
Theoretical Computer Science 269 (2001) 203–229
www.elsevier.com/locate/tcs

Non-regular iterators in process algebra

Jan A. Bergstraa;b, Alban Ponsea;c ; ∗

aUniversity of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, Netherlands

bUtrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, Netherlands
cCWI, Department of Software Engineering, Kruislaan 413, 1098 SJ Amsterdam, Netherlands

Received December 1995; revised September 2000; accepted October 2000
Communicated by U. Montanari

Abstract

We consider three forms of non-regular iteration in process algebra: the push-down operation
$, de5ned by x$y = x((x$y)(x$y)) + y, the nesting operation ], de5ned by x]y = x((x]y)x) + y,
and the back and forth operation �, de5ned by x�y = x((x�y)y) + y. In the process algebraic
framework ACP with abstraction and one of $, ] or � we provide de5nitions of the following
standard processes: stack, context-free process, bag, and queue. These de5nitions apply to all
standard behavioural equivalences (we only use x� = x, where � is the silent step). Moreover,
these results yield the expressive power to express computable processes modulo rooted branching
bisimulation equivalence, and hence support the equational founding of process algebra: standard
processes can be represented as terms. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A ‘classic’ quotation of Milner [35] states that for a proper understanding of the
basic issues concerning the behavior of concurrent systems it could be helpful to look
for a simple language with “as few operators or combinators as possible, each of
which embodies some distinct and intuitive idea, and which together give completely
general expressive power”.
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The addition of a single recursive operation to the process algebraic framework
ACP (algebra of communicating processes) with abstraction [18, 11] provides ‘general
expressive power’: each computable process can be expressed up to rooted branching
bisimulation equivalence [29] and this cannot be done without using ‘abstraction’. We
consider three candidates for such a recursive operation. The ‘distinct and intuitive
idea’ embodied by each of these is a simple way of counting (by repeated or nested
recursion). Rather than focusing on a particular machine model for computability 1 we
show how to specify standard processes as one 5nds in a text book on process theory,
such as the stack [32, 37, 11]. Our motivation for this approach is that the ‘general
expressive power’ of the proposed framework then follows from a standard result in
[8], where it is shown how a Turing machine can be implemented with two stacks and
a regular control process.

In [13] we introduced the binary Kleene star, also called iteration, in process algebra.
The binary Kleene star stems from Kleene [33] and is – in our notation – de5ned by

x∗y = x · (x∗y) + y:

In ACP, the operation · models sequential composition, and + models choice. As com-
mon in algebra, the symbol · is often omitted and + binds weakest. So x∗y expresses
“either do x and repeat x∗y, or do y”. The combination of Kleene’s ∗-operation and
the operations from ACP with abstraction (shortly recalled in the next section) gives
the expressive power to describe regular processes up to rooted branching bisimilarity:
given a set A of actions, a process is regular over A if it can be characterized by a
5nite state system in which labeled transitions model the execution of actions from A.
Typically, a regular process can be speci5ed by a linear speci;cation (roughly: a right-
linear regular grammar). Some examples with actions a and b are

P = aQ + b or in a picture:

Q = aP + a

and

S = aS + b or in a picture:

In these pictures,
√

is a symbol expressing (successful) termination. Of course, another
speci5cation of S is a∗b.

1 In our setting, register machine programming would be a natural candidate. In Section 10 (Conclusions)
we return to this issue.
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The focus on iteration in process algebra raised interest in variations of the Kleene
star operation (cf. [12, 13, 21, 2, 1, 23]). Here we introduce the binary push-down op-
eration $ as a form of non-regular iteration. This operation is de5ned by

x$y = x((x$y)(x$y)) + y:

(Either do x and repeat (x$y)(x$y), or do y.) A second type of non-regular iteration
that we introduce here is the back and forth operation � , de5ned by

x�y = x((x�y)y) + y:

(Either do x and repeat (x�y)y, or do y.) Finally, in [13] we introduced the binary
nesting operation ] , de5ned by

x]y = x((x]y)x) + y:

(Either do x and repeat (x]y)x, or do y.) The operations $, � and ] are ‘non-regular’:
with each of these a non-regular process can be de5ned. As an example consider
processes a$b, a�b and a]b with actions a; b illustrated below:

Here the states that are process terms determine possible further behaviour, i.e., out-
going transitions. None of a$b, a�b and a]b is regular in any common semantics for
process algebra.

In this paper we show by direct, algebraic proofs that the following standard pro-
cesses can be de5ned with one of $, � or ], the operations from ACP with abstraction,
auxiliary actions, and two-party communication (handshaking) between the auxiliary
actions:
• A stack over a 5nite data type,
• A context-free process (roughly: a process speci5able by a context-free grammar in

Greibach normal form),
• A bag or multiset over a 5nite data type,
• A queue over a 5nite data type.
These results concern a whole range of process equivalences that respect the axiom
x�= x. Among these are rooted branching bisimulation [29], rooted delay bisimulation
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[34], rooted 
-bisimulation [37], and rooted weak bisimulation [10]. We give detailed
proofs for the settings with $ and ], after which we argue that our results also hold
for the case with �.

Two basic, auxiliary processes used in our proofs are the counter C and the half-
counter HC (which stems from [13]), both displayed below:

Using Kleene star and push-down, the counter C can be de5ned by

C = (a(a$b) + c)∗d

with actions a (add one), b (subtract one), c (test zero), and d (terminate). This
process can be recognized as a register, i.e., a memory location for a natural number
with unbounded capacity and restricted access as modeled by the speci5c actions. Of
course we shall give a de5nition of C without ∗.

Using iteration and nesting, the half-counter HC can be de5ned by

HC = ((a]b)c)∗d:

Initially HC is in ‘add-mode’, from which it can terminate by executing d, or in
which it can stay by performing a-actions (steps). Furthermore, HC can evolve from
add-mode into ‘subtract-mode’ by performing b. In subtract-mode, the half-counter can
only ‘count back to zero’ by performing a-actions after which it can re-enter its initial
state by performing a zero-test action c. We provide a de5nition of HC using ] as the
only recursive operation.

The structure of the paper is as follows: 5rst (in Section 2) we recall some pro-
cess algebra and introduce some notation. Then, in Section 3, we discuss regularity
and the particular proof rule RSP. In Section 4 we show how to de5ne an arbi-
trary regular process and a (half-)counter in ACP with abstraction and push-down
(nesting) only. With these we specify in Section 5 a stack, which is a particular
context-free process that generalizes a counter. In Section 6 we show how an arbi-
trary context-free process can be de5ned with help of a regular control process and
a stack. In Section 7 we provide speci5cations of a bag (multiset) and a queue,
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processes that both are not context-free. In Section 8 we consider the operation �
and argue that the above-mentioned expressiveness results have their counterparts in
this setting. In Section 9 we discuss some general expressiveness issues concern-
ing the various recursive operations. We 5nish the paper with some conclusions in
Section 10.

