
Interface Groups and Financial Transfer

Architectures

Jan A. Bergstra a,b,1 Alban Ponse a

aUniversity of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

bUtrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

Abstract

Analytic execution architectures have been proposed by the same authors as a means
to conceptualize the cooperation between heterogeneous collectives of components
such as programs, threads, states and services. Interface groups have been proposed
as a means to formalize interface information concerning analytic execution archi-
tectures. These concepts are adapted to organization architectures with a focus on
financial transfers. Interface groups (and monoids) now provide a technique to com-
bine interface elements into interfaces with the flexibility to distinguish between
directions of flow dependent on entity naming.

The main principle exploiting interface groups is that when composing a closed
system of a collection of interacting components, the sum of their interfaces must
vanish in the interface group modulo reflection. This certainly matters for financial
transfer interfaces.

As an example of this, we specify an interface group and within it some spe-
cific interfaces concerning the financial transfer architecture for a part of our local
academic organization.

Financial transfer interface groups arise as a special case of more general service
architecture interfaces.

Key words:
Interface, Interface group, Financial transfer, Execution architecture.

1 Jan Bergstra acknowledges support from NWO Jacquard project Symbiosis

24 April 2007

1 Introduction

In [7] we proposed “analytic execution architectures” as a means to concep-
tualize the cooperation between key components such as programs, threads,
states and services. Interfaces are a practical tool for the development of all
but the most elementary architectural designs. We will now use that termi-
nology as well for the case that components mainly interact by transferring
financial assets amongst one-another.

Interface groups have been proposed in [8] as a technique to combine interface
elements into interfaces with the flexibility to distinguish between permission
and obligation and between promise and expectation which all come into play
when component interfaces are specified.

As a vehicle to present and investigate interface groups we have used the
program algebra PGA as defined in [4] and thread algebra (TA, [5], [18]).

From the set of basic actions A that underlies any program algebra or thread
algebra a set ifeft(A) of interface elements is derived. These generate the in-
terface group for A (in additive notation). In the case of a financial transfer
architecture the rather simplistic assumption is that an organization is com-
posed of a number of entities. Assuming that this decomposition into entities
is stable for a significantly extended period of time, it becomes both mean-
ingful and helpful to specify for each entity in an organization to what extent
it can make financial transfers to other entities inside or outside the organiza-
tion. Below interface groups are proposed as a means to specify large sets of
interfaces from which appropriate ones may be chosen to represent a certain
observed or imagined financial transfer architecture.

The main principle that makes use of an interface group is that when com-
posing a closed system of a collection of interacting components, the sum of
their interfaces must be 0. This holds in the case of an interface architecture
for a program execution architecture just as much as for a financial transfer
architecture that is supposed to shed light on some complex financial transfer
architecture.

What has been left out on purpose at this level of abstraction is what many
people seem to consider the most important: quantitative information. The
idea is that each pair of entities and direction and even each ’explanation’ or
motive may entail different rules of engagement which may be needed to decide
or compute how a certain transfer is to be achieved. In some cases additional
or complementary payments may be needed to other parties which one may
not yet know or which one prefers to hide at a certain level of abstraction.
For instance taking money from a cash point might involve a transfer towards
one’s bank which is hidden at some level of abstraction. In general, transaction

2

costs may be preferably ignored at initial stages of the design of a financial
transfer architecture only to be specified in a subsequent stage of refinement.
Similarly designs may initially ignore theft, fraud or misuse of services, only
to add these ’features’ in subsequent refinement stages.

The paper is structured as follows: in Section 2 we introduce interface elements
and various kinds of interface groups. Then, in Section 3 we consider localiza-
tion, globalization, and some other natural operations on interface groups. In
Section 4 we introduce components and architectures for describing financial
transfers. Then, in Section 5 we discuss the design of some financial transfer in-
terfaces by examples. In Section 6 we provide some discussion and concluding
remarks.

2 Interface elements, interface monoids and interface groups

In this section we introduce our basic technical ingredients: interface elements
and interface groups. When working on the design of a financial transfer ar-
chitecture, it is suggested that one is very precise about the interfaces of the
components and that all interfaces are chosen as elements of an interface group.

2.1 Interface elements

Three ingredients are presupposed:

• A finite set A of so-called basic transfer actions, these will carry information
about the form of transfer, e.g., cash, electronic wallet, credit card, debit
card, bank transfer, annual, monthly, weekly, daily, random.

• A finite set E of entities which will serve as components of financial transfer
architectures. In our example below these will be various parts of a Faculty
of Science of a Dutch University.

• A finite set M of motives or explanations. A motive explains why a transfer
is made, the typical examples being ‘salary’ or ‘travel reimbursement’.

The set of financial transfer interface elements is introduced:

ifeft(E,A,M)) = {e.a(m)@f/α,∼e.a(m)@f/α | e, f ∈ E, a ∈ A,m ∈M,

α ∈ {TF, T, F, λ}}.

The intended meaning of these interface elements is as follows:

3

• e.a(m)@f/TF indicates the permission (option, ability) of an entity f to
issue a financial transfer a(m) (action a with motive m) towards an entity
e, while expecting reply either T or F with T representing that the request
has succeeded and the transfer has taken place and F representing a refusal
of the transfer by e. e.a(m)@f/TF is called a service interface element or
outgoing transfer element.

