
Process Algebra and Dynamic Logic

Alban Ponse
University of Amsterdam, Programming Research Group

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.

E-mail: alban@fwi.uva.nl

Abstract

An extension of process algebra is introduced which can be compared to (propositional) dynamic logic.

The additional feature is a ‘guard’ construct, related to the notion of a test in dynamic logic. This ex-

tension of process algebra is semantically based on processes that transform data, and its operational

semantics is defined relative to a structure describing these transformations via transitions between pairs

of a process term and a data-state. The data-states are given by a structure that also defines in which

data-states guards hold and how actions (non-deterministically) transform these states. The operational

semantics is studied modulo strong bisimulation equivalence. For basic process algebra (without operators

for parallelism) a small axiom system is presented which is complete with respect to a general class of data

environments. In case a data environment satisfies some expressiveness constraints, (local) bisimilarity

can be completely axiomatized by adding three axioms to this system.

Then process algebra with parallelism and guards is introduced. A two-phase calculus is provided that

makes it possible to prove identities between parallel processes. Also this calculus is complete. The use of

this calculus is demonstrated by an extended example. The last section of the paper consists of a short

discussion on the operational meaning of the Kleene star operator.

1987 CR Categories: F.3.1, F.3.2, F.3.3, I.1.3.

1 Introduction

An interesting question is how dynamic logic and process algebra can be integrated. A well-known
result along this line stems from Hennessy and Milner, who defined a modal logic that characterizes
observable equivalence between processes [HM85]. In process algebra with guards a different approach
is followed, reminiscent of the semantical setting of Propositional Dynamic Logic (PDL). The present
paper outlines this approach.

In the generic sense ‘process algebra’ denotes an algebraic approach to the study of concurrent
processes. Here a process is roughly “the behavior of a digital system”, such as the execution of
a computer program. The specific process theory introduced in this paper is based on ACP (the
Algebra of Communicating Processes), developed by Bergstra and Klop. For an overview of
ACP see Baeten and Weijland in [BW90]. Other common algebraic concurrency theories are
CCS (Calculus of Communicating Systems) developed by Milner [Mil80] and CSP (Communicating
Sequential Processes) overviewed by Hoare in [Hoa85].

Typical for the process algebra approach as followed in ACP is that one reasons with terms denoting
processes, rather than with formulas expressing properties of a process (or a program) as is done in
dynamic logic [Har84, KT90]. This reasoning is equational, and the resulting identities refer to a be-
havioral equivalence: two processes are equal if they cannot be distinguished according to some notion
of observability. A well-known behavioral equivalence is bisimulation [Par81], which is considered in

2 1 INTRODUCTION

this paper. A small example: in ACP a standard axiom is

x+ y = y + x

(the + represents choice) which expresses that processes are independent of any ordering. A PDL
interpretation of this axiom is

〈x ∪ y〉p↔ 〈y ∪ x〉p

the derivability of which depends on the PDL axiom scheme 〈x∪ y〉p↔ 〈x〉p∨ 〈y〉p and propositional
tautologies.

Another difference between dynamic logic and process algebra is that infinite behavior is a rather
fundamental notion in the latter. A typical example of a (reactive) non terminating process is a
communication protocol transmitting data through an unreliable channel, such that (despite the
unreliability) no information will get lost. Correctness is then expressed recursively: its characteristic
behavior is to transmit any received datum before a next datum can be received, i.e., the process
behaves externally as a one-element buffer. Infinite processes can be defined as solutions of systems
of recursive equations.

Process algebra with guards can be characterized by two starting points. The first typical ingredient
is that processes are considered as having a separate data-state, contrary to the usual semantical setting
in process algebra. The execution of a process is regarded in terms of atomic actions that transform
data-states:

(a, s) a−→(ε, s′)

where (a, s) represents the atomic action a in initial data-state s, the label a represents what single
step can be observed, and s′ ∈ effect(a, s) is a data-state that can result from the execution of
a (it is demanded that transformation sets of the form effect(a, s) are not empty). The special
constant ε (“empty process” or “skip”) represents the possibility to terminate, and is associated with
a termination transition characterized by the label

√
:

(ε, s′)
√
−→(δ, s′)

where the special constant δ (“inaction” or “deadlock”) indicates that no further activity can be
performed. In the sequel a calculus is defined for deriving transitions from compound process terms,
determining the operational semantics for process algebra with guards. As an example the process
a · δ (the · represents sequential composition) is able to perform an a-step to a configuration with
process term ε · δ (which equals δ), that in turn allows no termination action. Bisimulation semantics
can now be extended to a setting wherein data-states play an explicit role: e.g. the processes a and
a+ a · ε are bisimilar if considered in equal initial date-states: each transition of the one process can
be associated with (at least one) of the other process.

A second characteristic of process algebra with guards concerns the extension “with guards.” Guards
are comparable to tests in dynamic logic. Depending on the data-state, a guard can either be trans-
parent such that it can be passed (so behaves like ε), or it can block and prevent subsequent processes
from being executed (so behaves like δ). Typical for this extension is the one-sortedness: a guard
itself represents a process. With this construct the guarded commands of Dijkstra [Dij76] can be
easily expressed, as well as a restricted notion of tests in PDL (in terms of [Har84] comparable with
PDL0.5, and so called poor tests in [KT90]). Guards have several nice properties, e.g. they constitute
a Boolean algebra. Furthermore, a partial correctness formula

{α} p {β}

Process Algebra and Dynamic Logic 3

can be expressed by the algebraic equation αp = αpβ where α and β are guards (cf. [MA86]): this
equation expresses that termination of the process p started in an initial data-state satisfying α,
cannot be blocked by the postcondition β, i.e., β “holds” in this case. In the related paper [GP90] on
process algebra with guards it is shown that Hoare logic for processes defined by linear recursion can
be captured in a completely algebraic way (cf. [Pon89]).

Parallel operators fit easily in the process algebra framework. In for instance Hoare logic, parallelism
turns out to be rather intricate; proof rules for parallel operators are often substantial [OG76]. In the
subsequent approach the difficulties caused by parallel operators in Hoare logic cannot be avoided,
but can be dealt with in a simple algebraic way.

