I SC5 XICYUZ, = (XIY)!_lZ 

SC3 XlY = YlX I SCS-a x I (ay[z) = (x I ay)[z 
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Let for i E {l,..., n} and j E {l,..., m} the regular processes Xi and Yj be defined 

by 

n 
xi = C (&k&f) + Pi, 

k=l 

m 

Yj = C(EjlYI) + pj. 
I=1 

The following guarded system, containing nm equations, serves to prove that X, 11 

Yj = Yj 11 Xi for all appropriate i, j. 

%j = k$,(%k . (xk II q)) + [g,@jt ’ (fi II 4)) 

+Pi Yj + piXr: 

n m 

+C(C((aiklEj/)nkt)) 
k=l I=1 

+e((‘%k/pjpk) + ~((~~tIB2)K) + (PilB,). 
k=l I=1 

Observe that both Xi II Yj and Yj II Xi are solutions for nij. This is a consequence of 

the commutativity of the communication function and the communication axioms CM 

5,6 and CM 8,9. By RSP we conclude that Xi II rj = Yj II Xi for all appropriate i, j. 
As to the associativity of 11, taking a third linear system (Zp)&, the expansions 

of both (xi II q) II Z, and xi II (5 II Z,) g ive identical patterns, apart from associa- 

tive and commutative variants of the three identifiers and communications. It follows 

immediately that II also is an associative operation for regular processes. 

Finally, given the commutativity and associativity of II, the SC identities follow 

easily for linearly specified processes. As each recursion free process can be specified 

linearly, one obtains as a corollary that the SC axioms are valid for this class of 

processes. 

This leads to the following result. 

Theorem 5.1. For the class of processes de$nable in ACP with linear recursive spec- 
@cations, RSP implies that II 1s a commutative and associative operation, and that 
all axioms in Table 2 are valid. 

ACP with abstraction. In the setting with r, linear systems may have T as a constant. 

Adopting branching bisimilarity (i.e. the r-laws Bl and B2), one can prove in the 

same way as above that RSP implies standard concurrency for all processes definable 

by guarded linear systems. In observation equivalence this requires more work, due to 

the additional r-laws r .x I y = x I y and x I r . y = x I y. In this case, a solution is to 

simultaneously prove the commutativity (associativity) of 1) and 1. 

Up to pCRL. It is not hard to see that the results of this section can be generalized 

to &RL, though a general formulation of the appropriate type of specifications is 
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cumbersome. By way of example, regard the proof of Q12(q) 11 Q23(r) = Q23(r) 11 
Q12(q) given in Section 3. Because the possible infinity of such systems is in this case 

captured by data, and because the possible r occurrences do not affect the arguments 

above in a setting with data and conditionals, it follows immediately that the standard 

concurrency result is preserved in the @U setting. Finally, in [ 171 it is shown that 

each recursive (finitely branching) transition system has a canonical ‘PCRL-linear’ 

specification modulo strong bisimilarity. Hence, all processes that can be associated 

with recursive transition systems satisfy the standard concurrency identities. 
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Appendix. RSP in &RL 

In this appendix we discuss the use of RSP in &RL. In order to derive identities 

between &XL-processes, an extended version of the Recursive Specification Principle 

(RSP, see e.g. [2]) has been introduced in [lo, 111. This was done to handle data 

parametric, conditional processes. Given a @XI_. specification E, the (extended) rule 

RSP employs a system of process equations that is ‘fresh’ with respect to E and that 

must be ‘guarded’. 

Let a @RL specification E be given and let nl , . . . , n, be m different fresh process 

identifiers. We call a system G of m equations Gi , . . , G, a system of process-equations 
over E iff 

l each equation Gi has at its left-hand side an expression of the form ni or ni(xii,. . . , 

xim,) where each xii is a data variable over data declared in E, and 

l the right hand side of each equation Gi is a (well-formed) process expression over E 

that may contain the new, properly typed identifiers ni or ni(t.1 I ,...,ti,,) for 1 di<m. 

The rule RSP in the setting of &XL is restricted to systems of process-equations that 

are guarded. Though various characterizations of guardedness occur in the ACP/&RL 

literature [2,4,8,10,12], we here stick to Definition 2.1 and add the following 

comments: 

1. The guardedness of G refers to the specification of all process identifiers occurring 

in G; 

2. r-guardedness is a special case of the definition of guardedness in [lo, 111; 

3. r-foundedness can be rephrased in a formal way using the standard operational 

semantics for &XL defined in [12]. 

Next we recall the substitution mechanism for a system G = Gi, . . . , G, of process- 

equations over E defined in [ 10, 111. Abbreviating the (possible) variables of ni by Xi, 
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is defined as the equation obtained by substituting tii. p(Xi) for the n+xxxrrences in 

Gi, and then repeatedly performing /I-conversion on the respective arguments of the 

process identifier ni. For any identifier without arguments only the substitution of p is 

performed. 

Given a guarded system Gt , . . . , G, of m process-equations over E, the @RL ver- 

sion of the rule RSP is as follows: 

where 

l for 1 di dm the pi(fi) and qi(Xi) are well-formed process terms over E, 

l the notation [. . .]y!1 abbreviates the m given, simultaneous substitutions. 

Further information on ,uCRL syntax, semantics and proof theory can be found in 

[8,10-121. 
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y(sz(d),y(l(d), l(d))) and y(l(d), l(d)) IS not defined. A solution is to introduce actions e(d) and to consider 
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three quarters, respectively. Evidently, y(sz(d), I(d)) = s;(d) and y(s;(d), I(d)) = s2(d) as required in [2, 

4.8.5.21. Other values of p also follow immediately from the geometrical intuition. Any group operation is 
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