• ∼e.a(m)@f/TF indicates the permission (option, ability) of a component
f to receive a transfer a(m) from entity e, where f has the right to either
accept or refuse which is is signaled by returning reply T or F to the issuing
entity e. ∼e.a(m)@f/TF is called a client interface element or incoming
transfer element.

If α is T the request must be accepted, if α is F the request is always refused
and if α is λ no information is given about whether or not the request is
accepted. Here λ denotes the empty string.

In the sequel of this paper all interface elements used will be of the form
e.a(m)@f/TF or ∼e.a(m)@f/TF . This implies that components are never
forced to accept incoming transfers or to permit outgoing transfers. Such de-
cisions are made dynamically. For instance if an interface describes transfers
during some standardized time slot (e.g. 24 hours) it is possible that a certain
transfer is accepted only once, while all subsequent requests are turned down.
By restricting α to TF the possibility to indicate that some transfers are al-
ways accepted and others may be never accepted is given up. The features can
be used to express that some components are in the lead, because some other
components will always accept their transfer request, or to express that a very
plausible request will never be accepted. The difference between an interface
containing e.a(m)@f/F and the same interface not containing e.a(m)@f/F is
that the second interface considers a transfer e.a(m)@f a static error whereas
in the first case it is considered a dynamic failure. We will use the following
abbreviation:

e.a(m)@f = e.a(m)@f/TF.

In the sequel use will be made of interface combination + and interface inver-
sion −. The intended meaning of interfaces derives from the intended meaning
of client and service interface elements as described above. In a composed in-
terface I + J it is implied that the combination of two options is the option
(ability, permission) to do both. To simplify the notation the following order-
ing of precedence is used:

+ < − < / < @ < ∼ < .

Moreover the convention X − Y = X + (−Y) is used. For instance,

I −∼f.a(m)@g − J stands for I + (−((∼(f.a(m)))@g)) + (−J).

4

Instead of a(m) we will write often am in order to save brackets.

It is purely a matter of design to take f.am@g to represent a transfer to f
rather than from f . In fact two decisions are implicit in the notation:

(1) f.am@g rather than g.am@f represents a transfer to f made by g is
because g performs the action which changes the state of f (provided f
accepts the transfer),

(2) f.am@g rather than −f.am@g represents a transfer made by g is because
it will usually be on the initiative of g that its transfer to f is made.
That initiative, however, may well take place as a consequence of some
preceding request for this transfer expressed in different notation.

2.2 The financial transfer interface monoid

The financial transfer interface monoid ifmft(E,A,M) is the commutative
monoid with additive notation, generated from the set ifeft(E,A,M).

With ifmft ,B(E,A,M) the submonoid of ifmft(E,A,M) is denoted which is
generated by interface elements of the form e.a(m)@f/TF and∼e.a(m)@f/TF
(here B stands for the set {T, F}). Working in ifmft ,B(E,A,M) we stick to
the abbreviation e.am@f for e.a(m)@f/TF .

2.3 Financial transfer interface groups

Three groups will be used for calculation with interfaces. The free interface
group permits incremental modifications of interfaces.

2.3.1 Free FT-interface group

Interface architecture descriptions can be presented as elements of
ifmft ,B(E,A,M). When modifying such descriptions is it useful to be able to
add and subtract interface elements. For that reason the interface monoid
ifmft ,B(E,A,M) is embedded in a free interface group fifgft ,B(E,A,M). This
is the free commutative group in additive notation generated from the same
generators as ifmft ,B(E,A,M).

One may wonder what meaning can be assigned to the multiple occurrence
of an interface element in the free FT-interface group. Consider f.am@g +
f.am@g. This interface may arise as the result of the application of an ab-
stracting homomorphism ψ to an interface f.am1@g + f.am2@g, where ψ for-

5

gets the distinction between m1 and m2. Non-trivial interface element multi-
plicities therefore indicate that certain transfers may be performed in different
ways, from which an abstraction is made.

2.3.2 The reflector group

The reflector group R is a subgroup of the free interface group which contains
all interface elements that vanish if the following equation (reflection law) is
assumed:

f.am@g + ∼g.am@f = 0.

Reflector elements are interfaces of the form f.am@g + ∼g.am@f and the
reflector group is the subgroup of the free FT-interface group generated by
all reflector elements. We note that interface elements of the particular form
f.am@f and ∼f.am@f are also in R.

2.3.3 Interface group modulo reflection

Because the reflector group is a normal subgroup of the free interface group
one may introduce the quotient group of both. This group, given by

fifgft ,B(E,A,M)/R

is called the financial transfer interface group modulo reflection. Obviously
fifgft(E,A,M)/R is the commutative group in additive notation, generated
from the set ifeft(A) as generators, modulo the reflection law. The homo-
morphism from ifgft ,B(E,A,M) to fifgft ,B(E,A,M)/R is called the reflection
mapping and is denoted with φR.

The reflection law f.am@g + ∼g.am@f = 0 holds in the FT-interface group
modulo reflection. It can be written equivalently as

−f.am@g = ∼g.am@f or f.am@g = −∼g.am@f.