2. Process algebra, axioms and notation

First we shortly recall some process algebra. The process algebraic framework ACP
(algebra of communicating processes, see, e.g., [17, 11]) has two parameters: a 5nite
set A of constants modeling atomic actions, and a (partial) binary, commutative and
associative communication function � on A, de5ning which actions communicate. In
order to highlight these parameters we henceforth write ACP(A; �). Furthermore there is
a constant � =∈A (deadlock or inaction), and we write A� for A∪{�}. Process operations
of ACP(A; �) are alternative composition or choice (+), sequential composition (·),
parallel composition or merge (‖), left and communication merge (‖− and |, used for
the axiomatization of ‖), and encapsulation (@H , renaming actions in H ⊆A into �). We
mostly suppress the · in terms, and brackets according to the following precedences:
·¿{‖; ‖− ; |}¿+.
ACP(A; �) is further extended to ACP�(A; �) by adding the constant � =∈A� (the silent

step) and hiding �I (or ‘abstraction’, i.e., renaming actions in I ⊆A into �). We write
A�� for A� ∪{�}. The axioms of ACP�(A; �) are displayed in Table 1. These axioms
characterize rooted branching bisimulation equivalence (see [29]) for the closed terms,
further called process terms, over ACP�(A; �). The axioms of ACP(A; �) are obtained
by omitting � (so in Table 1, a and b then range over A�) and �I , and the axioms
(B1), (B2), and (TI1)–(TI4). The axioms of ACP(A; �) characterize (strong) bisim-
ulation equivalence. Note that + and · are associative, and that + is also commutative
and idempotent. In this paper we only use two-party communication or handshaking,
which can be axiomatized by x | y | z= � (see [19]). For a detailed introduction to
ACP(A; �) and ACP�(A; �) we refer to [11, 24].

Axioms for the ∗-operation are included in Table 1. In [25], Fokkink and Zantema
prove that strong bisimilarity for process terms built from A and the operations +; ·
and ∗ is axiomatized by BPA∗(A), i.e., the axioms (A1)–(A5) and (BKS1)–(BKS3).
We write ACP∗(A; �) (ACP�∗(A; �)) for the extension with ∗ and (BKS1)–(BKS4) (all
BKS axioms, respectively).

Let for 
 ∈ {$; ];�}, ACP��(A; �) be the extension of ACP�(A; �) with the concerning
recursive operation and its de5ning axiom. The results in the remainder of the paper
involve supersets of A, the set of atomic actions. We require that any such superset
Aext satis5es

(Aext\A)⊇{t} ∪ {ri; si | i ∈ I; I ⊆N some index set}:
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Table 1
Axioms of ACP�(A; �) (a; b∈A�� and H; I ⊆A). BKS axioms for binary Kleene star (H; I ⊆A)

(A1) x + y = y + x (CM6) a | bx = (a | b)x
(A2) x + (y + z) = (x + y) + z (CM7) ax | by = (a | b)(x ‖ y)
(A3) x + x = x (CM8) (x + y) | z = x | z + y | z
(A4) (x + y)z = xz + yz (CM9) x | (y + z) = x | y + x | z
(A5) (xy)z = x(yz)

(D1) @H (a) = a if a =∈ H
(A6) x + � = x (D2) @H (a) = � if a ∈ H
(A7) �x = � (D3) @H (x + y) = @H (x) + @H (y)

(D4) @H (xy) = @H (x) · @H (y)
(CF1) a | b= �(a; b) if �(a; b) ↓
(CF2) a | b= � otherwise (B1) x� = x

(B2) x(�(y + z) + y) = x(y + z)
(CM1) x ‖ y= (x ‖− y + y ‖− x) + x | y
(CM2) a ‖− x = ax (TI1) �I (a) = a if a =∈ I

(CM3) ax ‖− y = a(x ‖ y) (TI2) �I (a) = � if a ∈ I

(CM4) (x + y) ‖− z = x ‖− z + y ‖− z (TI3) �I (x + y) = �I (x) + �I (y)

(CM5) ax | b = (a | b)x (TI4) �I (xy) = �I (x) · �I (y)

(BKS1) x∗y = x(x∗y) + y (BKS4) @H (x∗y) = @H (x)∗@H (y)
(BKS2) x∗(yz) = (x∗y)z (BKS5) �I (x∗y) = �I (x)∗�I (y)
(BKS3) (x + y)∗z = x∗(y((x + y)∗z) + z)

An extension Aext is called ;nite if Aext\A is. On Aext\A we employ the following
version of handshaking:

�(ri; si) = t

for each pair of actions ri; si (thus, ri | si = t). Furthermore, we often use �-notation
for 5nite sums: the expression

n∑
j=1

Pj

abbreviates P1 + P2 + · · · + Pn. If n= 0, this expression denotes �. We adopt the
convention that + binds weaker, and all other process operations bind stronger than

∑
.

Finally, as in the previous pictures, we use exponentiation: x1 = x and xn+2 = x(xn+1)
(n∈N).

3. Regularity, linear speci�cations, and RSP

In this section we 5rst give a precise characterization of regularity based on linear
speci;cations. Then we discuss data-parametric linear speci5cations and the proof rule
RSP, the recursive speci5cation principle [11, 24]. This principle plays a central role
in the proofs of our expressiveness results.
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Given a model M that satis5es the axioms of ACP��(A; �) for 
 ∈ {∗; $; ];�},
process p1 ∈M is regular over A� in M if for some n¿1 there exist processes
p1; p2; : : : ; pn ∈M such that

M |= pi =
n∑

j=1
 i; jpj + !i

for i= 1; : : : ; n, where the  i; j and !i are 5nite sums of actions or �. In this case, the
processes pi are said to be solutions for the variables Xi in the linear speci;cation

Xi =
n∑

j=1
 i; jXj + !i: (1)

So, using linear speci5cations we can characterize regularity in a model independent
way and speak about a ‘regular process’ without making explicit which model we have
in mind. Observe that each process term over ACP∗(A; �) represents a regular process
over A�. E.g., a∗b solves X1 = aX1 + b, and the same holds for a(a∗b) + b. This is not
the case for ACP�∗(A; �), e.g., �∗b is not regular over A� (however, it is the abstraction
of a regular process over A�: �∗b= �{a}(a∗b) follows from (TI1), (TI2), and (BKS5)).
To enhance readability, we often omit summands � and �Xj in linear speci5cations
(cf. axioms (A6) and (A7)). E.g., ab is regular because it solves X1 in the linear
speci5cation X1 = aX2; X2 = b (abbreviating X1 = �X1 + aX2 + �; X2 = �X1 + �X2 + b).

