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Abstract. The Kolmogorov axioms for probability functions are placed
in the context of signed meadows. A completeness theorem is stated and
proven for the resulting equational theory of probability calculus. Ele-
mentary definitions of probability theory are restated in this framework.
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1 Introduction

The Kolmogorov axioms for probability functions may be considered a module
that can be included in a variety of more or less formalized contexts. We will
propose and investigate some consequences of these axioms when placed in the
context of involutive meadows, that is meadows where inverse is an involution
following the terminology of [7].

In particular we will discuss an axiomatization of a probability function (PF)
on a Boolean algebra. The Boolean algebra serves as an event space, the PF
defined on it produces elements of (values in) a signed meadow that serve as
probabilities. Special focus is on the case where values are chosen in the signed
meadow of real numbers. The following objectives motivate the line of develop-
ment in this paper.

1. To develop an approach towards strictly equational reasoning about
probability.

2. To provide a finite loose equational specification of probability functions.
3. To provide a useful completeness result for equational axioms of probability

functions.
4. To investigate some total versions of the conditional probability operator.
5. To initiate the development of an application for the theory of signed meadows

as outlined in [4,5].

This paper is a shortened version of http://arxiv.org/abs/1307.5173v4.
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We will produce an axiom system consisting of twenty-six equational axioms
covering Boolean algebra, meadows, the sign function, and the PF. Then we will
introduce several derived operators and prove a number of simple facts, including
Bayes’ theorem.

These axioms constitute a finite equational basis for the class of Boolean
algebra based, real-valued PFs. In other words, the completeness results of [4,5]
extend to the case with Boolean algebra based PFs. We understand this result
to convey that the set of twenty-six axioms is complete in a reasonable sense.

The paper is structured as follows: in the remainder of this section we dis-
cuss the concept of a meadow in more detail and provide a survey of relevant
design options. In Sect. 2 we introduce some preliminaries. In Sect. 3 we provide
equational axioms for a PF, and in Sect. 4 we discuss completeness. In Sect. 5
we consider multi-dimensional probability functions, and Sect. 6 contains some
concluding remarks.

1.1 A Survey of Design Options for the Inverse of 0

A meadow is a ring-like structure equipped with an inverse function. A ring based
meadow expands a ring with a one place inverse function (inversive notation), or
a two place division function (divisive notation). The terms ‘inversive notation’
and ‘divisive notation’ were coined in [6].

The key design choice that needs to be made when contemplating a meadow
concerns the way it handles the inverse of 0. In a rather scattered literature
on the subject a plurality of different options has been developed and studied,
though in varying levels of detail. A brief survey of these endeavours sets the
stage for the plan of this paper. The listing below is incomplete, but it contains
all proposals for which we have been able to find an unambiguous description.
As a criterion regarding this judgement we have required that (i) it must be
possible to find out when a closed expressions written using 0, 1,+,−, ·, (−)−1

is considered to have a value in the mathematical structure at hand, (ii) for two
closed expressions both having a value it must be possible to determine equality
in the same structure, and (iii) the relation between inverse and division must
be transparent. We will distinguish three design options for ring based meadows
and three design options for non-ring based meadows. We will first survey design
options for non-ring based meadows.

Non-ring Based Meadows
Three options for setting the inverse of zero in a non-ring based meadow stand
out, each involving an error value which fails to meet the requirements of a
ring. Distinguishing these options is facilitated by making use of a uniform
terminology.

Natural inverse. If 0−1 is equated with an unsigned infinite value, often
denoted by ∞, then 0 is said to have a natural inverse. The use of natu-
ral inverse in mathematics dates back to Riemann at least. Wheels are the
prominent instance of meadows with natural inverse, see [9].



Probability Funct’s in the Context of Signed Involutive Meadows (Ext. Abs.) 75

Signed natural inverse. If the inverse of zero is equated with a signed infinite
value (written say as +∞ = ∞, which differs from −∞) we propose to speak
of a signed natural inverse. This design choice underlies the transreals and
transrationals, see [16].

Common inverse. If the inverse of zero is equated with an error value a then,
following [8], zero is said to have a common inverse. Common meadows are
meadows based on common inverse. The error value a satisfies x+a = x ·a =
−a = a and for that reason fails to comply with the requirements for a ring
(0 · x = 0). Moreover, the error value is unique.

