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Abstract. We introduce frames as basic objects for the
construction of transition systems, process graphs or au-
tomata. We provide an algebraic notation for frames, and
display some theoretical results.
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1 Introduction

In this paper we propose a very simple, mathe-
matical structure which we think to be of the type
that underlies many structures modelling (concur-
rent) behaviour. The objects in this structure
are called frames. We provide an axiomatic, al-
gebraic approach to reasoning about equality be-
tween frames. Frames can be characterized as a
particular kind of graphs; in fact, all frames in
the present paper are labeled, directed graphs.
The axioms however will allow other models. The
main source of such models is the introduction
of various degrees of locality (invisibility, hiding)
for states. If no hiding mechanism on states is
present, all states are called sharp. In this pa-
per we will restrict attention to frames with sharp
states only. Frames with hiding occur in [Ber89].
Typical for our approach is that frames are con-
structed out of states and (labeled) transitions.
The states are obtained by an embedding of the
natural numbers, and a pairing operation. At this
point, one can imagine other choices, e.g., the set
of strings over some finite alphabet.

Frames are defined by an embedding of the
states, a transition function that connects two
states with a labeled transition, and a small num-

ber of frame operations. First we have ‘alterna-
tive composition’, in the case with sharp states
only defined by taking the (set-theoretic) union of
the states and transitions of the two composing
arguments. In fact this operation constitutes the
only kind of non-trivial identifications we make
on frames. We further assume that frames can be
‘concurrently composed’, retaining their original
transitions (after projection) and obtaining new
ones that reflect (synchronous) communication.
Finally, we also consider two system operations on
frames: ‘encapsulation’ for removal of transitions
(but preserving states), and ‘pre-abstraction’ that
renames some labels of transitions into a special
constant t. These last two operations are included
because

e both are fundamental in specifying the be-
haviour of concurrent systems using synchro-
nization and abstraction (cf. [BW90]), and

e both are necessary to obtain sufficient expres-
sivity (cf. [BBK87, Vaa93]).

We start with frames from a finite number of
states, in Section 2. Then, in Section 3 we intro-
duce frame polynomials as to specify and reason
on infinite frames. The technical result in this pa-
per, proven in Section 4, is that equality between
infinite frames is decidable. Here equality is used
in its most basic form: two frames are equal if
they have the same states and the same transi-
tions. This is in contrast with equality relations
that make identifications on differently structured
states (e.g. isomorphy) or differently structured
frames (e.g. bisimularity or trace equivalence, tak-
ing connectedness into account, amongst other



things). In Section 5 it is shown that allowing
addition in state expressions preserves the decid-
ability result, while the expressivity increases. In
Section 6 it is shown that equality between infi-
nite frames is undecidable for some extensions of
the state domain.

Frames with sharp states, equipped with a root
marker and optionally with termination mark-
ers constitute an extremely well-known category
of objects, known as automata or transition sys-
tems. Automata along the lines of Rabin and
Scott can be used as a basis for a theory of compu-
tation [RS59]. The structure theory of automata
constitutes a large field of research; two general
references, in which many others can be found,
are [Buc89, Eil74]. Transition systems following
Plotkin [Plo81] can be used as a basis for pro-
gramming language semantics. Along the lines of
de Simone [Sim85, GV92], transition systems can
form a basis of a powerful model theory for pro-
cess algebra. Our purpose is to develop a direct,
algebraic notation for frames, to give an example
of its use and some theoretical information about
it.

2 Signature and Axioms

Let the symbol N represent the naturals given by
constant 0 and successor function S (and equipped
with equality predicate =). As usual, we represent
the elements of N as numerals 0, 1, 2, 3,... and
use meta-variables k,l, m,n for these.

Let S be a set of states, obtained by an embed-
ding iy of N in S and a pairing function >~<. We
further abbreviate in(n) by n.

Let A be a finite set of action symbols or labels,
not containing the symbol ¢, and let 4; = AU
{t}. Let furthermore v be a partial function on
A? that is commutative and associative. We call
v the communication function, and write y(a,b) 1
if v(a,b) is not defined, and «(a,b) | otherwise.