We shall also use data-parametric linear speci5cations, i.e., linear speci5cations of
which the equations are parametric in (some encoding of) N. More precisely, a data-
parametric linear speci5cation (over A�) consists of a 5nite number n¿1 of equations
of the form (i= 1; : : : ; n)

Xi(k) =
n∑

j=1
 i; j(k) · Xj(fi;j(k)) + !i(k); (2)

where k ranges over (some encoding of) N,  i; j(k) and !i(k) are 5nite sums of actions
or � for each k, and all fi; j :N→N are primitive recursive. For each m∈N, Xi(m)
is considered to de5ne a process that can evolve into Xj(fi; j(m)) if  i; j(m) �= � by
performing an action of  i; j(m), or that can terminate if !i(m) �= � by performing an
action of !i(m). A simple example of a data-parametric linear speci5cation, omitting
�-summands, with k ranging over N is

X1(0) = aX1(1) + b;

X1(k +1) = aX1(k +2) + bX2(k);

X2(0) = a;

X2(k +1) = aX2(k):

Observe that a]b, (a]b)am+1 and am+1 solve X1(0), X1(m+1) and X2(m), respectively.
If we replace the action b by � in the above speci5cation, and omit the resulting �-
summands we end up with X ′

1(k) = aX ′
1(k + 1) and the X2-equations remain the same.
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In this case, a]� and (a]�)am+1 solve X ′
1(0) and X ′

1(m + 1), respectively. Notice that
in this case X ′

1(k) and X2(k) are independent, and that a∗� also solves X ′
1(m) for each

m∈N.

Remark 1. Data-parametric linear speci5cations can be seen as a (preferred) notation
for linear speci5cations consisting of a denumerably in5nity of equations. For example,
a conventional notation for X (k) = aX (k + 1) (with k ranging over N) is Xk = aXk+1,
emphasizing that each Xk is a variable (cf., e.g., [11]).

Linear speci5cations of the form (1) and (2) are called guarded (each occurrence
of a variable in the right-hand side is guarded by � or a sum of atomic actions). The
conditional rule RSP (the recursive speci;cation principle, see, e.g., [11, 24]) states
that each guarded recursive speci5cation has at most one solution per variable (and
parameter value). In common process algebra semantics, RSP is a sound proof rule.
In this paper we shall use RSP to equate diOerent process terms containing recursive
operations, or to establish de5nitions of (certain) standard processes. As an example,
RSP implies that

a∗� = (aa)∗� = a((aa)∗�):

This can be seen as follows: consider the linear speci5cation

X1 = aX2;

X2 = aX1:

Then both 〈a∗�; a∗�〉 and 〈(aa)∗�; a((aa)∗�)〉 solve 〈X1; X2〉. (For the latter pair of
solutions, derive (aa)∗�= a(a((aa)∗�)).) By RSP the two identities a∗�= (aa)∗� and
a∗�= a((aa)∗�) follow. For another example, using the data-parametric linear speci5-
cation X ′

1(k) = aX ′
1(k + 1) (see above) it follows with RSP that a∗�= a]�= (a]�)am+1

for all m∈N. Because a∗� is regular, a]� and (a]�)am+1 are regular as well. Without
proof we state:

Proposition 2. Let 
∈ {∗; $; ];�}. Each process term over ACP�(A; �) is de;nable as
a solution in a (data-parametric) linear speci;cation.

A useful consequence of RSP is the commutativity and associativity of ‖ and | for
processes de5nable by (data-parametric) linear recursive speci5cations (see [20]), so
in particular for process terms over ACP�(A; �) for 
 ∈ {∗; $; ];�}. (These properties
are not derivable from the axioms of ACP�(A; �).) Therefore it is permitted that we
use commutativity and associativity of ‖ and | in our proofs whenever convenient. In
particular, we need not use brackets in process terms containing repeated applications
of ‖ (cf., e.g., the proof of Theorem 6).

For ease of speci5cation we sometimes consider 5nite (recursive) speci5cations of
the form (1) in which the  i; j and !i may be either � or process terms built from
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A with +; · and ∗. Such a speci5cation is considered guarded and still characterizes
regularity: with the axioms provided it can always be unfolded into a linear one that
de5nes the same solution for X1 (the 5rst equation). E.g., X1 has the same solution in
X1 = abX1 as in the linear speci5cation X1 = aX2; X2 = b, or for a less trivial example,
X1 has the same solution in

X1 = (a∗b)X1 + c

as in X1 = bX1 + aX2 + c; X2 = aX2 + bX1 (cf. [16, Theorem 2:1:1]).

4. Expressing regular processes and (half)-counters

In this section we prove that for each regular process P over A� there is a ;nite
extension Aext of A such that P can be expressed in ACP��(Aext ; �) with 
∈ {$; ]}.
Also, we provide a de5nition of a counter in ACP�$(Aext ; �) and of a half-counter in
ACP�](Aext ; �) for suitable, 5nite extensions Aext.

Theorem 3. For each regular process P over A� there exists a ;nite extension Aext

of A such that P can be expressed in ACP�$(Aext ; �) with handshaking only; and the
actions in A not subject to communication.

Proof. Let P1 be a regular process over A� given by Pi =
∑n

j=1  i; jPj+!i (i= 1; : : : ; n)
where  i; j and !i are 5nite sums of actions or �. De5ne Aext as the extension of A
with the following 2n + 3 actions:

{t} ∪ H where H = {rj; sj | j = 0; : : : ; n}

and consider the following process terms over ACP�$(Aext ; �):

n∑
j=1

 i; jsj + !i abbreviated by Fi for i = 1; : : : ; n;

(
n∑

j=1
rjFj

)$

r0 abbreviated by K;

(
n∑

j=1
rjsj

)$

s0 abbreviated by L:

Then P1 = �{t} ◦ @H (F1K ‖ L). This can be shown with help of RSP and the data-
parametric linear speci5cation

Yi(k) =
n∑

j=1
 i; jYj(k + 1) + !i; i = 1; : : : ; n; n¿1 and k ∈ N:
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Obviously, Pi is a solution for each Yi(k) (i= 1; : : : ; n, k ∈N). So it suPces to show
that �{t} ◦ @H (FiK ‖ L) is also a solution for Yi(0). We show this by 5rst omitting the
�{t}-application:

@H (Fi · Kk+1 ‖ Lk+1)

=
n∑

j=1
 i; j · @H (sj · Kk+1 ‖ Lk+1) + !i · @H (Kk+1 ‖ Lk+1)

=
n∑

j=1
 i; j · t · @H (Kk+1 ‖ sj · Lk+2) + !i · tk+1

=
n∑

j=1
 i; j · t2 · @H (Fj · Kk+2 ‖ Lk+2) + !i · tk+1:

Hence, applying �{t} and axiom x�= x (B1), we 5nd for each k

�{t} ◦ @H (Fi · Kk+1 ‖ Lk+1) =
n∑

j=1
 i; j · �{t} ◦ @H (Fj · Kk+2 ‖ Lk+2) + !i:

So �{t} ◦ @H (Fi · Kk+1 ‖ Lk+1) satis5es the equation for Yi(k).