2.4 Closed interfaces

The main purpose of the introduction of fifgft ,B(E,A,M)/R is that it per-
mits the following architectural integrity check on an interface specified in
fifgft ,B(E,A,M): I ∈ fifgft ,B(E,A,M) is a closed interface if φR(I) = 0 in
fifgft ,B(E,A,M)/R.

The motivation for having the monoid ifmft ,B(E,A,M) and the free group
fifgft ,B(E,A,M) explicitly available rather than merely its quotient

6

fifgft ,B(E,A,M)/R is twofold: the monoid contains interface descriptions in
normal form (with positive and negative elements cancelled out). The free
group is more expressive in permitting the notion of changes (delta’s) between
different designs stages. Both the monoid and the free group permit transitions
back (localization) and forth (globalization) to the localized interface monoids
as introduced in the following section. In particular, localization cannot be
defined from the interface group modulo reflection. Because localization and
globalization are considered indispensable tools for understanding complex
interface descriptions this renders the use of the free group unavoidable.

2.5 Ordering and other structure

Following [8] a partial ordering ≤ on interfaces in ifmft ,B(E,A,M) is generated
by these rules:

• 0 ≤ p for all interface elements p ∈ ifeft(A),
• 0 ≤ X if and only if −X ≤ 0,
• X ≤ X + Y if and only if 0 ≤ Y .

Interfaces as modeled by interface groups have less structure than the signa-
tures used as interfaces in the module algebra of [3]. Module algebra, however
fails to provide any concept of reflection and for that reason it has a bias in the
direction of the combination of services (rather than clients). Module algebra
and similar approaches fail to provide the basic technical ingredients needed
for the description of analytic execution architectures which are meant to
combine various components such as clients and services in asymmetric ways.

3 Localization and globalization

For a particular entity it is unhelpful to always indicate it being the source of
outgoing transfers or the receiver of incoming transfers. For that reason the
following notation is proposed:

lifeft(E,A,M) = {f.a(m)/α,∼f.a(m)/α | f ∈ E, a ∈ A,m ∈M,

α ∈ {TF, T, F, λ}}.

These are called localized interface elements. The intended meaning of these
elements is as follows:

• f.a(m)/TF indicates the permission (option, ability) of an entity (with its
name left implicit, i.e. a default entity) to issue a financial transfer a(m)

7

(action a with motive m) towards an entity f , and to expect either T or F
as a reply respectively signaling success of failure of the request.

• ∼f.a(m)/TF indicates the permission (option, ability) of a default entity
to receive a transfer a(m) from entity f and to reply either positively or
negatively.

Like in the localized case with restricted forms of α the corresponding restric-
tions on replies are assumed, and equally similar to the non-localized case
f.am abbreviates f.a(m)/TF .

The localized financial transfer interface monoid lifmft(E,A,M) is the com-
mutative monoid (in additive notation) generated by lifeft(E,A,M).

With lifmft ,B(E,A,M) we denote the submonoid of lifmft(E,A,M) generated
by interface elements of the form f.a(m)/TF and ∼f.a(m)/TF which are in
that context always abbreviated by f.am and ∼f.am.

When working on the design of a financial transfer architecture it is now sug-
gested that for various entities component interfaces are specified as elements
of lifmft ,B(E,A,M).

3.1 From local to global and back

Local interfaces specify an interface from the perspective of a single entity
of which the name is left implicit whereas global interfaces take a number of
entities into account and contain all interface information in a form which
makes implicit names explicit. Mathematically, local FT interfaces exist in a
free additive monoid, and in a free additive group whereas global FT interfaces
exist in the monoid as well as the free interface group and in addition to these
in the interface group modulo reflection from the previous section.

3.2 Globalization

For each entity e ∈ E the mapping φe is a homomorphism from lifmft ,B(E,A,M)
into ifmft ,B(E,A,M) given by the following equations for interface elements:

φe(f.am) = f.am@e

and

φe(∼f.am) = ∼f.am@e.

The mapping φe is called globalization as it turns a local interface into a global
one by making its implicit entity name explicit.

8

3.3 Localization

In the opposite direction to globalization localization transforms global inter-
faces (represented in ifmft ,B(E,A,M)) to localized ones: φe.

Its defining equations are:

φe(0) = 0,

φe(x+ y) =φe(x) + φe(y),

φe(f.am@g) = f.am � (g = e) � 0,

φe(∼f.am@g) =∼f.am � (g = e) � 0.

Here P � c�Q is the well-known infix alternative notation for the conditional
expression if c then P else Q which features in many program notations. It is
immediate that localization is a right inverse of globalization on local interface
elements: φe ◦ φe = Ide.

Localization can be extended to all of fifgft ,B(E,A,M) by means of these
additional defining equations:

φe(−f.am@g) =φe(∼g.am@f),

φe(−∼f.am@g) =φe(g.am@f).

3.4 Global interface decomposition

Let E be finite. For each interface x ∈ fifgft ,B(E,A,M),

x =
∑
e∈E

φe(φe(x)).

This representation provides a systematic means to use local interface element
notation only and to present a large interface as a sum of globalized and previ-
ously defined localized interfaces. These localized interfaces can be designed at
a stage where not even all relevant entities E are known. This representation
provides a decomposition of a global interface into localized ones.