Also in the case of natural inverse and signed natural inverse, the error value(s)
fail to comply with the requirements for a ring (0 · x = 0).

Ring Based Meadows
For ring based meadows three options may be distinguished.

Partial inverse. The most prominent ring based meadow leaves the inverse of
0 undefined and considers inverse to be a partial function.
Working with partial inverse deviates from mathematical practice to the
extent that questions like whether or not 1/0 = 2/0 must be taken seriously.
When dealing with partial inverse there are no semantic questions about it,
but the choice of a logic of partial functions leaves substantial room for design
variation, beginning with a choice between three ways of looking at the truth
value of say 1/0 = 1/0: is it considered as being true, or as being false in
an overarching two-valued logic, or as not being true in an overarching logic
which is not two-valued.

Symmetric inverse. If the meadow is based on a regular ring and the value
of 0−1 is taken to be 0, 0 is said to have a symmetric inverse. The meadows
of [4,5] and several preceding papers are ring based meadows with symmetric
inverse. Alternatively this case is referred to as featuring an involutive inverse,
and such meadows are referred to as involutive meadows.

Non-involutive inverse. If the inverse of 0−1 is taken to be different from 0,
(x−1)−1 = x cannot hold, that is inverse is not an involution, and inverse is
said to be non-involutive. The non-involutive meadows discussed in [7] that
satisfy 0−1 = 1 are ring based meadows with an asymmetric inverse. If the
inverse of 0−1 is taken to be say 17 or any (rational or real) number different
from 0 and 1, 0 is said to have an ad hoc non-involutive inverse. Ad hoc
non-involutive inverses come into play when formalizing the theory of fields
in first order logic in the presence of a function symbol for either inverse or
division (or both).

1.2 Working with Involutive Ring Based Meadows

In this paper we will work exclusively with ring based involutive meadows, which
will be referred to simply as meadows. The motivation for this choice is that it
appears to be a most straightforward way to pursue the objectives that were
listed above. However, we do not claim that for the purpose of developing an
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equational approach to probability working with ring based meadows is the best
option, neither do we claim that among the three options for ring based meadows
working with a symmetric inverse is best suited to this objective.

2 Boolean Algebras and Meadows

In this section we specify the mathematical context on which our axiomatization
is based. In particular, we provide specifications for Boolean algebras (Sect. 2.2),
and for events and (signed) meadows (Sect. 2.3).

2.1 Boolean Algebras

A Boolean algebra (B,+, ·,′ , 1, 0) may be defined as a system with at least two
elements such that ∀x, y, z ∈ B the well-know postulates of Boolean algebra are
valid. Because we want to avoid overlap with the operations of a meadow, we will
consider Boolean algebras with notation from propositional logic, thus consider
(B,∨,∧,¬,�,⊥) and adopt the axioms in Table 1. In [14] it was shown that the
axioms in Table 1 constitute an equational basis.

Table 1. BA, a self-dual equational basis for Boolean algebras

(x ∨ y) ∧ y = y (1) x ∨ (y ∧ z) = (y ∨ x) ∧ (z ∨ x) (4)

(x ∧ y) ∨ y = y (2) x ∧ ¬x = ⊥ (5)

x ∧ (y ∨ z) = (y ∧ x) ∨ (z ∧ x) (3) x ∨ ¬x = � (6)

2.2 Valuated Boolean Algebras and Some Naming Conventions

A Boolean algebra can be equipped with a valuation v that assigns to its elements
values in a signed meadow.

In this paper we will investigate the special case where the valuation function
of a valuated Boolean algebra is a probability function by requiring that the
valuation satisfies the Kolmogorov axioms for probability functions cast to the
setting of signed meadows.

By way of notational convention we will from now on assume that E (for
events) is the name of the carrier of a Boolean algebra, and that V (for values)
names the carrier of the meadow in a valuated Boolean algebra.

2.3 Events and Signed Meadows

The set of axioms in Table 2 specifies the class of meadows. In the setting of prob-
ability functions the elements of the underlying Boolean algebra are referred to
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as events.1 We will use “value” to refer to an element of a meadow,2 and a prob-
ability function is a valuation (from events to the values in a signed meadow).3

Table 2. Md, a set of axioms for meadows

(x + y) + z = x + (y + z) (7) x · y = y · x (12)

x + y = y + x (8) 1 · x = x (13)

x + 0 = x (9) x · (y + z) = x · y + x · z (14)

x + (−x) = 0 (10) (x−1)−1 = x (15)

(x · y) · z = x · (y · z) (11) x · (x · x−1) = x (16)

An expression of type E is an event expression or an event term, an expression
of type V is a value expression or equivalently a value term. In the signature of
a valuated Boolean algebra there is just one notation for a probability function,
the function symbol P .4

In a meadow equipped with an ordering <, the sign function s( ) is defined by

s(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0,

0 if x = 0,

1 if 0 < x.