Theorem 4. For each regular process P over A� there exists a ;nite extension Aext

of A such that P can be expressed in ACP�](Aext ; �) with handshaking only; and the
actions in A not subject to communication.

Proof. Let the regular process P1 over A� be given by Pi =
∑n

j=1  i; jPj+!i (i= 1; : : : ;
n) where  i; j and !i are 5nite sums of actions or �. De5ne Aext as the extension of A
with the following 2n + 5 actions:

{t} ∪ H; with H = {rj; sj | j = 0; : : : ; n + 1};

where the sn+1; rn+1 communications are used to remove remnants of ]-recursion. Con-
sider the following process terms over ACP�](Aext ; �):

n∑
j=1

 i; jsj + !is0 abbreviated by Gi for i = 1; : : : ; n;

(
n∑

j=1
rjGj + sn+1rn+1

)]
r0 abbreviated by M;

(
n+1∑
j=1

rjsj

)]
(r0s0) abbreviated by N:

Then Pi = �{t} ◦ @H (GiM ‖ N ) for i= 1; : : : ; n follows with RSP in a similar way as
above.
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A standard recursive speci5cation of a counter de5nes this process as the solution
for X (0) in the data-parametric linear speci5cation (k ranging over N):

X (0) = a · X (1) + c · X (0) + d;

X (k + 1) = a · X (k + 2) + b · X (k):

Abbreviate (a(a$b)+c)∗d to C. It easily follows that the process terms C and (a$b)k+1C
solve X (0) and X (k + 1), respectively. By RSP this implies that C de;nes a counter.
As regards the half-counter, we simply adopt ((a]b)c)∗d as its de5nition (cf. [13]).
In the following we show that both the counter and the half-counter can be de5ned
without ∗.

Theorem 5. Let A⊇{a; b; c; d}.
1: A counter (a(a$b) + c)∗d can be de;ned in ACP�$(Aext ; �) with handshaking only

and the actions in A not subject to communication if |Aext\A|= 5.
2: A half-counter ((a]b)c)∗d can be de;ned in ACP�](Aext ; �) with handshaking and

the actions in A not subject to communication if |Aext\A|= 7.

Proof. As for 1: let Aext\A= {t}∪ {ri; si | i= 0; 1}, and consider

(a(a$b) + c)s1 + d abbreviated by P;

(r1P)$r0 abbreviated by Q;

(r1s1)$s0 abbreviated by R:

Then it follows with RSP that (a(a$b) + c)∗d= �{t} ◦ @{ri ; si|i=0;1}(PQ ‖R):
As for 2: let Aext\A= {t}∪H , where H = {ri; si | i= 0; 1; 2}, and consider

(a]b)cs1 + ds0 abbreviated by S;

(r1S + s2r2)]r0 abbreviated by T;

(r1s1 + r2s2)](r0s0) abbreviated by U:

With an application of RSP it follows that ((a]b)c)∗d= �{t} ◦ @H (ST ‖U ):

5. Expressing a stack

We provide speci5cations of a stack over a 5nite data type in ACP��(Aext ; �) for

∈ {$; ]} with help of a regular control process and two (half-)counters.

Let D= {d1; : : : ; dN} for some N ∈N\{0} be a 5nite set of data elements, ranged
over by d. We assume that the values empty and stop are not in D. Let furthermore
D∗ be the set of 5nite strings over D, ranged over by w, and let 2 denote the empty
string. A standard recursive speci5cation of a stack over D with empty-testing and
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termination option de5nes this process as the solution for X (2) in the data-parametric
linear speci5cation

X (2) =
N∑
j=1

r(dj) · X (dj) + s(empty) · X (2) + r(stop);

X (dw) =
N∑
j=1

r(dj) · X (djdw) + s(d) · X (w):

Here the contents of the stack is modeled by the parameter value: X (dw) represents
the stack that contains dw with d on top. Action r(d) (receive d) models the push
of d onto the stack, and action s(d) (send d) represents deletion of d from the stack.
Action s(empty) models empty-testing of the (empty) stack, and action r(stop) models
termination of the (empty) stack. A non-terminating or non-empty-testing stack over D
can be obtained by leaving out the concerning summands. In case N = 1 (D= {d1}),
the equations above specify a counter: the stack contents then models the counter value.

Theorem 6. A stack over a ;nite data type D with actions from A can be expressed
in ACP�$(Aext ; �) with handshaking only; Aext a ;nite extension of A; and the actions
in A not subject to communication.

Proof. Let a stack be de5ned as above. Without loss of generality we assume that
N¿1 in D= {d1; : : : ; dN} (otherwise a counter does the job). Our approach is to
encode the contents of the stack, i.e., elements from D∗; by natural numbers according
to the following GRodel numbering pq :D∗→N:

p2q = 0;

pdjwq = j + N · pwq:
This encoding is a bijection with inverse deco( ) (let ? denote concatenation of
strings):

deco(n) =




2 if n = 0;

dN ? deco( n−N
N ) if n �= 0 and nmodN = 0;

d(nmod N ) ? deco( n−(nmod N )
N ) otherwise:

So in case N = 3; e.g., pd3d1d2q= 24; and deco(32) = d2d1d3 ∈{d1; d2; d3}∗.
For j= 1; 2; let Cj be a counter with add action Saj; subtract action Sbj; zero testing

action Scj; and termination action Sdj all in Aext\A (cf. Theorem 5:1). Let furthermore
process terms Cj(k) be such that they represent the typical ‘counter states’ in the
following way (k ∈N):

Cj = Cj(0);

Cj(0) = SajCj(1) + ScjCj(0) + Sdj;

Cj(k + 1) = SajCj(k + 2) + SbjCj(k):
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We further de5ne a regular control process R2 with actions aj; bj; cj; dj ∈Aext\A and
those of the stack. In combination with the counters C1 and C2; we use the process
R2 to de5ne the stack. Note that the coding discussed above does not occur explicitly
in R2.

R2 =
N∑
j=1

r(dj) · aj
1 · Rj + s(empty) · R2 + r(stop) · d1 · d2

and for k = 1; : : : ; N :

Rk =
N∑
j=1

r(dj) · Pushj + s(dk) · Popk

Pushk = S1
2 · ak1 · SN2

1 · Rk

Popk = bk1 · S
1
N
2 · T2

S1
2 = (b1a2)∗c1 (shift the ‘value’ of C1 to C2);

SN2
1 = (b2(aN1 ))∗c2 (shift the N -fold of C2 to C1);

S1=N
2 = ((bN1 )a2)∗c1 (shift the number of N -folds of C1 to C2);

T2 = b2a1T1 + c2R2 (test whether the stack is empty;

T1 = b2a1T2 + c2R1 or which D-element is on top);

T2 = b2a1T3 + c2R2

...