We define the signature of the set F of frames
by

1. An embedding ig of S in T}

2. Operations 2+ :S2 3 Ffor all a € A, so
called transitions having a label in A;

3. The empty frame () € T;

2 SIGNATURE AND AXIOMS

4. The unary frame operations O, encapsula-
tion over H, and tj, pre-abstraction over I,

for all H,I C A (cf. [BW90]);

5. The binary frame operations @, alternative
frame composition, and ®, concurrent frame
composition, taken from [Ber89].

We usually write n instead of ig(n) (or in(is(n))),
for instance 0>—<1 is a frame. This signature can
be depicted as follows:

Let s,s’ € S. Frames of the form s or s — s’
are called atomic. The set of states of a frame X

is denoted by | X|. Let X and Y be frames. Then

the frame

O (X) is defined by removing the transitions
having labels from H in X, but keeping the
states;

t7(X) is defined by replacing the labels in I of the
transitions in X by t-labels;

X @Y is defined by taking the union of the states
and the transitions of X and Y.

X ®Y has as states the >~< image of the states
of X and Y respectively, i.e.

IX®Y|={s><s"|se|X]|,s" €|Y]|}
and as transitions
S§1><89 —3 t1 ><1g

whenever
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51—t €X, sa =ty €|Y|, or
so >ty €Y, sy =t € |X|, or

~(b,¢) = a and

S1 —b>t1€X, SZL)tZGY.

Clearly, @ is an idempotent, commutative and as-
sociative operation. The operations 9y and tr
are also idempotent. Let X,Y, Z, ... range over
frames. Frames satisfy all axioms in Table 1.

By analogy with [BW90], we distinguish the fol-
lowing axiom systems:

BFA(A,S), Basic Frame Algebra over A and S,
consisting of the axioms (FA1) — (FA6) where
a € A;

FA(A,S), Frame Algebra, consisting of the ax-
ioms of BFA(A,S) and (FC1) — (FC8) but
without any reference to communication (the
“if” clause in FC8) is removed) where a € A;

ACF(A4,~,8), the Algebra of Com-
municating Frames, consisting of the axioms
of BFA(A4,S), a communication function v as
a parameter, the axioms (FC1) — (FC9) and
(FDH1 — FDH5) where a € A;

ACF.(4,7,S), the Algebra of Communicating
Frames with pre-abstraction, consisting of all
axioms in Table 1. Note that in this system
the label a ranges over A;.

Observe that in FA(A,S) (ACF(4,~,S) and
ACF.(4,7,8S)), one can always eliminate the ®
operations (0g and ty, respectively). In the rest

of this paper we shall restrict our attention to
ACF(A4,7,S).

3 Frame Polynomials

Let iterated alternative composition be defined by

@f:nFi:{ i)? . ifk<T.L,

s ®i=n+1Fi otherwise.
Then each frame has a representation of the form
@7;1Fi= where the Fj are atomic. In this sec-
tion we shall extend this result to a more general
syntax for frame representation.

Let V be a countable infinity of variables z,y, ...
(possibly primed or subscripted) over N.

Let S[V] be defined as the set obtained by clo-
sure under the function >< on (SU V)2, and let
is be appropriately extended. In this section we
define frame polynomials over V and A, the most
simple example of one being z for some =z € V.
Our operations and equalities extend to frame
polynomials, for instance

z® (0 S(0)) = z><0 % z><S5(0).

Let furthermore the generalized frame sum @,

be defined by

@, F(z) = F[0/x] @ F[1/z] & F[2/2] & ...

where F[n/z] denotes the substitution of n for z
in F.

The syntax ACF:(A4,~,V,S) of frame polynomi-
als over A,V and § is formally defined by the
following BNF grammar with s,s’ € S[V], a €
A, €V and H,I C A:

F = 0] s]| (s—254)

| @.(F) | 0u(F) | ti(F)
| FOF | F®F

Let FV(F) be the set of free variables in F. A
frame polynomial is closed if FV(F) = (). A closed
frame polynomial will be further referred to as a
frame. So from now on we consider frames that
may have an infinite number of states and /or tran-
sitions. An example of an infinite frame is a ‘half-
counter’:



3 FRAME POLYNOMIALS

Table 1: The axiom system ACF:(A,~,S), where a € Ay, s,5',s”,s"" € S and H,I C A.