The axioms in Table 3 specify the sign function in an equational manner. Before
commenting on these axioms, we define the conditional p � q � r expressing
a form of “if-then-else”, notations for a division operator, absolute value, and
orderings. Furthermore, we adopt the convention to write x−y for x+(−y). Let

Table 3. Sign, a set of axioms for the sign operator

s(1x) = 1x (17) s(x−1) = s(x) (20)

s(0x) = 0x (18) s(x · y) = s(x) · s(y) (21)

s(−1) = −1 (19) 0s(x)−s(y) · (s(x + y) − s(x)) = 0 (22)

1 Events are closed under − ∨ −, which represents alternative occurrence and − ∧ −,
which represents simultaneous occurrence, and under negation.

2 Rational numbers and real numbers are instances of values.
3 We will exclude probability functions with negative values, a phenomenon known in

non-commutative probability theory, leaving the exploration of that kind of gener-
alization to future work.

4 In some cases the restriction to a single probability function P is impractical and
providing a dedicated sort for such functions brings more flexibility and expressive
power. This expansion may be achieved in different ways.
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p, q and r range over V , the carrier of the signed meadow in a valuated Boolean
algebra, then

1p =def p · p−1,
0p =def 1 − 1p,
p � q � r =def 1q · p + 0q · r,
p

q
=def p · q−1,

p/q =def

p

q
,

|p| =def s(p) · p,
p < q =def s(q − p) = 1,
p ≤ q =def s(s(q − p) + 1) = 1.

In Table 3, axiom (22) is an equational representation of the conditional equa-
tion s(x) = s(y) → s(x + y) = s(x). Finally, the equivalences

p ≥ 0 ⇐⇒ s(s(p) + 1) = 1 ⇐⇒ p = s(p) · p = |p|
are provable from Md + Sign (this follows from Theorem 4.1.1 below).

We will also consider the subclass of signed cancellation meadows. A cancel-
lation meadow satisfies the Inverse Law (IL) of Table 4.

Table 4. Inverse law (IL)

x �= 0 → x · x−1 = 1

3 Signed Meadow Based Probability Calculus

In Sect. 3.1 we formulate axioms for a probability function. Following the meth-
ods of abstract data type specification we will focus on axioms in equational form.
Then, we discuss a plurality of versions of the conditional probability operator
(Sect. 3.2) and some properties thereof, in particular versions of Bayes’ theorem.
Finally, we consider independent events (Sect. 3.3).

3.1 Equational Axioms for a Probability Function

In Table 5 we define the set PFP of axioms for a probability function. These
axioms represent Kolmogorov’s axioms in the context of a Boolean algebra
(rather than a universe of sets) and a signed meadow (instead of a field).
Axiom (25) expresses that the sign of P (x) is nonnegative. Axiom (26) distributes
P over finite unions. In the absence of an infinitary version of axiom (26) we
consider these axioms to constitute an axiomatization for the restricted concept
of probability functions only, rather than for probability measures in general.

In combination with the axioms BA + Md, the two axioms (24) and (26) in
Table 5 can be replaced by the single axiom

P (x) = P (x ∧ y) + P (x ∧ ¬y) (†)
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Table 5. PFP , a set of axioms for a probability function with name P

P (�) = 1 (23) P (x) = |P (x)| (25)

P (⊥) = 0 (24) P (x ∨ y) = P (x) + P (y) − P (x ∧ y) (26)

where the expressions x ∧ y and x ∧ ¬y characterize two disjoint (mutually
exclusive) events: axiom (24) follows from P (x) = P (x ∧ x) + P (x ∧ ¬x), thus
P (x ∧ ¬x) = P (⊥) = 0, and axiom (26) follows from

P (x ∨ y) †= P ((x ∨ y) ∧ x) + P ((x ∨ y) ∧ ¬x) = P (x) + P (y ∧ ¬x)

and P (y)
†
= P (y ∧x)+P (y ∧¬x), thus P (y ∧¬x) = P (y)−P (x∧y). Conversely,

axiom (†) follows from (24) and (26):

P (x) = P ((x ∧ y) ∨ (x ∧ ¬y)) = P (x ∧ y) + P (x ∧ ¬y) − P (⊥). (‡)

Theorem 3.1.1 (Disjoint event factorization). BA+Md+PFP � P (x) =
P (x ∧ y) + P (x ∧ ¬y).