3.5 Conditional interface elements

Suppose that when designing a financial transfer interface it is unclear whether
or not a certain transfer may ever materialize. Then it can be helpful to use a

9

global boolean variable c and a conditional local interface element

f.a(m) � c� 0

at entity g while at the complementary entity f one uses −g.a(m) � c � 0.
Whatever the boolean value of c the 0-sum condition need not be violated
when working this way.

3.6 Entity refinement homomorphisms

It is reasonable to view entities as object that can coexist in parallel. There-
fore the parallel composition e‖f can be considered an entity as well. Parallel
composition is assumed to be associative and commutative. Viewing an inter-
face description within an interface group as a design stage it is reasonable to
expand entity f into f1‖ . . . ‖fn thus expressing that f consists of n entities at
a lower level of abstraction. The homomorphism φf→f1‖...‖fn works as follows
on global interface elements (taking n = 2 for readability):

φf→f1‖f2(g.am@h) =

((f1.am@f1 + f1.am@f2 + f2.am@f1 + f2.am@f2)

� (f = h)�

(f1.am@h+ f2.am@h))

�(f = g)�

((g.am@f1 + g.am@f2) � (f = h) � g.am@h),

and in the same style an equation can be given for elements of the form
∼g.am@h. After an application of a refinement homomorphism many options
may emerge that will play no further role. A further annihilation homomor-
phism may then be needed to equate each irrelevant option with the interface
group unit 0.

3.7 Composition of motives

To shorten the interface specifications it is helpful to have a combination op-
erator + on M as well as on interfaces. The operator + is assumed to be
associative and commutative. This turns the set of motives into a finitely gen-
erated free semi-group. The following equations axiomatize what is expected
of mode composition in relation to interfaces.

10

f.a(0)@g= 0,

∼f.a(0)@g= 0,

f.a(v + w)@g= f.a(v)@g + f.a(w)@g,

∼f.a(v + w)@g=∼f.a(v)@g + ∼f.a(w)@g.

4 Combining components and describing architectures

Several terms are used to indicate the working of components in a system. In
[8] we used interface elements with the additional structure that subsequent
to an action the service produces a boolean reply value. Architectural com-
ponents that may implement such interfaces are programs, program objects,
instruction sequences and polarized processes following the formalization of
[4,2], and threads, services and multi-threads as presented in [5].

What these terms have in common is that they make reference to descriptions
of the functionality (behavior, inner structure, underlying mechanism) of parts
of conceivable systems. These parts are either named by their role (thread,
client or service) or by their mathematical identity (process, program object,
polarized process).

It is tempting to view these references as references to actual, potential, de-
signed or contemplated system components but we will propose not to do so.
Instead we will propose to view a component as a pair [i, E] of an interface
i and an embodiment E. Threads, programs, services and so on are typical
embodiments while the elements of the aforementioned interface groups may
act as interfaces. In the financial setting embodiments are either true parts
of an organization, if no further formalization is performed or descriptions
thereof which specify their potential behavior. Such specifications can be cast
as processes and for instance be viewed as processes that may be specified
in detail in process algebra (see for instance the recent survey in [12]) based
formalisms like µCRL [13] or PSF [16].

What it means for an entity X that its behavior complies with a financial
transfer interface i is not easily defined with full precision. Informally it is
obvious, let i be an interface in lifmft ,B(E,A,M) then X complies with i
provided:

(i) all outgoing financial transfers of X are instances of some (may be more)
positive interface elements p that are contained in X (i.e. p ≤ i), and

(ii) for all incoming transfer elements ∼p of i (∼p ≤ i) there is a range
of incoming transfers for X which cover all reasonable instantiations of the
atoms of p.

11

4.1 Declared components and contained components

Having this definition available a declared component is a pair [i,X] of an
interface and a financial behavior X that complies with X.

A closely related concept is that of a contained component. This is a pair
[i,X] with X a behavior such that (ii) above holds w.r.t. i and moreover: all
outgoing transfers which are not instances of a positive p contained in i are
forbidden (blocked, disallowed) while also all incoming transfers that are not
instances of a negated interface element −p of i are forbidden. For components
a convincing definition of their interface exists: I([i,X]) = I([i,X]) = i.

In the discussion and examples below contained components will not be used
and attention will be limited to declared components, which will be called
components because no confusion can arise. This is no real restriction because
for any constrained component [i,X] the pair [i, [i,X]] is a declared compo-
nent which happens to possess the same interface and the same behavior when
restricted to instantiations of interface elements and of negated interface ele-
ments of i. These descriptions are vague to the extent that the very nature of
instantiations of transfer interface elements is left open.

If C is a declared component with interface i and i ≤ j then [j, C] is a declared
component as well.

4.2 Financial transfer architectures

A named (declared) component is a pair e:C with C a component. A named
interface is a pair e:i with i an interface (taken in ifmft ,B(E,A,M) or in
fifgft ,B(E,A,M)).

A sequence of named localized FT interfaces e1:i1, ..., en:in is a closed financial
transfer architecture (CFTA) if

φR(
∑

1≤k≤n

φek
(ik)) = 0.

The simplest example is this: i1 = e2.am, i2 = ∼e1.am. Then
φR(φe1(e2.am) + φe2(∼e1.am)) = e2.am@e1 + (∼e1.am)@e2 = 0. The reflection
law has been introduced precisely to make this kind of example work.