(FA1)
(FA2)
(FA3)
(FA4)
(FA5)
(FA6)

(FDH1
(FDH2
(FDH3
(FDH4
(FDH5

~ — Y~ ~—~ ~—

XoY
Xo (Y a2z
XX
Xa0
s®(s = s")

s @(s— )

(FC8)

(FC9)

= YoX
= XeY)oZ
X
= X
a,

= s —* S

a ’
= s —rS

(s 25 8 ® (s - &)

(s s)®(s" = 8"

= 0

= s

= s—sifagH
s®s ifaeH

= 0u(X)®ou(Y)

(FC1) loX = 0

(FC2) X0 = 0

(FC3) (XaY)®Z = (X®2)0(Y®2Z)
(FC4) XeYaeZ) = (XY)s (X®2Z2)
(FC5) s®s = s><s

(FC6) s®(s' —2s") = s><s 23 s><s"
(FC7) (s—>s)®s" s><s" =3 5 ><s"

( ((S L) S’) ® (S” @ slll)) @
(5@ ) @ (s" = 5)

) if y(a,d) 1

((S L) sl) ® (S” o) SHI)) D

= (s®s)®(s" 2 s") @ if v(a,d) |
((s><s" lGE) I ")
(FTI1) tr®) = 0
(FTI2) tr(s) = s
(FTI3) ti(s—=s) = s> ifagl
(FTI4) tr(s 2+ §') sy s ifael
(FTI5) tr(XeY) = t(X)ot(Y)

exit

restart

0 «—— 0>=<0 [ 1>=<0

The state 0><0 represents the start-state from
which the counter can either terminate with an
exit-transition, or enter the ‘add mode’ by an
a-transition. Change to the ‘substract mode’
is modelled by a b-transition, after which the
half-counter can empty itself by consecutive a-
transitions, and evolve into the start-state by a
restart-transition. We can easily express this half-
counter by a frame polynomial:

exit

0>—~<0—=50)
1

restart ) .

><0 ———= 0><0
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I Frame polynomials can also be compared; an
example of an obvious identity is
D.(z = S@) = (0-51)
@ D, (S(z) = §*(x)).
In order to formalize reasoning about equality
between (closed) frame polynomials, we propose
the axioms in Table 1 with the s, ..., s"’ now rang-
ing over S[V]. Moreover, we have employ for the
additional axioms displayed in Table 2. In these
axioms we use the proviso

“z does not occur in F”.

By this proviso it is meant that x occurs neither
as a free, nor as bound variable (by an @, ap-
plication) in F. Note that bound variables may
always be renamed.

For convenience, we shall often write €

instead of P, 0 ...o €D, -
A frame polynomial is in normal form if it is of

the form .
@i:l@zl...mFi

with all F; atomic, i.e. each Fj is either of the form
s, or s — s' for some s,s’ € S[V] and a € A;.

T1...Tp

Theorem 3.1. Each frame over ACF(A,~,V,S)
can be represented by a polynomial in normal
form.

Proof. We first prove that each (open) frame
polynomial without occurrences of g and t; can
be represented in normal form. For such polyno-
mials, it suffices to show that @_F, F & F' and
F ® F' have normal forms whenever F' and F' do.
The first two cases are trivial. For the latter case,
if one of F and F' is ) we are done, so assume
both have normal forms

k m
Dy @zl...z,Fi and ;" EByl...yn Gi,

INote that if we replace the state consisting of a single 0
by for instance 2 >—< 0, the half-counter can be represented
by a polynomial not containing >—<:

0@, 2 ()
6 (10, (S() = x))
®0-"19@,)
® (
® (

exit

(0—>2)R0)

restart

(1——=0)®0).

respectively, for k,m > 1 and F;, G; atomic. Then
with the axiom (FC3) we obtain

(D.,.., (1)@ F) ®
(®f=2®m1...ml (‘Fl) ® FI)

FoF =

= @, ,(F)RF)e®

(D.,

Now using (FC4), each of these summands can
be further expanded, eventually yielding k - m
summands @, . (Fi) ® D, , (G;) with i €
{1,...,k} and j € {1,...,m}. With the axioms
(FPC1) and (FPC2) this leads to summands of
the form ®w1...wz,y1...yn (F;®G;). Finally, F;Q G,

can be expressed with >~< applications.

oy (FR) @ F).