TN = b2a1T1 + c2RN :

Let � for j= 1; 2 be de5ned on (Aext\A)2 by �(xj; Sxj) = t for x∈{a; b; c; d}; and let
H = {xj; Sxj | x∈{a; b; c; d}. We show that

�{t} ◦ @H (R2‖C1(0)‖C2(0));

solves the equation for X (2); and thus de5nes the stack:

�{t} ◦ @H (R2‖C1(0)‖C2(0))

=
N∑
j=1

r(dj) · �{t} ◦ @H (aj
1 · Rj‖C1(0)‖C2(0))

+ s(empty) · �{t} ◦ @H (R2‖C1(0)‖C2(0))

+ r(stop) · �{t} ◦ @H (d1 · d2‖C1(0)‖C2(0))
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=
N∑
j=1

r(dj) · �j+1 · �{t} ◦ @H (Rj‖C1( j)‖C2(0))

+ s(empty) · �{t} ◦ @H (R2‖C1(0)‖C2(0)) + r(stop) · � · �

=
N∑
j=1

r(dj) · �{t} ◦ @H (Rj‖C1(pdjq)‖C2(0))

+ s(empty) · �{t} ◦ @H (R2‖C1(0)‖C2(0)) + r(stop):

We are done if �{t} ◦ @H (Rj ‖ C1( pdjwq) ‖ C2(0)) solves the equation for X (djw) for
each j= 1; : : : ; N and w∈D∗ (and thus de5nes the stack with contents djw). We prove
this by 5rst omitting the �{t}-operation, and analyzing @H (Rj ‖ C1( pdjwq) ‖ C2(0)).
This analysis is arranged in a graphical style in Fig. 1, where P →a Q represents
the statement P= a · Q for some a∈A; P�7 Q represents P= 7 · Q for 7 some
sequential process term, and branching from expressions represents application of +.
So the uppermost process term in Fig. 1 with its arrows and resulting process terms
represents the obviously derivable equation

@H (Rj‖C1(pdjwq)‖C2(0))

=
N∑

k=1
r(dk) · @H (Pushk‖C1(pdjwq)‖C2(0))

+ s(dj) · @H (Popj‖C1(pdjwq)‖C2(0)):

From the derivation displayed in Fig. 1 and the axiom x= x� (B1), it follows that

�{t} ◦ @H (Rj‖C1(pdjwq)‖C2(0));

solves the equation for X (djw) (j= 1; : : : ; N and w∈D∗). So by RSP it follows that

�{t} ◦ @H (R2‖C1‖C2);

de5nes the stack over D. By Theorem 3 it follows that once D is 5xed, R2 and hence
the stack can be expressed in ACP�$(Aext ; �) for some Aext ⊇A; with handshaking only
de5ned on Aext\A.

Theorem 7. A stack over a ;nite data type D with actions from A can be expressed
in ACP�](Aext ; �) with handshaking only; Aext a ;nite extension of A; and the actions
in A not subject to communication.

Proof. In [13] it is proved that a stack over a 5nite data type can be de5ned in
ACP�∗](Aext ; �) (so involving binary Kleene star) by means of the parallel composition
of two half-counters and a regular control process. In that proof the empty-testing
option does not occur, but this facility can be added in exactly the same way (in the
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Fig. 1. Calculations with @H (Rj ‖ C1( pdjwq) ‖ C2(0)).

concerning regular control process) as above. So, it remains to be argued that all ∗-
occurrences in the proof in [13] can be avoided. For the regular control process this
follows immediately from Theorem 4, and for a half-counter from Theorem 5:2.

6. Expressing context-free processes

A process is context-free over A� if it is a solution for a speci5cation in restricted
Greibach normal form (rGNF): a speci5cation is in rGNF (over A�) if it is of the
form

Xi =
n∑

j=1

(
n∑

k=1
 i; j; kXjXk + !i; jXj

)
+ �i (3)

for i= 1; : : : ; n (n¿1); where  i; j; k ; !i; j and �i are 5nite sums of actions or �. Note that
a regular process is context-free. (See [9] for more information on rGNFs, and for an
interesting decidability result.) In particular, rGNF speci5cations are guarded and RSP
can be applied. As an example, a]b is context-free because it is a solution for X1 in
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X1 = aX1X2 + b; X2 = a. Also, a stack over {d1; : : : ; dN} is context-free: each solution
for X (2) in the standard speci5cation of a stack (see the previous section) is also a
solution for X0 in the rGNF speci5cation

X0 =
N∑
j=1

r(dj) · XjX0 + s(empty) · X0 + r(stop);

Xk =
N∑
j=1

r(dj) · XjXk + s(dk) (k = 1; : : : ; N ):

In this section we prove that each context-free process can be expressed in
ACP��(Aext ; �) for 
∈ {$; ]} with help of a stack.

Theorem 8. Let P be a context-free process over A��. Then P can be expressed in
ACP�$(Aext ; �) and in ACP�](Aext ; �) with handshaking only; Aext a ;nite extension of
A; and the actions in A not subject to communication.

Proof. Let the context-free process P1 over A� be given as a solution for X1 in speci-
5cation (3) above. Because this speci5cation contains n¿0 variables (and equations),
we use a data type containing n values, say D= {d1; : : : ; dn}. Let process term S(2)
de5ne a stack over D without empty-testing and with termination action r(stop) (cf.
Theorem 6). Furthermore, let the following process terms represent the typical states
of the stack (d∈D and w∈D∗):

S(2) =
n∑

j=1
r(dj) · S(dj) + r(stop);

S(dw) =
n∑

j=1
r(dj) · S(djdw) + s(d) · S(w):

Now consider for i= 1; : : : ; n the process terms

n∑
j=1

(
n∑

k=1
 i; j; k · s(dk) · s(dj) + !i; j · s(dj)

)
+ �i abbreviated by Fi

and the regular process R de5ned by

R =

(
n∑

j=1
r(dj) · Fj

)∗
s(stop):

By Theorems 6 and 3 there exists a 5nite extension Aext of A such that S(2) and R
are speci5able in ACP�$(Aext ; �); and for e∈E =D∪{stop}; (Aext\A)⊇H = {r(e); s(e)|
e∈E} and �(r(e); s(e)) = t. By Theorems 7 and 4, there exists a 5nite extension Aext of
A such that the same holds for ACP�](Aext ; �). By RSP it follows that Pi = �{t} ◦ @H (Fi ·
R ‖ S(2)).
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7. Expressing bags and queues

In this section we consider two typical processes that are not context-free: a bag
and a queue. 2 With help of stacks we provide speci5cations for both these processes
in ACP��(Aext ; �) for 
∈ {$; ]}.