A realization of a CFTA consists of a sequence of named declared components
e1:[i1, X1], ..., en:[in, Xn].

12

4.3 A survey of components

The behavior part of a component has been left unformalized in the preceding
definitions. There are many ways in which behaviors may be conceived. For
instance all transfers involved may be records of past events. In that case
the architecture describes an abstraction of a bookkeeping. Alternatively a
behavior may contain a tree of potential unfoldings of future behavior (in
other words a process in the sense of process algebra or more generally in
the sense of transition systems). Yet another option is that both aspects are
present in all descriptions.

5 Financial transfer interface design

Before providing examples the main expected merits of design and specifica-
tion, if not engineering, of financial transfer interfaces (FTI’s) may be listed.
Three types of artefacts may be engineered: LFTI’s (local FTI’s), GFTI’s
(global FTI’s, also called FTIA’s for FTI architectures, usually found by means
of sums of globalized LTI’s following 3.4, and CFTIA’s, for FTIA’s that satisfy
the 0-sum criterion mentioned in 4.2.

Precisely for formulating the 0-sum criterion the (commutative additive) group
structure of interfaces is considered helpful. An alternative formulation is that
this group structure provides multisets with (multiple) negative occurrences as
well as (multiple) positive occurrences. Expected advantages of working with
FTI’s (including both LFTI’s and GFI’s (=FTIA’s)) include the following:

(1) An FTI provides qualitative information prior to any quantitative infor-
mation. If an existing organization is analyzed FTI design constitutes
a form of reverse engineering that ought to lead to an agreement. Be-
fore such an agreement is achieved it may be pointless to proceed with
quantification of financial streams. An FTI aggregates logical information
about money streams to a comprehensible whole (in principle at least).

(2) Only once a CFTIA is known it is plausible and helpful to apply Kirch-
hoff’s current law for electrical circuits [21] to the money streams that
flow into and out of each entity (the current entering any junction is equal
to the current leaving that junction).

(3) An FTI may be used for describing past transactions during a specified
time interval, say a fiscal year, but it may also be used to provided a
qualitative perspective on expected expenditures and incomes. But it may
also be used for planning data, as planned transfer might be conceived
as a mode of transfer.

(4) FTI descriptions are independent of existing or expected financial systems

13

and theories.
(5) An FTI description is neutral concerning profit or loss because of the full

absence of quantitative information. But it provides an important tool
for setting the stage in advance if one is to analyze the effect of certain
‘profit centers’ by providing an incentive to be as clear as possible about
the boundaries of such entities.

(6) If a new organization is designed, or — what occurs more frequently —
an organization is changing its structure it may be helpful to design an
expected CFTIA for the organization.

(7) In particular if sourcing decisions (in-sourcing, out-sourcing, out-sourcing
continuation, back-sourcing, introduction of a shared service center) are
contemplated a precise analysis of the CFTIA before and after the imple-
mentation of the envisaged sourcing decision may be helpful. This aspect
relates FTI’s to [19] and [11].

5.1 What to expect from examples?

This paper is not about a tool and what has been experienced by using it,
lessons from practice and so on. The story about FTI’s has emerged from
working on a question (i), combined it with a short term objective (ii) and a
long term perspective (iii):

(i) How can anything ’logical’ be said about finance? The motivation for this
question being that the notorious difficulty of designing a clear language con-
cerning financial matters may well be compared with similar difficulties in
computing.

(ii) An attempt to turn interface groups as proposed in [8] into a useful tool
for the investigation of IT outsourcing processes.

(iii) The working hypothesis that thread algebra (see [5]) will prove to be a
significant concept for the specification of financial systems, perhaps after an
extension to a timed thread algebra. Extending process algebra (see e.g. [12])
to timed versions has proven feasible, see [1], and the design of timed thread
algebras is definitely far simpler. The argument for this working hypothesis is
that the full complexity of arbitrary interleaving is not helpful in initial stages
of financial planning. Were financial planning to be considered safety-critical
in the way embedded computing is in spacecraft then more general theories
like process algebra and model checking might come into play in full (and
cumbersome) force.

Examples need to be given in this stage to demonstrate the reader that work-
ing out an LFTI or an FTIA is both doable and potentially informative.
Demonstrating that striving for CFTIA’s is of pragmatic value can’t be done

14

by means of textual examples. That step follows from the assumption that
quantitative analysis needs a closed system approach (at least at some level
of abstraction) and that the 0-sum criterion expresses that in an optimal way.
But it may well be that the main merit (if any) of designing LFTI’s and
(C)FTIA’s lies in the clarification that takes place during the design process
of rather than in obtaining a reliable stepping stone for moving towards a
quantitative model of an organization’s financial processes.

5.2 An example in detail

The example draws from facts about our own academic institution, the ‘Uni-
versiteit van Amsterdam’. The jargon has been provisionally translated and
the setting has been significantly simplified. Invisible to readers but clearly rec-
ognizable for the authors is the circumstance that deep differences of opinion
can be spotted concerning the appropriate LFTI’s which are to be expected
in a novel formal and financial structure of the organization which is currently
being designed.