Next, let F' be some (closed) frame polynomial.
Using an innermost-outermost strategy, it follows
that F' satisfies the lemma: an argument of a Oy
or t; operation not containing these operations
can by the above be replaced by one that satisfies
the representation format. As ® is then elimi-
nated, the dp or t; operation can be ‘pushed in-
side’ by the axioms (FDH5), (FTI5), (FPDH) and
(FPTI), and on atomic frames be eliminated by
(FDH1-4) or (FTI1-4). 1

4 Decidability

Theorem 4.1. FEquality between closed frame
polynomials over ACF.(A,~,V,S) is decidable.

For a proof, let the relation < between frames,
called summand inclusion, be defined by

X<YifXoY =Y.

and let F,G be two frames. According to Theo-
rem 3.1, F' and G have normal forms, say

k
@i:l@zl...wlFi
@;ll@yl . Yn Gl

with F;, G; atomic, i.e. either of the form s or
s —» s' for s,s' € S[V] and a € A;. Let

Z abbreviate z...z;, and i abbreviate y;...y,.



5 ADDING ADDITION

Table 2: Additional axioms for frame polynomials, H,I C A and z,y € V.

(FP1) &b, F = F provided z does not occur in F
(FP2) @yF = @, Flz/y] provided z does not occur in F
(FP3) S.8,F = B,8.F

(FPAL) @, (FeF) = @, (Fed,(F)

(FPA2) @, Fl@) = F0/s]o D, FIS(z)/]

(FPC1) Fo @, (F') = P (FRF) provided z does not occur in F
(FPC2) P, (F)®F = P (FQF) provided z does not occur in F
(FPDH) 0u(,(F)) = @,0n(F))

(FPTI) (P, (F) = D, (t(F))

For deciding equality, it suffices to decide for all
j€e{1,..k}

@:E'Fj < @Zl@g’Gi

and for all j € {1,...,m}

By symmetry, we only need to show that the first
summand inclusion is decidable. This is the case
iff

Ni= V339V, Fi(@) < Gi(5).
Any such conjunct can be decided upon as follows:

Fix some j € {1,...,k}. We distinguish two
cases: F; = s and F; = s —% s' for some
s,s' € S[V] and a € A;.

In case F; = s for some s € S[V], it suffices to
decide whether the binary >—< tree representing
an arbitrary instantiation of s (by Vz;...z;) can be
matched by one of the (abstract) states in one of
G, -.-,Gpm- Let the auxiliary function symbol f
represent the structure of s, i.e., f(z1,...,2;) = s.
Let all states of Gy, ...,G., (at most 2m, say m')
have state structure functions g, ..., gm'. Then we
have to decide

VEVi, £(@) = gi(#). (1)

In the case that F; = s -5 s’ for some
s,s' € S[V] and a € A;, let G, be the polyno-
mial obtained from G by deleting all G; that do

not represent an a-transition, and assume G, =
@D~ D;G:- It is sufficient to decide whether

D:F < DL DG

This reduces the question to whether each instan-
tiation of s and s’ can be matched by a single
G;. To phrase this more formally, let f, f’ be the
state structure functions of s and s’, respectively
and let g;, g} be those of G, i.e.,

Gi = g:i(7) = gi(®)-

Then the decidability reduces to that of
VERN L (&) = g:(@) A f'(@) = gi(i). (2)

Now both (1) and (2) relate to Presburger
Arithmetic (without having the + on N, see
[Pre29]). Because Presburger Arithmetic is de-
cidable ([Pre29]), we find that (1) and (2) are de-
cidable, and hence that equality between (closed)
frame polynomials is as well.

5 Adding Addition

Adding + to N preserves the decidability result
(now fully exploiting the decidability of Pres-
burger arithmetic).

However, with + the expressivity increases. In
order to prove this, we shall give an argument on
the structure of frames. Let the in-degree of a
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state of any frame be the number of ingoing tran-
sitions.

Lemma 5.1. A closed frame polynomial F' in
normal form that does mot contain +, specifies a
frame of which the in-degree of each state is either

w, or polynomial in the length of F'.

Proof. Assume

F = @f:l@zl...zlﬂ

with all F; atomic. The in-degree of each state
of one of the k£ summands Ele___lei is either 0,
1 or w. This follows by case distinction on the
structure of the atomic frames Fj;:

Case s € S[V]. Then the in-degree of each s in-
stance is 0.

Case s — s’ and FV(s) \ FV(s’') = 0. Then the
in-degree of each s instance is 0, and of each
s' instance is 1.

Case s - s’ and FV(s) \ FV(s') # 0. Then
any FV(s') instance has in-degree w due to
all FV(s) \ FV(s') variables.