First we consider a bag or multiset. Let again D= {d1; : : : ; dN} for some N ∈N\{0}
be a 5nite set of data elements, ranged over by d; and let 9 range over NN ; where 9k
denotes the kth component of 9 for k = 1; : : : ; N . We use 9 to encode a bag with 9k
occurrences of dk . In order to give a straightforward speci5cation of the bag over D; we
de5ne the function ⇑ :NN × {1; : : : ; N}→NN for modeling insertion in a component-
wise fashion:

(9 ⇑ j)k =

{
9k if k �= j;

9k + 1 otherwise (16k6N ):

The function ⇓ :NN × {1; : : : ; N}→NN for modeling deletion is de5ned by

(9 ⇓ j)k =

{
9k if k �= j or (k = j and 9k = 0);

9k − 1 otherwise (16k6N ):

Let :∈NN denote the sequence of N zero’s. Then for 9∈NN\{:}; the bag over D
with empty-testing and termination option is de5ned as the solution for X (:) in the
data-parametric linear speci5cation

X (:) =
N∑
j=1

r(dj) · X (: ⇑ j) + s(empty) · X (:) + r(stop);

X (9) =
N∑
j=1

r(dj) · X (9 ⇑ j) +
∑

{i | 9i¿0}
s(di) · X (9 ⇓ i):

Here the contents of the bag is modeled by the parameter value: X (9) represents the
bag that contains 9i occurrences of di. Action r(d) (receive d) models insertion of d
in the bag, and action s(d) (send d) models deletion of d from the bag. As with the
stack, action s(empty) models empty-testing, and action r(stop) models termination of
the (empty) bag. A non-terminating or non-empty-testing bag over D can be obtained
by leaving out the concerning summands. In case N = 1; the equations above again
specify a counter: the bag contents then models the counter value.

Theorem 9. A bag or multiset over a ;nite data type D with actions from A can be
expressed in ACP�$(Aext ; �) and in ACP�](Aext ; �) with handshaking only; Aext a ;nite
extension of A; and the actions in A not subject to communication.

2 A bag (queue) over more than one data element is not context-free, (see [16] [7], respectively).
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Proof. Let a bag over D= {d1; : : : ; dN} be de5ned as above, and let 7∈{0; 1}N . We
de5ne similar functions ↑ and ↓ as ⇑ and ⇓ above (note that |{0; 1}N |= 2N is 5nite),
again in a component-wise fashion:

(7 ↑ j)k =

{
7k if k �= j;

1 otherwise (16k6N );

(7 ↓ j)k =

{
7k if k �= j;

0 otherwise (16k6N ):

Now an element of {0; 1}N encodes per component k whether or not dk is present in
the bag (by value 1 or 0, respectively). Consider counters C1; : : : ; CN for occurrence
counting of d1; : : : ; dN , where Cj has add-action Saj, subtract-action Sbj, zero-testing Scj,
and stop-action Sdj, and the regular control process R: de5ned by the following 2N

equations (7∈{0; 1}N\{:}):

R: =
N∑
j=1

r(dj) · aj · R:↑j + s(empty) · R: + r(stop) · d1 · : : : · dN ;

R7 =
N∑
j=1

r(dj) · aj · R7↑j +
∑

{i|7i=1}
s(di) · bi · (ci · R7↓i + bi · ai · R7):

By Theorems 3 and 5:1 (4 and 7), the process R: and the Cj can be speci5ed in
ACP�$(Aext ; �) (ACP�](Aext ; �), respectively: recall that a counter is a stack over a single-
ton data type) for a suitable extension Aext. Let H = {xj; Sxj | x∈{a; b; c; d}; j= 1; : : : ; N}
and �(xj; Sxj) = t for x∈{a; b; c; d}; j= 1; : : : ; N . It is not hard to show that

�{t} ◦ @H (R:‖C1‖ : : : ‖CN );

solves the equation for X (:). By RSP this yields the de5nition of the bag over D.

We 5nish this section with the speci5cation of a queue over a 5nite data type
D= {d1; : : : ; dN} (N¿0) using only either $ or ]. The queue over D with empty-testing
and termination option is de5ned as the solution for X (2) in the data-parametric linear
speci5cation

X (2) =
N∑
j=1

r(dj) · X (dj) + s(empty) · X (2) + r(stop);

X (wd) =
N∑
j=1

r(dj) · X (djwd) + s(d) · X (w):

Here the contents of the queue is modeled by the parameter value: X (wd) de5nes the
queue that contains wd with d on top. Action r(d) (receive d) models insertion of d
in the queue, and action s(d) (send d) represents deletion of the top d from the queue.
Action s(empty) models empty-testing, and action r(stop) models termination of the
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(empty) queue. A non-terminating or non-empty-testing queue over D can be obtained
by leaving out the concerning summands. If N = 1, the equations above specify a
counter: the queue contents then models the counter value.

Theorem 10. A queue over a ;nite data type D with actions from A can be expressed
in ACP�$(Aext ; �) and in ACP�](Aext ; �) with handshaking only; Aext a ;nite extension
of A; and the actions in A not subject to communication.

Proof. Let a queue over D= {d1; : : : ; dN} be de5ned as above. We use two stacks S1(2)
and S2(2) over D with empty-testing and stop-facilities. For i= 1; 2, a push-action of
d onto Si(w) is modeled by the action ri(d), a pop-action by si(d), an empty-test by
Sci, and a termination action by Sdi.

The idea is to de5ne regular processes R2 and Rd (d∈D) such that

�{t} ◦ @H (R2‖S1(2)‖S2(2));

solves X (2), and

�{t} ◦ @H (Rd‖S1(wd)‖S2(2));

solves X (wd), thus represents the queue with contents wd and d on top. Deletion is
modeled by shifting S1(wd) to S2(dw̃) where w̃ is the reverse of w, deleting d, and
shifting back S2(w̃) to S1(w). Consider the regular control process R2 de5ned by the
following N + 4 equations (d∈D):

R2 =
N∑
j=1

r(dj) · s1(dj) · Rdj + s(empty) · R2 + r(stop) · d1 · d2;

Rd =
N∑
j=1

r(dj) · s1(dj) · Rd + s(d) · Shift12 · r2(d) · Next;

Next =
N∑
j=1

r2(dj) · s1(dj) · Shift21 · Rdj + c2 · R2;

Shift12 =

(
N∑
j=1

r1(dj)

)
· s2(dj))∗c1;

Shift21 =

(
N∑
j=1

r2(dj)

)
· s1(dj))∗c2:

By Theorems 3 and 6 (4 and 7), R2; S1(2) and S2(2) can be speci5ed in ACP�$(Aext ; �)
or in ACP�](Aext ; �), respectively, for a suitable extension Aext.

Now let H ={ri(d); si(d); ci; Sci; di; Sdi | i∈{1; 2}; d∈D}, and �(ri(d); si(d))=�(ci; Sci)
= �(di; Sdi) = t for i= 1; 2. It is easily seen that

�{t} ◦ @H (R2‖S1(2)‖S2(2));
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is a solution for X (2) in the speci5cation of the queue. So by RSP this yields the
de5nition of the queue over D.