The default (own) institution (UvA) name is left implicit, within this the
default name (FS for faculty of science) is left implicit. There is no need to
work out the whole organization is equal detail for all of its parts. This example
is most specific in the aspects the authors know best. Other people may add
correspondingly precise descriptions of their own parts of the organization,
and a substantial task may then remain if a CFTIA is to be manufactured
from the set of these parts.

The example will focus on three entities: HOSC06, MaEIis:SE, and MaEIis.

5.3 E, entities

The ’part of’ relation between entities is not made explicit, but transpires
from the following naming scheme:

(1) FCsp, facilities center: space
(2) FCeq, facilities center: equipment
(3) FCrm, facilities center: reproduction and media
(4) FCcat, facilities center: catering
(5) FinC, financial center
(6) ICs, informatics center services
(7) ICc, informatics center consultancy
(8) FS, faculty of science, containing the following entities:

• ESSC, educational shared service center, containing

15

· IO, international office
· SA, student administration
· CMD, course material distribution
· FM, financial management
· SC, student counseling
· TTP, timetabling and planning
· MC, marketing and communications

• BaEIs, bachelor Educational Institute (EI) of science
• MaEIis, master (Ma) EI of information sciences,
• MaEIes, MaEI of exact sciences
• MaEIles, MaEI of life and earth sciences
• MaEIps, MaEI of professional studies
• RIll, Research Institute (RI) of logic and language
• RIi, RI of informatics, containing:

· RIi:L:CSP Lab (L) of computing, system architecture and pro-
gramming (CSP)

RIi:L:CSP:SE, section software engineering (SE)
RIi:L:CSP:CSA, section computer systems architecture
RLi:L:CSP:SNE, section systems and network engineering
RIi:L:CSP:CS, section computational science

· RIi:L:HCS, L of human-computer studies
· RIi:L:IS, L of intelligent systems

• RIapp, RI for astroparticle physics
• RIms, RI for mathematics and statistics,
• RIlsbe, RI for life science: biodiversity and ecology
• RIlsmb, RI for life science: molecular biology
• RIlsnh, RI for life science: natural history
• RIe, RI for education in science
• RIhep, RI for high energy physics
• RIep, RI for experimental physics
• RItp, RI for theoretical physics
• RIc, RI for chemistry
• Di, division of informatics
• Dmap, division of mathematics, astronomy and physics
• Dc, division of chemistry
• Dles, division of life and earth sciences

(9) FH, faculty of humanities
(10) FSBS, faculty of social and behavioral sciences
(11) FL, faculty of law
(12) FBE, faculty of business and economy
(13) MS, medical school
(14) MSd, medical school for dentistry
(15) NWO, national research funding organization
(16) LSU, local sister university
(17) RSU1, remote sister university 1

16

(18) RSU2, remote sister university 2
(19) LUC1, local university college (polytechnic) 1
(20) LUC2, local university college 2
(21) OEEins, other external educational institutions
(22) OERins, other external research institutions
(23) OEo, other external organizations
(24) OEind, other external individuals (including staff)

5.4 A, modes

Only three modes are distinguished:

(1) cash, cash payment
(2) it, internal transfer
(3) et, external transfer

5.5 M, motives

Motives capture both an abstraction of the service delivered and a qualification
of the underlying service level agreement (SLA):

(1) hmt:csla, hours multiplied by tariff (HMT) based on common service
level agreement (SLA)

(2) hmt:nsla, HMT based on negotiated SLA
(3) hmt:isla, HMT based on incidental SLA
(4) hmt:rn, HMT based on retrospective negotiation
(5) fp:dsla, fixed price for dedicated SLA
(6) fp:fsla, fixed price for flexible SLA
(7) fp:rn, fixed price based on retrospective negotiation
(8) spe:rq, staff personal expenditure compensation, retrospectively quan-

tified
(9) spe:qa, staff personal expenditure compensation, quantified in advance

(10) qmv:cp, quantity multiplied by volume, common pricing
(11) qmv:ip, quantity multiplied by volume, incidental pricing
(12) mbba, model based budget allocation
(13) fbba, (production) figures based budget allocation
(14) fbbr, (production) figures based budget restitution
(15) us, unspecified
(16) usr, unspecified restitution

17

5.6 Examples of local interfaces

Given these constants for the sorts E, A and M , it is possible to denote a
vast number of local interfaces. Beforehand it should be stated that there is
of course no unique mot plausible LFTI for any entity. The plausibility of a
particular LFTI can only be judged in the context of a coherent philosophy
on how the organization as a whole is supposed to function. But at the same
time it can convey important information about this philosophy. As a first
example consider MaEIis, while ignoring its partitioning.