So, by @le defined as set-theoretic union, we see
that the in-degree of each state in F' is an element

of {0,....,k} or w.

Theorem 5.2. Adding + to N increases the ex-
pressivity of ACF(4,~,V,S).

Proof. Let F' be defined by

D, ,(z><y >z +y)

(recall that the states of F are numerals
S(...5(0)...) or combinations of these).
Clearly F' has arbitrary large, finite in-degrees.
Assume F' = G with G not containing +. Then
by Theorem 3.1, F = G' with G’ in normal form
and not containing +. By the lemma above, this
contradicts the assumption. il

>

6 Undecidability Results

Equality between frames with states over the full
language of number theory (i.e. with multiplica-
tion) is not decidable. This can be seen as follows:

let P(y) be an undecidable, arithmetical predi-
cate:

P(y) ¥ 3z (p1(2) = p2(7,v))

for certain polynomials p;,ps with positive, inte-
ger coefficients.? Define a frame G(y) by

G(y) = @zpl(i) i>p2("iay)'

Clearly, G(y) has a transition n — n if and only
if P(y) holds. Next define

F=@,,,(n = n+S(m))®(n+S(m) - n)).

Note that for all n,m € N, the frame F' has tran-
sitions n —=+ m for all n # m, and no transition
n - n. Hence

F=F®Gly) <+ -Py)

or, in other words: frame equality is reduced to
solving an undecidable problem. Replacing mul-
tiplication and its axioms by the unary operation
symbol K denoting the operation of squaring a
number, and the axioms

K(z)+ S(z + z)
one can define multiplication by
u=y -z (utu)+(K(y)+K(z)=K(y+2)

(cf. [Tar53]), and hence the undecidability result
is preserved in this setting.

Furthermore, we state without proof that iso-
morphy is undecidable for frames, even in the case
that + and - are not added to the signature.

7 Conclusions

Instead of adding +, one might imagine the
atomic states to be generated by a finite num-
ber of successor functions Sy, ..., S, and gener-
alized frame sum having its parameter ranging
over {1,...,n}*. This allows a more expressive
notation, generalizing the one above and leading
to similar representation and decidability results,
now based on the decidability result of Biichi
[Buc62].

2In [Mat70], the existence of such a predicate is proved.



REFERENCES

References

[BBKS87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s fair abstraction rule. Theo-

[BW9O]
[Ber89]
[Buc62]
[Buc89]

[Eil74]
[GV92]

[Mat70]
[Plo81]

[Pre29)
[RS59]

[Sim85]
[Tar53)

[Vaa93]

retical Computer Science, 51(1/2):129-176, 1987.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer Science 18.
Cambridge University Press, 1990.

J.A. Bergstra. Algebra of states and transitions. Report P8909, Programming Research Group, University
of Amsterdam, 1989.

J.R. Biichi. On a decision method in restricted second order arithmetic. Logic, Methodology and Philosophy
of Science, Proceedings 1960 International Congress (E. Nagel, P. Suppes and A. Tarski, editors.), Stanford
University Press, 1-11, 1962.

J.R. Biichi. Finite Automata, Their Algebras and Grammars. Edited by D. Siefkes. Springer-Verlag, 1989.
S. Eilenberg. Automatae, Languages and Machines (Vol. A). Academic Press, 1974.

J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a congruence.
Information and Computation, 100(2):202-260, October 1992.

J.V. Matijasevié. Enumerable sets are diophantine. Soviet Math. Dokl., 11:354-358, 1970.

G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

M. Presburger. Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem
die Addition als einzige Operation hervortritt. Congr. Math. des Pays Slaves, Warsaw, 1: 92-101, 1929.

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and
Development, 3(2):114-125, 1959.

R. de Simone. Higher-level synchronising devices in MELJE-SCCS. Theoretical Computer Science, 37:245-267,
1985.

A. Tarski, in collaboration with A. Mostowski and R.M. Robinson. Undecidable Theories. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1953.

F.W. Vaandrager. Expressiveness results for process algebras. In J.W. de Bakker, W.P. de Roever, and
G. Rozenberg, editors, Proceedings REX Workshop on Semantics: Foundations and Applications, Beek-
bergen, The Netherlands, June 1992, volume 666 of Lecture Notes in Computer Science, pages 609-638.
Springer-Verlag, 1993.