8. Back and forth iteration

In this section we show that all standard processes discussed before can also be
speci5ed in ACP��(A; �). Recall that the back and forth operation � is de5ned by

x�y = x((x�y)y) + y:

We follow the same approach as before, and 5rst show that each regular process over
A� can be expressed in ACP��(Aext ; �) for a suitable set Aext of actions.

Theorem 11. For each regular process P over A� there exists a ;nite extension Aext

of A such that P can be expressed in ACP��(Aext ; �) with handshaking only; and the
actions in A not subject to communication.

Proof. Let P1 be a regular process over A� given by Pi =
∑n

j=1  i; jPj +!i (i= 1; : : : ; n)
where  i; j and !i are 5nite sums of actions or �. De5ne Aext as the extension of A
with the following 2n + 3 actions:

{t} ∪ H where H = {rj; sj | j= 0; : : : ; n}
and consider the following processes:

n∑
j=1

 i; jsj + !i abbreviated by Fi for i = 1; : : : ; n;

(
n∑

j=1
rjFj

)�
r0 abbreviated by K;

(
n∑

j=1
rjsj

)�
s0 abbreviated by L:

Then it follows with RSP that P1 = �{t} ◦ @H (F1K‖L).

Next, we introduce “b5-counters”.

Theorem 12. Let A⊇{a; b; c; d}. A b;-counter ((a�b)c)∗d can be de;ned in
ACP��(Aext ; �) with handshaking only and the actions in A not subject to commu-
nication if |Aext\A|= 5.

Proof. Let Aext\A= {t}∪H , where H = {ri; si | i= 0; 1}, and consider

(a�b)cs1 + d abbreviated by S
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(r1S)�r0 abbreviated by T

(r1s1)�s0 abbreviated by U:

Then ((a�b)c)∗d= �{t} ◦ @H (ST‖U ) follows with RSP.

In a similar way as was done in [13], but using two b5-counters instead of half-
counters, one can model a stack over a 5nite data type with actions in A in ACP��(Aext ;
�) ACP��(Aext ; �), and handshaking communication only over the 5nite set Aext\A. As
a consequence, all previously mentioned standard processes over A� can be speci5ed
in ACP��(Aext ; �) for a suitable choice of Aext.

Theorem 13. Let P be either a stack; a context-free process; a bag or a queue with
actions in A�. Then there exists a ;nite extension Aext of A such that P can be
expressed in ACP��(Aext ; �) with handshaking only; and the actions in A not subject
to communication.

9. Expressiveness

In this section we discuss some general questions concerning the expressive power of
ACP�(A; �) with recursive operations. First we recall some basic results on ACP�∗(A; �).
Then we argue that each computable process over A�—i.e., a process that can be
characterized by a total recursive function describing for each state the next steps and
resulting states in terms of an appropriate encoding (cf. [38]) — can be speci5ed in
ACP��(Aext ; �) for 
∈ {$; ];�}. Finally we prove that abstraction is necessary for this
result.

In [13] it is proved that each regular process over A� can be speci5ed in ACP�∗(Aext ;
�) with handshaking only, Aext a 5nite extension of A, and the actions in A not subject
to communication (for a short proof see [15, Theorem 2:1]). Moreover, abstraction and
the law x�= x are necessary for this result. Furthermore, it is shown in [13] that no
non-regular processes over A� (such as, e.g., a$b) can be speci5ed in ACP�∗(A; �).

In [8], Baeten et al. show that each computable process can be speci5ed in ACP(A; �)
with abstraction and guarded, 5nite recursive speci5cations. Their proof is based on
a modeling of Turing machine computation with two stacks and a regular control
process, and although it refers to rooted weak bisimulation equivalence, it holds as
well for rooted branching bisimulation equivalence (as de5ned in [29]). It follows that
each computable process over A� can be speci5ed in ACP��(Aext ; �) for 
∈ {$; ];�}
and Aext a 5nite extension of A, using only handshaking over Aext\A.

In this paper we do not explicitly introduce models – that is, process algebras – for
ACP��(A; �) (for the sake of completeness, we do provide transition rules for the new
operations in the next section). Nevertheless it is not hard to show that abstraction is in-
dispensable for the above-mentioned type of expressiveness results. This can be argued
as follows (cf. [8]). Let A⊇{a; b} and let P be the set of process terms (closed terms)
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over ACP∗;$; ];�(A; �), i.e., ACP(A; �) extended with all recursive operations occurring
in this paper. By a diagonalization argument we can de5ne a computable process over
A that cannot be expressed in ACP∗;$; ];�(A; �). This is even the case if a very lib-
eral behavioural equivalence is adopted. In order to show this, let pq :P→N encode
all process terms over ACP∗;$; ];�(A; �), and let proc :N→P be a function such that
proc( pPq) =P for all P ∈P. Furthermore, let the function f :N×P→P be such
that f(n; P) characterizes which actions can possibly be executed after n steps (for
a∈A�):

f(0; a) = a;

f(n + 1; a) = �;

f(0; ax) = a;

f(n + 1; ax) = f(n; x);

f(n; x + y) = f(n; x) + f(n; y):

So for each n and P, f(n; P) equals a∈A� or a sum of atomic actions. The de5nition of
this function is adequate because each process term in ACP∗;$; ];�(A; �) can be equated
to one in head normal form, i.e., in the form

P =
k∑

i=1
aiPi +

l∑
j=1

bj;

where the ai; bj are actions and empty sums equal � (cf. [11]). Finally, let ∼ be a
behavioural equivalence for ACP∗;$; ];�(A; �) in the range from strong bisimilarity up
to trace equivalence (see [26, 28]), and consider the data-parametric linear speci5cation
(for k ranging over N)

X (k) =

{
a · X (k + 1) if f(k; proc(k)) ∼ f(k; proc(k)) + b;

b · X (k + 1) otherwise:

Clearly, each solution P for X (0) is a computable process that repeatedly executes
either a or b. It is easily seen that P �∼ proc(k) for all k ∈N: suppose the con-
trary and let n be such that P∼ proc(n). If f(n; proc(n))∼f(n; proc(n)) + b, then
proc(n) has an execution trace in which after n steps the action b can be exe-
cuted, whereas P can only perform a after n steps (characterized by the equation
for X (n)). If f(n; proc(n)) �∼f(n; proc(n))+b, then b is not possible after n execution
steps of proc(n), whereas P can do a b after n steps. So, P cannot be expressed in
ACP∗;$; ];�(A; �) modulo ∼. Summing up, we state the following result.

Theorem 14. For each computable process P over A� there exists a ;nite exten-
sion Aext of A such that P can be expressed in ACP��(Aext ; �) for 
∈ {$; ];�} with
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handshaking only; and the actions in A not subject to communication. Furthermore;
abstraction and the law x�= x are essential for this result.