The paper is organized as follows. Section 2 concerns a small fragment of process algebra with
guards and introduces the fundamentals of the approach. A complete axiomatization of bisimilarity
between finite processes with respect to a class of structures is presented, as well as an extended
soundness result for processes defined by recursive equations. In Section 3 it is described that in case
some expressiveness constraints are satisfied, bisimilarity relative to a single structure can also be
completely characterized. Section 4 introduces the technical means to reason about parallel processes.
These are illustrated in Section 5 by an extended example on the correctness of a parallel process. The
paper is concluded with a short discussion on the operational meaning of the Kleene star operator in
Section 6. As to keep the paper short, most proofs are omitted. However, all proofs are spelled out
in [GP90].

2 Basic Process Algebra with guards

Syntax and axioms. Basic Process Algebra with guards, notation BPAG, is parameterized by

1. A non-empty set A of atomic actions,

2. A non-empty set Gat of atomic guards disjunct from A ∪ {δ, ε}.

Before defining the exact signature of BPAG, the set of atomic guards is extended to the set G of basic
guards in the following way. The two constants δ (‘deadlock’ or ‘inaction’) and ε (‘empty process’
or ‘skip’) are added to Gat, and G is obtained by closure under negation, so contains elements φ
satisfying the BNF clause

φ ::= δ | ε | ¬φ | ψ ∈ Gat.

The signature of BPAG, notation Σ(BPAG), is defined by constants a, b, c, ... representing the ele-
ments of A and constants φ, ψ, ... representing the elements of G. Furthermore it contains the binary
operators + (choice) and · (sequential composition). In term formation brackets and variables of a set
V = {x, y, z, ...} are used. The function symbol · is often left out, and brackets are omitted according
to the convention that · binds stronger than +. Finally, letters t, t′, ... are used to denote open terms,
and letters p, q, ... denote closed terms representing processes.

The axioms in Table 1 and those of equational logic express the basic identities between terms over
Σ(BPAG). This axiom system is called BPA4

G. The axioms A1 – A9 are well-known in process algebra
(BPAδε, [BW90]). Observe that there is no symmetric variant of the distributive axiom A4: an axiom
x(y + z) = xy + xz derives with atomic actions a, b for x, z and the constant δ for y the equation

ab = aδ + ab

(use A6), identifying the process ab which is deadlock free with one that can behave as aδ. The axioms
G1 – G4 describe the fundamental identities between guards. G1 and G2 express that a basic guard

4 2 BASIC PROCESS ALGEBRA WITH GUARDS

always behaves dually to its negation: φ holds in a data-state s iff ¬φ does not and vice versa. The
axiom G3 states that + does not change the interpretation of a basic guard φ. It does not matter
whether the choice is exercised before or after the evaluation of φ. In the last new axiom G4 the
following shorthand is used:

x ⊆ y def
= x+ y = y (and x ⊇ y def

= y ⊆ x)

(this notation is called summand inclusion). This axiom can be motivated as follows: a process
a(φp + ¬φq) behaves either like ap or aq, depending on whether φ or ¬φ can be passed in the data-
state resulting from the execution of a. As a consequence the process a(φp+¬φq) should be a provable
summand of ap + aq. The atomicity of a in this axiom is necessary. If a is for instance replaced by
the term ab, then after a has happened it can be that execution of b yields a data-state where φ holds
and a data-state where ¬φ holds. Hence ab(φp + ¬φq) need not be a summand of abp + abq. Note
that the axiom G4 is not derivable from the first three ‘guard’-axioms. The superscript 4 in BPA4

G

indicates that there are four axioms referring to guards. Not all of these are always considered. In
particular the system BPA3

G, containing all BPA4
G-axioms except G4 will play a role.

A1 x+ y = y + x G1 φ · ¬φ = δ
A2 x+ (y + z) = (x+ y) + z G2 φ+ ¬φ = ε
A3 x+ x = x G3 φ(x+ y) = φx+ φy
A4 (x+ y)z = xz + yz
A5 (xy)z = x(yz)
A6 x+ δ = x
A7 δx = δ G4 a(φx+ ¬φy) ⊆ ax+ ay
A8 εx = x
A9 xε = x

Table 1: The axioms of BPA4
G where φ ∈ G and a ∈ A

Up till now only ‘basic’ and ‘atomic’ guards were introduced. Guards as such, with typical elements
α, β, ... are defined as terms over Σ(BPAG) that contain only basic guards and the sequential and
choice operators. The Boolean operator ¬ on guards can be defined by the abbreviations

¬(αβ) for ¬α+ ¬β
¬(α+ β) for ¬α¬β.

For guards there is the following theorem (cf. [Sio64]):

Theorem 2.1. Let Gat be a set of atomic guards. BPA3
G (= BPA4

G \G4) is an equational basis for
the Boolean algebra (Gat,+, ·,¬). 2

Specifying processes by recursive equations.

Definition 2.2. A recursive specification E = {x = tx |x ∈ VE} over the signature Σ(BPAG) is a set
of equations where VE is a (possibly infinitely) set of (indexed) variables and tx a term over Σ(BPAG)
such that the variables in tx are also in VE . 2

A solution of a recursive specification E = {x = tx | x ∈ VE} is an interpretation of the variables in
VE as processes, such that the equations of E are satisfied. For instance the recursive specification

Process Algebra and Dynamic Logic 5

{x = x} has any process as a solution for x and {x = ax} has the infinite process “aω” as a solution
for x. The following syntactical restriction on recursive specifications turns out to enforce unique
solutions:

Definition 2.3. Let t be a term over the signature Σ(BPAG). An occurrence of a variable x in
t is guarded iff t has a subterm of the form a ·M with a ∈ A ∪ {δ}, and this x occurs in M . Let
E = {x = tx |x ∈ VE} be a recursive specification over Σ(BPAG). The specification E is guarded iff
all occurrences of variables in the terms tx are guarded. 2

Note that the property “guarded” of a recursive specification has nothing to do with the “guards”
that form the main subject of this paper.