LFTI4MaEIis0 =

RIll.it(hmt:csla + hmt:nsla + hmt:rn) +

RIi.it(hmt:csla + hmt:nsla + hmt:rn) +

FH.it(fp:nsla) +

FSB.it(fp:nsla) +

FBE.it(fp:nsla) +

FL.it(fp:nsla) +

ICc.it(fp:dsla) +

ESSC.it(fp:fsla) +

LSU.et(fp:dsla) +

LUC1.et(fp:dsla + fp:rn + us) +

OEo.et(fp:fsla) +

OEind.et(fp:dsla) +

2 x OEEins.et(fp:fsla + fp:dsla) +

FSs.it(qmv:cp + qmv:ip) +

FSrm.it(qmv:cp + qmv:ip) +

FScat.it(qmv:cp + qmv:ip) +

ICs.it(qmv:cp) +

ICc.it(hmt:csla) +

OEind.et(fp:dsla + spe:qa + spe:rq)

-FS.it(mbba + fbba + us) + FS.it(fbbr + usr)

-OEins.et(fp:dsla) + RIi.it(fp:dsla) + LSU.et(fp:dsla)

The second interface for MaEIis modifies the first one by requiring services
from sister faculties to be provided at hours times tariff basis using a common
SLA. Moreover it opens the possibility of transfers to and from the division
(though giving no clues as to the motives for such transfers). Moreover costs
can be made for a conference (NIOC07). Cash payments can be received at the
entrance from those who did not register in advance and a cash payment may
be made to an invited speaker (whose credit card unexpectedly malfunctions
for instance).

LFTI4MaEIis1 = LFTI4MaEIis0

-FH.it(fp:nsla) + FH.it(hmt:csla)

18

-FSB.it(fp:nsla) + FSB.it(hmt:csla)

-FBE.it(fp:nsla) + FBE.it(hmt:csla)

-FP.it(fp:nsla) + FH.it(hmt:csla) +

-Di.it(us) + Di.it(usr) +

-OEind.cash(us) + NIOC07.et(us) + OEind.cash(us)

The picture may be further refined by splitting the MaEIis into the various
components that have been listed. But that might be considered artificial,
as it will not introduce any new types of transfers. On the other hand, if it
is considered preferable to allocate all incoming funds to one of the master
programs or to G (management and planning), this can be done for instance
just for one program (say SE) and one obtains e.g.

LFTI4MaEIis2 = LFTI4MaEIis1 +

SE.it(mbba + fbba + us)

- OEEins.et(fp:fsla + fp:dsla) - ICc.it(fp:dsla)

The transfers specific for running the program SE will now feature as a part
of the LFTI for SE. Details of that LFTI will not be presented as an exam-
ple, assuming that the reader can imagine how that might work. It should be
stressed that these interface descriptions are quite realistic but still require
significant additional explanation. As a consequence it can be noted that ex-
tensive comments are essential if LFTI specifications are intended to be prac-
tically helpful in any concrete case. One might include comments in a LaTeX
like environment description: %[.....%] which should follow directly the in-
terface element that is being commented. In the example below LFTI4MaEIis0

is split in a part with comments and a part without comments.

LFTI4MaEIis0 = LFTI4MaEIis0comm + LFTI4MaEIis0nocomm

LFTI4MaEIis0comm =

RIll.it(hmt:csla + hmt:nsla + hmt:rn) +

%[full cost compensation (FCC) for RIll teaching staff (TS)%]

RIi.it(hmt:csla + hmt:nsla + hmt:rn) + %[FCC for RIi TS%]

FH.it(fp:nsla) + %[negotiated compensation (NC) for FH TS%]

FSB.it(fp:nsla) + %[NC for FSB TS%]

FBE.it(fp:nsla) + %[NC for FBE TS%]

FL.it(fp:nsla) + %[NC for FL TS%]

ICc.it(fp:dsla) + %[NC for ICc TS%]

ESSC.it(fp:fsla)+ %[fixed price for flexible realization of SLA

LSU.et(fp:dsla) + %NC for FH TS%]

LUC1.et(fp:dsla + fp:rn + us) + %[NC for FH TS &

compensation for services without preceding SLA &

allocation for joint management effort on ASICT&

compensation for use of SNE laboratory space%]

19

LFTI4MaEIis0nocomm =

OEo.et(fp:fsla) +

OEind.et(fp:dsla) +

2 x OEEins.et(fp:fsla + fp:dsla) +

FSs.it(qmv:cp + qmv:ip) +

FSrm.it(qmv:cp + qmv:ip) +

FScat.it(qmv:cp + qmv:ip) +

ICs.it(qmv:cp) +

ICc.it(hmt:csla) +

OEind.et(fp:dsla + spe:qa + spe:rq)

-FS.it(mbba + fbba + us) + FS.it(fbbr + usr)

-OEins.et(fp:dsla) + RIi.it(fp:dsla) + LSU.et(fp:dsla)

6 Discussion and concluding remarks

After a discussion of related literature concerning interfaces and a discussion of
related financial literature some directions for subsequent work are mentioned.

6.1 Interfaces and interface groups in other work

The term interface group has been discussed in [17] and occurs widely in the
literature about internet protocols; it was used by Keith Cheverst et. al. in
the context of groupware description [10]. These uses of the phrase make no
reference to the mathematical theory of groups. For that reason we consider
it justified to propose the meaning assigned to ‘interface group’ in this paper
for use in a theoretical context.

A significant theory of interfaces and components is given by Scheben in [20].
Issued requests are referred to as ‘required services’, whereas accepted requests
are referred to as provided services. Scheben also designs a general notation
for the description of component interfaces. In [22] interfaces are cast in terms
of interface automata. What is called a reply service in [6] is a special case of
interface automata.