Adopting the explicit standard semantics for ACP(A; �) (SOS-semantics with strong
bisimilarity, see [11, 24]) and the transition rules for all recursive operations, the neces-
sity of abstraction can be shown in a more direct way: for any A⊇{a; b}, the regular
process P speci5ed by

P = aQ + b;

Q = aP + a

(see Section 1) cannot be expressed in ACP∗;$; ];�(A; �). This can be proved by an
analysis of properties yielded by the particular transition rules involved (cf. [13, 14]).

10. Conclusions

In process algebra, a (potentially) in5nite process is traditionally represented as a
solution for a variable in a system of guarded recursive equations, and proof theory
and veri5cation tend to focus on reasoning about such recursive systems. Although
speci5cation and veri5cation of concurrent processes de5ned in this way serve their
purpose well, recursive operations constitute a more direct representation and are easier
to comprehend. In 1984, Milner was the 5rst to consider the unary Kleene star in
process algebra [36]. An early axiomatic approach to a restricted form of (binary)
iteration in the realm of process algebra is Hennessy’s treatment of delay operators
[31]. For an overview of process algebra with iterators we refer to [14].

In this paper we showed that adding one of $; ];� as a primitive to ACP with
abstraction yields an expressive format, and that abstraction is a necessary feature.
These results support the equational founding of process algebra: any computable pro-
cess (over a 5nite set of actions) can simply be represented by a term. Adding binary
Kleene star as well yields a more Vexible format for the speci5cation of concurrent
processes, and a setting in which each operation embodies some distinct and intuitive
idea. If one adopts the natural point of view that a binary iterator F(x; y) in process
algebra must satisfy the general format

F(x; y) = x · C[x; y; F(x; y)] + y

with C[x; y; F(x; y)] a context expressing some sequential term and containing F(x; y),
then it is not hard to see that $; ] and � are the simplest candidates for a non-regular,
binary iterator. Of course, the binary Kleene star is the simplest candidate for a regular,
binary iterator.

We notice that in the case of ACP�∗$(A; �) we could have used a more direct way to
analyze the expressive power: with regular processes and counters, it is quite straight-
forward to model register machine computation. Being able to implement each (unary)
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recursive function in this way, it is not diPcult to show that each computable process
over A� can be speci5ed in ACP�∗$(Aext ; �). However, such an approach does not by
itself reveal how to de5ne standard processes such as a stack. That is why we preferred
to focus on the particular standard processes discussed in this paper, and to further refer
to the expressiveness result in [8]. Note that our de5nitions of these standard processes
do not rely upon fairness 3 rules: in none of the constructions the possibility of an
in5nite �-trace occurs, and the only axiom on the silent step � that we used is x� = x.
Therefore, these results are preserved under all behavioral equivalences that respect
this axiom, such as the rooted versions of branching bisimulation [29], delay bisim-
ulation [34], 
-bisimulation [10], weak bisimulation [37], and even in a setting that
distinguishes in5nite �-traces from 5nite ones, such as divergence sensitive branching
bisimulation [30].

In the remainder of this section we give brief consideration to some proof theoretical
issues. First, we notice that there exist a 5nite set A of actions and communication
function � such that

ACP��(A; �) � t = u

with 
 ∈ {$; ];�} is undecidable for process terms t; u. We sketch the proof: let
V1; V2 be r.e. sets of natural numbers that are recursively inseparable. Using a register
machine encoding one may provide families of process terms tn; un (parameterized by
n) such that

n ∈ V1 ⇒ ACP��(A; �) � tn = un;

n ∈ V2 ⇒ tn �∼= un;

where ∼= expresses branching bisimulation equivalence, the standard semantics for
ACP�(A; �) [29]. With decidability of ACP��(A; �) one could obtain a recursive sep-
aration of V1 and V2, which is contradictory. If binary Kleene star is available, one
can show (in a setting without � and using strong bisimulation instead) that ACP∗�(A; �)
is undecidable as well.

We come to an end with a short comment on RSP-variants for binary iterators. Let
RSP$ be the conditional rule

x = y(xx) + z ⇒ x = y$z:

It is an open question whether BPA(A), i.e., basic process algebra de5ned by axioms
(A1)–(A5) of ACP(A; �) (see Table 1) together with the axiom x$y = x((x$y)(x$y))+y
and RSP$ is complete with respect to strong bisimilarity over that signature. The four
transition rules for $ are

x a→√

x$y a→(x$y)(x$y)
;

x a→√

y$x a→√ ;
x a→ x′

x$y a→ x′((x$y)(x$y))
;

x a→ x′

y$x a→ x′
;

3 Fairness models the assumption that in case of a �-loop eventually some other alternative – if available
– is executed. An example is captured by the law �(�∗x) = �x (see [13]), valid in branching bisimilarity.
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while the remaining transition rules and strong bisimulation equivalence are de5ned as
usual (cf. [11]). For example, one easily derives the transition (a$b)2 a→(a$b)2 · (a$b).
(Note that (a$b)2 · (a$b) and (a$b)3 = (a$b) · (a$b)2 are syntactically diOerent, so some
transitions in our illustrations in the introduction do not precisely reVect these rules.)
The transition rules for ∗ and ] are as expected (see [13]), and those for � are the
following:

x a→√

x�y a→(x�y)y
;

x a→√

y�x a→√ ;
x a→ x′

x�y a→ x′((x�y)y)
;

x a→ x′

y�x a→ x′
:

For the settings with ] and � similar RSP-variants can be de5ned, and similar open
questions can be raised. We notice that the equational axiomatization of BPA∗(A) [25],
i.e., axioms (A1)–(A5) and (BKS1)–(BKS3) (see Table 1), implies that BPA(A) with
(BKS1) and RSP∗, i.e.,

x = yx + z ⇒ x = y∗z;

is complete with respect to (strong) bisimilarity. It is not hard to prove (BKS2) and
(BKS3):

(x∗y)z = (x(x∗y) + y)z
= (x(x∗y))z + yz
= x((x∗y)z) + yz

(x∗y)z = x∗(yz)
RSP∗

(x+ y)∗z = (x + y)((x + y)∗z) + z
= x((x+ y)∗z) + y((x + y)∗z) + z

(x + y)∗z = x∗(y((x + y)∗z) + z)
RSP∗:

Extending BPA∗(A) with � rules out a 5nite equational axiomatization of strong bisim-
ulation equivalence (see [39]). Equational axiomatizations of bisimilarity for other
BPA(A)-oriented systems with some form of iteration can be found in
[21, 2, 6, 22, 1, 27, 4, 5]. As for ACP∗(A; �), note that also the axiom (BKS4) (i.e.,
@H (x∗y) = @H (x)∗@H (y)) easily follows from RSP∗. Finally, if � is involved, all RSP-
variants mentioned above need a guardedness restriction. For example, � = �(��) + �,
though � = �$� is not acceptable (�a can eventually perform a, whereas (�$�)a cannot).
The merits and demerits of RSP-based proof systems and the quest for complete proof
systems are topics for future research (cf. [3]).
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