Now the signature Σ(BPAG)REC, containing representations of infinite processes, is defined as
follows:

Definition 2.4. The signature Σ(BPAG)REC is obtained by extending Σ(BPAG) in the following
way: for each guarded specification E = {x = tx |x ∈ VE} over Σ(BPAG) a set of constants {<x |E>|
x ∈ VE} is added, where the construct <x |E> denotes the x-component of a solution of E. 2

Some more notations: let E = {x = tx |x ∈ VE} be a guarded specification over Σ(BPAG), and t some
term over Σ(BPAG)REC. Then <t |E> denotes the term in which each occurrence of a variable x ∈ VE
in t is replaced by <x |E>, e.g. the expression <aax |{x = ax}> denotes the term aa<x |{x = ax}>.

For the constants of the form <x |E> there are two axioms in Table 2. In these axioms the letter
E ranges over guarded specifications. The axiom REC states that the constant <x |E> (x ∈ VE)
is a solution for the x-component of E, so expresses that each guarded recursive system has at least
one solution for each of its (bounded) variables. The conditional rule RSP (Recursive Specification
Principle) expresses that E has at most one solution for each of its variables: whenever one can find
processes px (x ∈ VE) satisfying the equations of E, notation E(~px), then px =<x |E>.

REC <x |E>=<tx |E> if x = tx ∈ E and E guarded

RSP
E(~px)

px =<x |E>
if x ∈ VE and E guarded

Table 2: Axioms for guarded recursive specifications

Finally, a convenient notation is to abbreviate <x | E> for x ∈ VE by X once E is fixed, and
to represent E only by its REC instances. The following example shows all notations concerning
recursively specified processes, and illustrates the use of REC and RSP.

Example 2.5. Consider the guarded recursive specifications E = {x = ax} and E′ = {y = ayb}
over Σ(BPAG). So by the convention just introduced, E can be represented by X = aX. With REC
and RSP (and the congruence properties of =) one can prove

BPAG + REC + RSP ` X = Y.

First note that Xb = aXb by REC, so E(Xb) is derivable. Application of RSP yields

Xb = X. (1)

6 2 BASIC PROCESS ALGEBRA WITH GUARDS

Moreover, Xb REC= aXb
(1)
= aXbb, and hence E′(Xb) is derivable. A second application of RSP yields

Xb = Y . Combining this with (1) gives the desired result. 2

Semantics. In the set-up of process algebra with guards, a process is considered as having a data-
state: an atomic action is a (non-deterministic) data-state transformer and a guard is a test on
data-states. The operational semantics is defined relative to a structure over A,Gat that defines these
three components:

Definition 2.6. A data environment S = 〈S, effect, test〉 over a set A of atomic actions and a set
Gat of atomic guards is specified by

• A non-empty set S of data-states,

• A function effect : S ×A→ 2S \ {∅},

• A predicate test ⊆ S ×Gat.

2

Observe that the function effect defining the state transformations possibly introduces non-determinism
in state transformations. The predicate test determines whether an atomic guard holds in some data-
state. Whenever (s, φ) ∈ test, this means that in data-state s the atomic guard φ may be passed. In
order to interpret basic guards, the predicate test is extended in the obvious way:

• for all s ∈ S it holds that (s, ε) ∈ test and that (s, δ) 6∈ test,

• for all s ∈ S and φ ∈ G it holds that (s,¬φ) ∈ test iff (s, φ) 6∈ test.

Processes are provided with an operational semantics in the style of Plotkin [Plo81]. The behavior
of a process p is defined by transitions between configurations.

Definition 2.7. Let S be a set of data-states. A configuration (p, s) over (Σ(BPAG), S) is a pair
containing a closed term p over Σ(BPAG) and a data-state s ∈ S. The set of all configurations over
(Σ(BPAG), S) is denoted by C(Σ(BPAG), S). 2

Let A√
def
= A ∪ {

√
}. The transition relation

−→Σ(BPAG)REC,S ⊆ C(Σ(BPAG), S)×A√ × C(Σ(BPAG), S)

contains exactly all transitions between the configurations over (Σ(BPAG)REC, S) that are derivable
with the rules for φ, a, +, · and recursion in Table 5 (see Section 4). The

√
-transitions signal

termination of a process. The possible behavior associated to a term p in initial data-state s is
captured by all transitions reachable from (p, s) in −→Σ(BPAG)REC,S .

The operational behavior embodied by such transitions can be characterized by bisimulation equiva-
lence [Par81]. But following the traditional approach in semantics based on data-state transformations,
processes with different data-states in their configurations are not compared with each other. To that
end the standard notion of bisimilarity is adapted as follows:

Definition 2.8. Let S be a data environment with data-state space S. A binary relation R ⊆
C(Σ(BPAG)REC, S) × C(Σ(BPAG)REC, S) is an S-bisimulation iff R satisfies the transfer property,
i.e. for all (p, s), (q, s) ∈ C(Σ(BPAG)REC, S) with (p, s)R(q, s):

Process Algebra and Dynamic Logic 7

1. Whenever (p, s) a−→Σ(BPAG)REC,S (p′, s′) for some a and (p′, s′), then, for some q′,
also (q, s) a−→Σ(BPAG)REC,S (q′, s′) and (p′, s′)R(q′, s′),

2. Whenever (q, s) a−→Σ(BPAG)REC,S (q′, s′) for some a and (q′, s′), then, for some p′,
also (p, s) a−→Σ(BPAG)REC,S (p′, s′) and (p′, s′)R(q′, s′).

Two closed terms p, q over Σ(BPAG)REC are S-bisimilar , notation p ↔S q, iff for all s ∈ S there is
some S-bisimulation R such that (p, s)R(q, s). 2

The following lemma allows reasoning about bisimilarity in an algebraic way, and is crucial for the
next two results.

Lemma 2.9. For any data environment S the relation ↔S between closed terms over Σ(BPAG)REC

is a congruence with respect to the operators of Σ(BPAG). 2

Theorem 2.10. (Soundness) Let p, q be closed terms over Σ(BPAG)REC. If BPA4
G + REC + RSP `

p = q, then p↔S q for any data environment S. 2

Theorem 2.11. (Completeness) Let r1, r2 be closed terms over Σ(BPAG). If r1 ↔S r2 for all data
environments S, then BPA4

G ` r1 = r2. 2

3 BPAG in a specific data environment

In this section bisimulation semantics for Σ(BPAG)REC in a specific data environment is investigated.