Proof. This is (‡), which is shown above. ��
Theorem 3.1.2 (Probability upper bound). BA + Md + Sign + PFP �
P (x) ≤ 1.

Proof. First notice 1 = P (�) = P (x ∨ ¬x) = (P (x) + P (¬x)) − P (⊥) = P (x) +
P (¬x), so P (x) = 1 − P (¬x). Because P (¬x) ≥ 0 we conclude P (x) ≤ 1. ��

The following theorem asserts in equational form the conditional equation
P (y) = 0 → P (x ∧ y) = 0, using inversive notation.

Theorem 3.1.3 BA+Md+ Sign+PFP � P (x ∧ y) · P (y) · P (y)−1 = P (x ∧ y).

Proof. With help of Theorem 4.1.1, see there. ��

3.2 Conditional Probability as a Total Operator: Four Options

Conditional probability P (x | y) of event x relative to event y is conventionally
understood as a partial function of x and y, defined only if P (y) is nonzero. The
objective of developing an equational logic for probability theory suggests that
total versions of the conditional probability operator ought to be contemplated.

Conditional probability defined according to Kolmogorov is written below as
P �(x | y), where variables x and y range over E, and is defined by

P �(x | y) =def

P (x ∧ y)
P (y)

� P (y)� ↑.
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Here ↑ denotes that the result is undefined.5 The key advantage of partial condi-
tional probability is that one does not introduce a value for, say P (x | ⊥) which
might be subsequently disputed. Four ways of making conditional probability
defined on all inputs will now be distinguished.

Definition 3.2.1 (Zero-totalized conditional probability).

P 0(x | y) =def

P (x ∧ y)
P (y)

.

We notice that P 0(� | ⊥) = 0, a choice for which no convincing philosophical
motivation can be put forward. Two advantages can be put forward in favour
of P 0(−|−): the logical simplicity that comes with it being total and the cal-
culational simplicity that comes with choosing 0 as a value for P 0(x | y) when
P (y) = 0. The following properties are immediate:

P 0(x | x) =
P (x)
P (x)

and P (x) = P (x) · P 0(x | x).

Moreover we have ‘joint probability factorization’:

P (x ∧ y) = P (x ∧ y) · P (y) · P (y)−1 = (P (x ∧ y)/P (y)) · P (y)=P 0(x | y) · P (y),

and ‘total probability’:

P (x) = P (x ∧ y) + P (x ∧ ¬y)

= P (x ∧ y) · P (y) · P (y)−1 + P (x ∧ ¬y) · P (¬y) · P (¬y)−1

= P 0(x | y) · P (y) + P 0(x | ¬y) · P (¬y).

Another illustration of the latter advantage is the derivability of Bayes’ theorem
in its simplest form (see Theorem 3.2.5.1).

Definition 3.2.2 (One-totalized conditional probability).

P 1(x | y) =def

P (x ∧ y)
P (y)

� P (y) � 1.

5 We assume that in a context of partial functions an identity t = r is valid if either
both sides are undefined or both sides are defined and equal. This convention, how-
ever, leaves room for alternative readings of the expressions at hand. In particular
the definition given for x� y � z implies that whenever t is undefined, so is t� r � s.
That is not a very plausible feature of the conditional and in the presence of partial
operations the conditional operator requires a different definition. These complica-
tions are to some extent avoided, or rather made entirely explicit, when working with
total functions. The use of the notation P �(−|−) instead of the common notation
P (−|−) is justified by the fact that unavoidably P �(−|−) inherits properties from
the equational specification of the functions from which it has been made up. Such
properties need not not coincide with what is expected from P (−|−).
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We will write x → y for ¬x ∨ y. The principal advantage of one-totalized con-
ditional probability over zero-totalized conditional probability is the validity of
the following rule, which provides some intrinsic motivation for this design of
conditional probability:

(x → y) = � ⇒ P 1(x | y) = 1.