A convincing example of interfaces is given by the so-called instruction set ar-
chitectures for microprocessors, used throughout computer engineering, which
can be given a theoretical basis by means of the classical theory of Maurer in
[15]. Recent work on improved architectures depends on generic transforma-
tions of instruction sets (see [14]).

20

The constraint that a boolean is given in return when a request a is accepted
(−a/TF) may be considered a ‘promise’. Mark Burgess has been developing
theory of promises for the description of services in networks of autonomous
components (see [9]). Interface groups can be used to formalize parts of his
work. Besides in general systems architecture for computing and in the foun-
dations of bookkeeping, as suggested in this paper, interface groups might be
used to formalize the work on sourcing architectures by Rijsenbrij and Delen
in [19] and subsequently in [11]. Their theory of atomic outsourceable units
requires a formal foundation which critically depends on a systematic use of
interfaces.

6.2 Further questions concerning financial transfer architectures

Many further projects can be imagined, in particular with modeling increas-
ingly more complex organizations by means of specifications of FT interfaces
that describe their internal architecture. Unavoidably for complex organiza-
tions these interfaces will not be static but may change in time. The specifica-
tion of dynamically changing interfaces poses some challenge and can’t simply
be imported from the computer science literature.

We have until now failed to find related literature in management finance
theory if any exists. Finding appropriate connections with theories of finance
is an objective that will require further attention in subsequent research.

References

[1] J.C.M Baeten and C.A. Middelburg, Process algebra with timing. Springer-
Verlag, 2002

[2] J.A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.
In J.C.M. Baeten, J.K. Lenstra, J. Parrow, and G.J. Woeginger (editors),
Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, Springer-Verlag,
LNCS 2719:1-21, 2003.

[3] J.A. Bergstra, J. Heering and P. Klint. Module Algebra. J. ACM 37(2):335-372,
1990.

[4] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal
of Logic and Algebraic Programming 51(2):125-156, 2002.

[5] J.A. Bergstra and C.A. Middelburg, Thread algebra for strategic interleaving.
Technical report PRG0404, Programming Research Group, University of
Amsterdam, November 2004. To appear in Formal Aspects of Computing.

21

[6] J.A. Bergstra and C.A. Middelburg. A thread algebra with multi-level strategic
interleaving. In S.B. Cooper, B. Loewe and L. Torenvliet (editors), CiE 2005,
Springer-Verlag, LNCS 3526:35-48, 2005.

[7] J.A. Bergstra and A. Ponse. Execution architectures for program algebra.
Journal of Applied Logic 5(1):170-192, 2007.

[8] J.A. Bergstra and A. Ponse. Interface Groups for Analytic Execution
Architectures, PRG Electronic Report PRG0601, Programming Research
Group, Department of Computer Science, University of Amsterdam, 2006.

[9] M. Burgess. An approach to understanding policy based on autonomy and
voluntary cooperation. 16th IFIP/IEEE Distributed Systems Operations and
Management (DSOM 2005), Springer-Verlag, LNCS 3775, 2005.

[10] K. Cheverst, G. Blair, N. Davies and A. Friday. The support of mobile-awareness
in collaborative groupware. Personal Technologies 3(1-2):33-42, 1999.

[11] G.P.A.J. Delen. (In Dutch) Decision- en controlfactoren voor sourcing van IT.
Ph. D. Thesis, University of Amsterdam (van Haren publishing Zaltbommel),
2005.

[12] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer-Verlag, 2000.

[13] J.F. Groote and A. Ponse. The syntax and semantics of muCRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen (editors), Algebra of Communicating
Processes, Utrecht 1994. Workshops in Computing, Springer-Verlag, pages 26-
62, 1995. (See also http://homepages.cwi.nl/∼mcrl/).

[14] C.R. Jesshope and B. Luo. Micro-threading, a new approach to future RISC.
In ADAC 2000, IEEE Computer Society Press, 34-41, 2000.

[15] W.D. Maurer. A theory of computer instructions. J. ACM 13(2):226-235, 1966.

[16] S. Mauw, G.J. Veltink. A Process Specification Formalism, Fundamenta
Informaticae XIII:85-139, 1990. (See also http://www.science.uva.nl/
∼psf/).

[17] M. Olsen, E. Oskiewics and J. Warne. A model for interface groups. JProc.
10th IEEE Symp. on Reliable Distributed Systems, 98-107, (Pisa Italy) 1991.

[18] A. Ponse and M.B. van der Zwaag. An introduction to program and thread
algebra. In A. Beckmann et al. (editors), CiE 2006, LNCS 3988, pages 445-458,
Springer-Verlag, 2006.

[19] D.B.B. Rijsenbrij and G.P.A.J. Delen. (In Dutch) Enterprise-architectuur is
een noodzakelijke voorwaarde voor verantwoorde outsourcing. In: IT service
management best practices (red. J. van Bon), van Haren Publishing Zaltbommel,
35-58, 2004

[20] U. Scheben. Hierarchical composition of industrial components. Science of
Computer Programming 56:117-139, 2005.

22

[21] C.R. Paul. Fundamentals of Electric Circuit Analysis. John Wiley & Sons, 2000.

[22] P. Völgyesi, M. Maróti, S. Dóra, E. Osses, and Á. Lédeczi. Software composition
and verification for sensor networks. Science of Computer Programming 56:191-
210, 2005.

23