A1 x+ y = y + x G1 φ · ¬φ = δ
A2 x+ (y + z) = (x+ y) + z G2 φ+ ¬φ = ε
A3 x+ x = x G3 φ(x+ y) = φx+ φy
A4 (x+ y)z = xz + yz G4 a(φx+ ¬φy) ⊆ ax+ ay
A5 (xy)z = x(yz)
A6 x+ δ = x SI φ0 · ... · φn = δ
A7 δx = δ if ∀s ∈ S ∃i ≤ n � (s, φi) 6∈ test
A8 εx = x WPC1 wp(a, φ)aφ = wp(a, φ)a
A9 xε = x WPC2 ¬wp(a, φ)a¬φ = ¬wp(a, φ)a

Table 3: The axioms of BPAG(S) where φ, φi ∈ G and a ∈ A

In Table 3 the axiom system BPAG(S) is presented. It contains the axioms of BPA4
G and three

new axioms depending on S (this explains the S in BPAG(S)). The axiom SI (Sequence is Inaction)
expresses that if a sequence of basic guards fails in each data-state, then it equals δ. Note that G1
follows from SI.

In the axioms WPC1 and WPC2 (Weakest Precondition under some Constraints) the expression
wp(a, φ) represents the basic guard that is the weakest precondition of an atomic action a and an
atomic guard φ. Weakest preconditions are semantically defined as follows:

8 3 BPAG IN A SPECIFIC DATA ENVIRONMENT

Definition 3.1. Let A be a set of atomic actions, Gat a set of atomic guards and S = 〈S, effect, test〉
be a data environment over A and Gat. A weakest precondition of an atomic action a ∈ A and an
atomic guard φ ∈ Gat is a basic guard ψ ∈ G satisfying for all s ∈ S:

test(ψ, s) iff ∀s′ ∈ S (s′ ∈ effect(a, s) =⇒ test(φ, s′)).

If ψ is a weakest precondition of a and φ, it is denoted by wp(a, φ). Weakest preconditions are
expressible with respect to A, Gat and S iff there is a weakest precondition in G of any a ∈ A and
φ ∈ Gat. 2

Definition 3.2. Let A be a set of atomic actions and Gat a set of atomic guards and let S =
〈S, effect, test〉 be a data environment over A and Gat. The data environment S is sufficiently deter-
ministic iff for all a ∈ A and φ ∈ Gat:

∀s, s′, s′′ ∈ S (s′, s′′ ∈ effect(a, s) =⇒ (test(φ, s′)⇐⇒ test(φ, s′′))).

2

Remark that a data environment S with a deterministic function effect is sufficiently deterministic.
If S is a data environment such that weakest preconditions are expressible and that is sufficiently
deterministic then the axioms WPC1 and WPC2 exactly characterize the weakest preconditions in
an algebraic way: WPC1 expresses that wp(a, φ) is a precondition of a and φ and WPC2 states
that wp(a, φ) is the weakest precondition of a and φ. If on the other hand weakest preconditions are
expressible in S, then the soundness of BPAG(S) implies that S is also sufficiently deterministic. With
the axioms for weakest preconditions G4 becomes derivable, so both axioms G1 and G4 need not be
considered in the following results characterizing ↔S .

Theorem 3.3. (Soundness) Let S be a data environment such that weakest preconditions are
expressible and that is sufficiently deterministic. Let r1, r2 be closed terms over Σ(BPAG)REC. If
BPAG(S) + REC + RSP ` r1 = r2 then r1 ↔S r2. 2

Theorem 3.4. (Completeness) Let S be a data environment such that weakest preconditions are
expressible and that is sufficiently deterministic. Let r1, r2 be closed terms over Σ(BPAG). If r1 ↔S r2

then BPAG(S) ` r1 = r2. 2

Example 3.5. Process algebra with guards can be used to express and prove partial correctness
formulas in Hoare logic. In [GP90] the soundness of a Hoare logic for process terms (see also [Pon89])
is proved. Here a simple example that is often used as an illustration of Hoare logic is presented and
its correctness is shown.

Let BPAG(S) represent a small programming language with Boolean guards and assignments. The
language has the signature of Σ(BPAG) and further assume a set V = {x, y, ...} of data variables.
Actions have the form

[x := e]

with x ∈ V a variable ranging over the integers Z and e an integer expression. Let some interpretation
[[·]] from closed integer expressions to integers be given. Atomic guards have the form

〈e = f〉

where e and f are both integer expressions.
The components of the data environment S = 〈S, effect, test〉 are defined by:

Process Algebra and Dynamic Logic 9

1. S = Z
V , i.e., the set of mappings from V to the integers, with typical element ρ;

2. effect([x := e], ρ) = ρ[[[ρ(e)]]/x], assuming that the domain of ρ is extended to integer expressions
in the standard way, and ρ[n/x] is as the mapping ρ, except that x is mapped to n;

3. test(〈e = f〉, ρ)⇐⇒ ([[ρ(e)]] = [[ρ(f)]]).

Note that the effect function is deterministic, so S is certainly sufficiently deterministic. Weakest
preconditions can easily be expressed:

wp([x := e], 〈e1 = e2〉) = 〈e1[e/x] = e2[e/x]〉.

The axiom SI cannot be formulated so easily, partly because integer expressions are not yet defined
very precisely. However, it can be characterized by the scheme:

〈e0 = f0〉 · ... · 〈en = fn〉 = δ iff ∀ρ ∈ S ∃i ≤ n � [[ρ(ei)]] 6= [[ρ(fi)]].

Consider the following tiny program SWAP that exchanges the initial values of x and y without
using any other variables.

SWAP ≡ [x := x+ y] · [y := x− y] · [x := x− y].

The correctness of this program can be expressed by the following equation:

〈x = n〉 · 〈y = m〉 · SWAP = 〈x = n〉 · 〈y = m〉 · SWAP · 〈x = m〉 · 〈y = n〉.

This equation says that if SWAP is executed in an initial data-state where x = n and y = m, then
after termination of SWAP it must hold, i.e. it can be derived, that x = m and y = n. So SWAP
indeed exchanges the values of x and y.

The correctness of SWAP can be proved as follows:

〈x = n〉 · 〈y = m〉 · SWAP
SI= 〈(x+ y)− y = n〉 · 〈(x+ y)− ((x+ y)− y) = m〉 · SWAP

SI,WPC1
= 〈x = n〉 · 〈y = m〉 · [x := x+ y] · 〈x− y = n〉 · 〈x− (x− y) = m〉·

[y := x− y] · [x := x− y]
WPC1= 〈x = n〉 · 〈y = m〉 · [x := x+ y] · 〈x = n〉 · 〈y = m〉·

[y := x− y] · 〈y = n〉 · 〈x− y = m〉 · [x := x− y]
WPC1= 〈x = n〉 · 〈y = m〉 · SWAP · 〈x = m〉 · 〈y = n〉.

2

4 Parallel processes and guards

The language of Σ(BPAG) is extended to Σ(ACPG) by adding the following four operators [BK84,
BW90]: the encapsulation operator ∂H , the merge ‖, the left-merge ‖ and the communication-merge
|, suitable to describe the behavior of parallel, communicating processes. Encapsulation is used to
enforce communication between processes. Communication is modeled by a communication function
γ : A×A −→ Aδ that is commutative and associative. If γ(a, b) is δ, then a and b cannot communicate,
and if γ(a, b) = c, then c is the action resulting from the communication between a and b. All general

10 4 PARALLEL PROCESSES AND GUARDS

definitions for Σ(BPAG) carry over to Σ(ACPG), especially, Σ(ACPG)REC denotes Σ(ACPG) extended
with all constants denoting solutions of guarded recursive specifications over Σ(ACPG).

In Table 4 the axiom system ACPG is presented (note that the axiom G4 is absent). Most of these
axioms are standard for ACP and, apart from G1, G2 and G3, only the axioms EM10, EM11 and D0
are new. The axiom EM10 (EM11) expresses that a basic guard φ in φx ‖ y (φx | y) may prevent
both x and y from happening.

Using ACPG any closed term over Σ(ACPG) can be proved equal to one without merge operators,
i.e. a closed term over Σ(BPAG), by structural induction.

Theorem 4.1. (Elimination) Let p be a closed term over Σ(ACPG). There is a closed term q over
Σ(BPAG) such that ACPG ` p = q. 2

ACPG and BPA4
G or BPAG(S) cannot be combined in bisimulation semantics as ↔S is not a

congruence for the merge operators; if G4 is added to ACPG one can derive

ACPG + G4 ` a(b ‖ d) + a(c ‖ d) + d(ab+ ac) (1)
= (ab+ ac) ‖ d
G4= (ab+ ac+ a(φb+ ¬φc)) ‖ d
⊇ a(φbd+ ¬φcd+ d(φb+ ¬φc)). (2)

So, in (2) it can be the case that after an a step φ holds, and a state is entered where a b or a d step
can be performed. Performing the d step may yield a state were ¬φ holds, so the only possible step
left is a c step. This situation cannot be mimicked in (1): the only possible execution of adc in (1)
has no b option after the a-step. Therefore, every term with (2) as a summand is not bisimilar to (1)
for any reasonable form of bisimulation. So ACPG + G4 is not sound in any bisimulation semantics.

As is it still the objective to prove S-bisimilarity between closed terms containing merge operators,
a two-phase calculus that does avoid these problems can be defined.

Definition 4.2. (A two-phase calculus `2) Let p1, p2 be closed terms over Σ(ACPG)REC. Write

ACP4
G `2 p1 = p2

iff there are closed terms q1, q2 over Σ(BPAG)REC such that ACPG ` pi = qi (i = 1, 2) and
BPA4

G ` q1 = q2.
Furthermore, write

ACPG(S) `2 p1 = p2

iff there are closed terms q1, q2 over Σ(BPAG)REC such that ACPG ` pi = qi (i = 1, 2) and
BPAG(S) ` q1 = q2.

Writing REC + RSP in front of `2 indicates that REC and RSP may be used in proving pi = qi
(i = 1, 2) and q1 = q2. 2

Let S = 〈S, effect, test〉 be some data environment over a set A of atomic actions and a set Gat of
atomic guards. Table 5 contains the transition rules defining an operational semantics for Σ(ACPG)REC.
Let

−→Σ(ACPG)REC,S⊆ C(Σ(ACPG)REC, S)×A√ × C(Σ(ACPG)REC, S)

Process Algebra and Dynamic Logic 11

A1 x+ y = y + x G1 φ · ¬φ = δ
A2 x+ (y + z) = (x+ y) + z G2 φ+ ¬φ = ε
A3 x+ x = x G3 φ(x+ y) = φx+ φy
A4 (x+ y)z = xz + yz
A5 (xy)z = x(yz)
A6 x+ δ = x
A7 δx = δ
A8 εx = x
A9 xε = x

CF a | b = γ(a, b)

EM1 x ‖ y = x ‖ y + y ‖ x+ x | y EM10 φx ‖ y = φ(x ‖ y)
EM2 ε ‖ x = δ EM11 φx | y = φ(x | y)
EM3 ax ‖ y = a(x ‖ y)
EM4 (x+ y) ‖ z = x ‖ z + y ‖ z
EM5 x | y = y | x D0 ∂H(φ) = φ
EM6 ε | ε = ε D1 ∂H(a) = a if a 6∈ H
EM7 ε | ax = δ D2 ∂H(a) = δ if a ∈ H
EM8 ax | by = (a | b)(x ‖ y) D3 ∂H(x+ y) = ∂H(x) + ∂H(y)
EM9 (x+ y) | z = x | z + y | z D4 ∂H(xy) = ∂H(x)∂H(y)

Table 4: The axioms of ACPG, a, b ∈ A, H ⊆ A and φ ∈ G

be the transition relation containing all transitions that are derivable by these rules. The following
definition introduces a different bisimulation equivalence, called global S-bisimilarity , that is a con-
gruence for the merge operators. The idea behind a global S-bisimulation is that a context p ‖ (.)
around a process q can change the data-state of q at any time and global S-bisimulation equivalence
must be resistant against such changes. So, a configuration (p1, s) is related to a configuration (p2, s)
if (p1, s) a−→(q1, s

′) implies (p2, s) a−→(q2, s
′) and, as the environment may change s′, q1 is related to

q2 in any data-state:

Definition 4.3. Let S be a data environment with data-state space S. A binary relation R ⊆
C(Σ(ACPG)REC, S)×C(Σ(ACPG)REC, S) is a global S-bisimulation iffR satisfies the following (global)
version of the transfer property: for all (p, s), (q, s) ∈ C(Σ(ACPG)REC, S) with (p, s)R(q, s):

1. Whenever (p, s) a−→Σ(ACPG)REC,S (p′, s′) for some a and (p′, s′), then, for some q′,
also (q, s) a−→Σ(ACPG)REC,S (q′, s′) and ∀s′′ ∈ S ((p′, s′′)R(q′, s′′)),

2. Whenever (q, s) a−→Σ(ACPG)REC,S (q′, s′) for some a and (q′, s′), then, for some p′,
also (p, s) a−→Σ(ACPG)REC,S (p′, s′) and ∀s′′ ∈ S ((p′, s′′)R(q′, s′′)).

Two closed terms p, q over Σ(ACPG)REC are globally S-bisimilar , notation p↔S q, iff for each s ∈ S
there is a global S-bisimulation relation R with (p, s)R(q, s). 2

By definition of global S-bisimilarity it follows that

p↔S q =⇒ p↔S q

12 4 PARALLEL PROCESSES AND GUARDS

φ ∈ G (φ, s)
√
−→(δ, s) if test(φ, s)

a ∈ A (a, s) a−→(ε, s′) if s′ ∈ effect(a, s)

+ (x, s) a−→(x′, s′)
(x+ y, s) a−→(x′, s′)

(y, s) a−→(y′, s′)
(x+ y, s) a−→(y′, s′)

· (x, s) a−→(x′, s′)
(xy, s) a−→(x′y, s′)

if a 6=
√ (x, s)

√
−→(x′, s′) (y, s) a−→(y′, s′′)

(xy, s) a−→(y′, s′′)

‖
(x, s) a−→(x′, s′)

(x ‖ y, s) a−→(x′ ‖ y, s′)
if a 6=

√ (y, s) a−→(y′, s′)
(x ‖ y, s) a−→(x ‖ y′, s′)

if a 6=
√

(x, s) a−→(x′, s′) (y, s) b−→(y′, s′′)

(x ‖ y, s)
γ(a,b)
−→ (x′ ‖ y′, s′′′)

if γ(a, b) 6= δ, a, b 6=
√
,

and s′′′ ∈ effect(γ(a, b), s)

(x, s)
√
−→(x′, s′) (y, s)

√
−→(y′, s′)

(x ‖ y, s)
√
−→(x′ ‖ y′, s′)

‖
(x, s) a−→(x′, s′)

(x ‖ y, s) a−→(x′ ‖ y, s′)
if a 6=

√

|
(x, s) a−→(x′, s′) (y, s) b−→(y′, s′′)

(x | y, s)
γ(a,b)
−→ (x′ ‖ y′, s′′′)

if γ(a, b) 6= δ, a, b 6=
√
,

and s′′′ ∈ effect(γ(a, b), s)

(x, s)
√
−→(x′, s′) (y, s)

√
−→(y′, s′)

(x | y, s)
√
−→(x′ ‖ y′, s′)

∂H
(x, s) a−→(x′, s′)

(∂H(x), s) a−→(∂H(x′), s′)
if a 6∈ H ⊆ A

recursion
(<tx |E>, s) a−→(y, s′)
(<x |E>, s) a−→(y, s′)

if x = tx ∈ E

Table 5: Transition rules (a, b ∈ A√, H, I ⊆ A)

Process Algebra and Dynamic Logic 13

for closed terms p, q over Σ(ACPG)REC. Moreover, global S-bisimilarity is a congruence relation:

Lemma 4.4. For any data environment S the relation ↔S is a congruence with respect to the
operators of Σ(ACPG). 2

Theorem 4.5. (Soundness) Let p, q be closed terms over Σ(ACPG)REC.

1. If ACPG + REC + RSP ` p = q, then p↔S q for any data environment S.

2. If ACP4
G + REC + RSP `2 p = q, then p↔S q for any data environment S.

3. Let S be a data environment such that weakest preconditions are expressible and that is suffi-
ciently deterministic. If ACPG(S) + REC + RSP `2 p = q, then p↔S q. 2

Theorem 4.6. (Completeness) Let r1, r2 be closed terms over Σ(ACPG).

1. If r1 ↔S r2 for all data environments S, then ACPG ` r1 = r2.

2. If r1 ↔S r2 for all data environments S, then ACP4
G `2 r1 = r2.

3. Let S be a data environment such that weakest preconditions are expressible and that is suffi-
ciently deterministic. If r1 ↔S r2, then ACPG(S) `2 r1 = r2. 2

5 An example: a parallel predicate checker

In this section the techniques introduced up till now are illustrated by an example. Let f ⊆ Z be
some predicate, e.g. the set of all primes. Now, given some number n, the objective is to calculate
the smallest m ≥ n such that f(m). Assume two devices P1 and P2 that can calculate for some given
number k whether f(k) holds. In Figure 1 a system is depicted that enables a calculation of m using
both P1 and P2. A Generator/Collector G generates numbers n, n + 1, n + 2, ..., sends them to P1

or P2, and collects their answers. Furthermore G selects the smallest number satisfying f from the
answers and presents it to the environment.

H
HH

HYHHHHj

������
��
�*

P2

P1

G

f -checker

f -checker

Generator/Collector

Figure 1: The parallel predicate checker Q

14 5 AN EXAMPLE: A PARALLEL PREDICATE CHECKER

To describe this situation, Example 3.5 is extended with the atomic actions (i = 1, 2):

s(!x) send value of x,

sok(!xi) send the value xi for which the evaluation of f(xi)
was a success,

snotok indicate that an evaluation of f was not successful,

r(?xi) read a value for xi,

rok(?y) read a value for y for which f(y) succeeded,

rnotok read that an evaluation of f has failed,

cnotok a communication between rnotok and snotok,

w(!x), w(!y) write value of x, y to environment.

These atomic actions communicate according to the following scheme:

γ(s(!x), r(?xi)) = γ(r(?xi), s(!x)) = [xi := x],
γ(sok(!xi), rok(?y)) = γ(rok(?y), sok(!xi)) = [y := xi],
γ(snotok, rnotok) = γ(rnotok, snotok) = cnotok.

All new atomic actions do not change the data-state, i.e. for each new atomic action a:

effect(a, ρ) = {ρ}.

Probably, one would expect that for instance effect(r(?y), ρ) = {ρ[new value/y]} as r(?y) reads a new
value for y. But this need not be so: the value of y is only changed if a communication takes place.

Let new atomic guards 〈f(t)〉 for any integer expression t be added to the setting of Example 3.5.
These guards have their obvious interpretation: test(〈f(t)〉, ρ) holds iff f([[ρ(t)]]) holds.

The parallel predicate checker Q can now be specified by:

G = [x := n] s(!x) [x := x+ 1] s(!x)G1

G1 = rnotok [x := x+ 1] s(!x)G1 + rok(?y)G2

G2 = ¬〈x = y〉w(y) + 〈x = y〉(rok(?y)w(y) + rnotok w(x))

Pi = r(?xi)P ′i + ε
P ′i = 〈f(xi)〉sok(!xi) + ¬〈f(xi)〉 snotok Pi + ε

Q = ∂H(G ‖ (P1 ‖ P2))

with H = {r(?xi), rok(?y), rnotok, s(!x), sok(!xi), snotok | i = 1, 2}.
The parallel predicate checker Q is correct if directly before the execution of an atomic action w(x)

or w(y), x respectively y represents the smallest number m ≥ n such that f(m). Let new atomic
guards 〈α(t, u)〉 for integer expressions t, u be of help to express this formally:

tesρ〈α(t, u)〉 ⇐⇒ [[ρ(t)]] ≤ [[ρ(u)]] ∧ (
∧

n ≤ j < [[ρ(u)]]
j 6= [[ρ(t)]]

¬f(j)).

Now Q is correct if ACPG(S) + REC + RSP `2 Q = Q′, where Q′ is defined by:

Q′ = ∂H(G′ ‖ (P1 ‖ P2))

Process Algebra and Dynamic Logic 15

with H, P1 and P2 as above, and G′ is defined by (the difference between G and G′ is underlined):

G′ = [x := n] s(!x) [x := x+ 1] s(!x)G′1
G′1 = rnotok [x := x+ 1] s(!x)G′1 + rok(?y)G′2
G′2 = ¬〈x = y〉 · 〈α(y, y)〉〈f(y)〉 · w(y) +

〈x = y〉(rok(?y) · 〈α(y, y)〉〈f(y)〉 · w(y) +
rnotok · 〈α(x, x)〉〈f(x)〉 · w(x)).

Note that α is unnecessarily complex to state the correctness of Q. But this formulation is useful in
the second phase of the proof of ACPG(S) + REC + RSP `2 Q = Q′.

This proof is given by first expanding Q and Q′ to the merge-free forms R and R′:

R = [x := n]([x1 := x] [x := x+ 1] [x2 := x] ·R1 +
[x2 := x] [x := x+ 1] [x1 := x] ·R1)

R1 = ¬〈f(x1)〉cnotok [x := x+ 1] [x1 := x] ·R1 +
¬〈f(x2)〉cnotok [x := x+ 1] [x2 := x] ·R1 +
〈f(x1)〉 [y := x1]R2 +
〈f(x2)〉 [y := x2]R3

R2 = ¬〈x = y〉w(y) +
〈x = y〉(〈f(x2)〉 [y := x2]w(y) + ¬〈f(x2)〉 cnotok w(x))

R3 = ¬〈x = y〉w(y) +
〈x = y〉(〈f(x1)〉 [y := x1]w(y) + ¬〈f(x1)〉 cnotok w(x)).

The process R′ is defined likewise, except that w(x) is replaced by 〈α(x, x)〉 〈f(x)〉w(x) and w(y) by
〈α(y, y)〉 〈f(y)〉w(y). It can be proved that

ACPG + REC + RSP ` Q = R and ACPG + REC + RSP ` Q′ = R′. (3)

In order to show that BPAG(S) + REC + RSP ` R = R′ the following instances of SI, WPC1 and
WPC2 are needed in addition to those given in Example 3.5. Let F be some function on integer
expressions.

φ cnotok φ = φ cnotok for all φ ∈ G,
¬〈t = t〉 = δ,
〈t = u〉 ¬〈u = t〉 = δ,
〈t = u〉 〈u = v〉 ¬〈t = v〉 = δ,
〈t1 = u1〉 · ... · 〈tk = uk〉 ¬〈F (t1, ..., tk) = F (u1, ..., uk)〉 = δ,
〈t+ 1 = u〉 〈t = u〉 = δ,
¬〈f(t)〉 〈α(t, u)〉 ¬〈α(u, u+ 1)〉 = δ,
¬〈f(t)〉 〈α(u, t)〉 ¬〈α(u, t+ 1)〉 = δ,
〈α(t, u− 1)〉 〈t = u〉 = δ.

Note that these identities are valid. Let

β
def
= ¬〈x1 = x2〉(〈α(x1, x2)〉 〈x = x2〉+ 〈α(x2, x1)〉〈x = x1〉).

It is easy to show that

R , β R1 , 〈y = x1〉〈f(x1)〉β R2 , 〈y = x2〉〈f(x2)〉β R3

16 6 DISCUSSION ON THE KLEENE STAR

and

R′ , β R′1 , 〈y = x1〉〈f(x1)〉β R′2 , 〈y = x2〉〈f(x2)〉β R′3

are solutions for T, T1, T2 and T3, respectively, in the following specification:

T = [x := n]([x1 := x] [x := x+ 1] [x2 := x] · T1 +
[x2 := x] [x := x+ 1] [x1 := x] · T1)

T1 = β (¬〈f(x1)〉cnotok [x := x+ 1] [x1 := x] · T1 +
¬〈f(x2)〉cnotok [x := x+ 1] [x2 := x] · T1 +
〈f(x1)〉 [y := x1]T2 +
〈f(x2)〉 [y := x2]T3

T2 = 〈y = x1〉〈f(x1)〉β(¬〈x = y〉w(y) +
〈x = y〉(〈f(x2)〉 [y := x2]w(y) + ¬〈f(x2)〉 cnotok w(x)))

T3 = 〈y = x2〉〈f(x2)〉β(¬〈x = y〉w(y) +
〈x = y〉(〈f(x1)〉 [y := x1]w(y) + ¬〈f(x1)〉 cnotok w(x)))

and thus BPAG(S) + REC + RSP ` R = R′. Using (3) above it follows that

ACPG(S) + REC + RSP `2 Q = Q′

as was to be proved.

6 Discussion on the Kleene star

It is for the author still an open question whether the Kleene star operator ∗ can be incorporated in
process algebra such that its operational meaning is captured, and such that bisimulation semantics
can be characterized by (conditional) equational laws.

Following [Fer92], a first alternative is to consider p∗ as the process X defined by

X = pX + ε

and therefore satisfying the axiom

x∗ = x · x∗ + ε

(which also implies what transition rules are appropriate). The obvious mismatch is that for e.g.
an atomic action a the process a∗ may give rise to an infinite execution, contrary to how it is often
characterized. On the other hand, the conventional program while φ do a od would then translate
in

(φ · a)∗¬φ (cf. [Har84, KT90]) i.e., Y ¬φ where Y = φaY + ε

which is a deterministic process: Y ¬φ performs from a data-state s an a-transition to (Y ¬φ, effect(s, a))
iff (s, φ) ∈ test, and a termination transition otherwise. Indeed, taking ε (i.e., true) for φ, this program
represents an infinite a-loop, according to what should be expected.

A second alternative is to interpret for instance a∗ as the process defined by

ε+
∑

0<i<ω

ai.

Process Algebra and Dynamic Logic 17

One of the problems in this case is that it would require rather strong proof principles to distinguish
this process from

ε+
∑

0<i≤ω

ai.

Adopting this third alternative again introduces an infinite a-branch. It should be remarked that
the second alternative above matches most closely with the description of the ∗ operator as given in
[KT90]:

p∗ = “Execute p repeatedly a nondeterministically chosen finite number of times.”

Assume Σ(BPAG) is extended with the Kleene star ∗ with its operational meaning according to the
first alternative, i.e.,

p∗ = p · p∗ + ε.

Consider the following extension of BPA4
G with the five axioms Kl1 – Kl5 on the Kleene star (call the

resulting system BPA∗G):

A1 x+ y = y + x G1 φ · ¬φ = δ
A2 x+ (y + z) = (x+ y) + z G2 φ+ ¬φ = ε
A3 x+ x = x G3 φ(x+ y) = φx+ φy
A4 (x+ y)z = xz + yz G4 a(φx+ ¬φy) ⊆ ax+ ay
A5 (xy)z = x(yz) Kl1 x∗ = x · x∗ + ε
A6 x+ δ = x Kl2 x∗ = (x(x+ ε))∗

A7 δx = δ Kl3 (x+ y∗)∗ = (x+ y)∗

A8 εx = x Kl4 (x · y∗)∗ = ε+ x(x+ y)∗

A9 xε = x Kl5 (x∗(y + ε))∗ = (x(y + ε) + y)∗

Table 6: The axioms of BPA∗G where φ ∈ G and a ∈ A

The question whether these particular axioms completely characterize bisimilarity over Σ(BPA∗G) is a
topic of further research. However, the following typical identities are derivable in BPA∗G:

1. δ∗ = ε [Apply Kl1, A7 and A6],
2. (x∗)∗ = x∗ [Apply Kl3 on (δ + x∗)∗],
3. x∗ · x∗ = x∗ [Apply Kl1 on (x∗)∗],
4. ε∗ = ε [Use 1 and 2],
5. (x+ ε)∗ = x∗ [Use 1 and Kl3],
6. (x+ ε)(x+ y)∗ = (x+ y)∗ [Use Kl1 on (x+ y)∗, extract x(x+ y)∗, Kl1],
7. x∗(x+ y)∗ = (x+ y)∗ [Use Kl3, Kl1 on (x+ y)∗],
8. (x∗y∗)∗ = (x+ y)∗ [Use Kl4, Kl3, 7, omit ‘ε+’],
9. (x+ y∗z∗)∗ = (x+ y + z)∗ [Use Kl3, 8, Kl3],
10. (x∗ · y∗ · z∗)∗ = (x+ y + z)∗ [Use Kl4, 9, 7, omit ‘ε+’],
11. ((x+ ε)(x+ ε))∗ = x∗ [Use Kl1, 6 and omit ‘+ε’].

As for the expressivity of Σ(BPA∗G), it does not seem to be the case that all finitely branching finite
state processes are specifiable (modulo bisimulation semantics). Consider for example the following
transition system over a trivial data environment with singleton state space (its root is marked with

18 REFERENCES

a little arrow):

?

&%
'$s�s
s - s
y

z

√

a b
√

which seems not to be specifiable (the right-hand side termination step causes the problem: termi-
nation within an iteration can only occur (?) if at that state a new iteration exists). Observe that
replacing b by a makes the transition system above specifiable, e.g. by a∗.

References

[BK84] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the algebra
of regular processes. In J. Paredaens, editor, Proceedings 11th ICALP, Antwerp, volume 172
of Lecture Notes in Computer Science, pages 82–95. Springer-Verlag, 1984.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science 18. Cambridge University Press, 1990.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall International, Englewood Cliffs,
1976.

[Fer92] R.T.P. Fernando. Parallelism, partial evaluation and programs as relations on states. In
preparation.

[GP90] J.F. Groote and A. Ponse. Process algebra with guards. Report CS-R9069, CWI, Amsterdam,
1990. To appear in Formal Aspects of Computing.

[Har84] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, volume II, pages 497–604. Reidel, 1984.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of
the ACM, 32(1), 137–161, 1985.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, 1985.

[KT90] D. Kozen and J. Tiuryn. Logics of programs. Handbook of Theoretical Computer Science,
pages 789–840. Elsevier Science Publishers, 1990.

[MA86] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1986.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1980.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatica,
pages 319–340, 1976.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, 5th

GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer-
Verlag, 1981.

Process Algebra and Dynamic Logic 19

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, 1981.

[Pon89] A. Ponse. Process expressions and Hoare’s logic. Information and Computation, 95(2):192–
217, 1991.

[Sio64] F.M. Sioson. Equational bases of Boolean algebras. Journal of Symbolic Logic, 29(3):115–124,
September 1964.