If α ∈ {�, 0, 1} then the function P ◦αy =def λx ∈ E.Pα(x|y) is not a probability
function for each y. In particular, if P (y) = 0, P ◦α y will fail to comply with
either P ◦α y(�) = 1 or with P ◦α y(⊥) = 0. Now λP ∈ PF .P ◦α y being the
well-known update operator that goes with some applications of Bayes’ theorem,
it is a reasonable requirement that this very operator becomes total as well. We
will introduce two options for conditionalization which achieve this requirement.

Definition 3.2.3 (Safe conditional probability).

P s(x | y) =def

P (x ∧ y)
P (y)

� P (y) � P (x).

We find that P ◦s y = P if P (y) = 0, which allows the view that λP.P ◦s y is
an operator mapping probability functions to probability functions for all events
y, or stated differently that λy.(λP.P ◦s y) is a total mapping from events to
probability function transformations. P◦s is safe because it enforces no update
when an inconsistency is observed.

Yet another way to achieve this property of a conditional update is to return
an exceptional value, in this case the canonical probability function for an atomic
event. An atom in E is an event a ∈ E which satisfies atom(a) =def ∀x ∈
E.(x ∧ a = a OR x ∧ a = ⊥). For an atom a ∈ E the probability function pfa is
defined by:

pfa(x) =def

{
1 ifx ∧ a = a,

0 ifx ∧ a = ⊥.

Definition 3.2.4 (Exception raising conditional probability for atom
a ∈ E).

P e/a(x | y) =def

P (x ∧ y)
P (y)

� P (y) � pfa(x).

For P 0(−|−), P s(−|−), and P e/a(−|−) we are not aware of earlier definitions,
whereas P 1(−|−) has been considered by Adams in [1], and in subsequent lit-
erature. For a survey of conditional logic and conditional probabilities we refer
to [12].

Of particular importance given its ubiquitous use is Bayes’ theorem. Bayes’
theorem takes different forms for different versions of conditional probability, and
in each of these cases it appears as a consequence of BA+Md+Sign+PFP .
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Theorem 3.2.5 (Versions of Bayes’ theorem). In BA+Md+ Sign+PFP

the following equations are derivable:

1. P 0(x | y) =
P 0(y | x) · P (x)

P (y)
(Bayes′ theoremforP 0(−|−)),

2. P 1(x | y) =
P 1(y | x) · P (x)

P (y)
� P (y) � 1 (Bayes′ theoremforP 1(−|−)),

3. P s(x | y) =
P s(y | x) · P (x)

P (y)
� P (y) � P (x) (Bayes′ theoremforP s(−|−)),

4. P e/a(x | y) =
P e/a(y | x) · P (x)

P (y)
� P (y) � pfa(x) (Bayes′ theoremfor

P e/a(−|−)).

Proof. Version 1: derive P 0(x | y) = P (x ∧ y)/P (y) 3.1.3= (P (y ∧ x)/P (y)) ·
(P (x)/P (x)) = (P (y ∧ x)/P (x)) · (P (x)/P (y)) = (P 0(y | x) · P (x))/P (y).

Version 2-4: see http://arxiv.org/abs/1307.5173v4. ��

3.3 Independence of Events

A valuated Boolean algebra equipped with a valuation P in some signed meadow
IM that satisfies all axioms of BA+Md+ Sign+PFP will be called a K(IM, P )-
structure. Given a K(IM, P )-structure, two events x and y are said to be inde-
pendent relative to that structure if P (x ∧ y) = P (x) · P (y) is valid.

Theorem 3.3.1. Events x and y are independent if and only if P 0(x | y) =
P (x) · P 0(y | y) and equivalently if and only if P 0(y | x) = P (y) · P 0(x | x).

Proof. If x and y are independent, then P 0(x | y) = P (x ∧ y)/P (y) = (P (x) ·
P (y))/P (y) = P (x) ·P 0(y |y), and similarly one finds P 0(y |x) = P (y) ·P 0(x |x).

Conversely, from P 0(x |y) = P (x) ·P 0(y |y) one finds P (x∧y)/P (y) = P (x) ·
(P (y)/P (y)), so multiplying both sides by P (y) yields P (x ∧ y) · (P (y)/P (y)) =
P (x)·(P (y)/P (y))·P (y), which implies P (x∧y) = P (x)·P (y) by Theorem 3.1.3.

��

4 Logical Aspects of Equations for Probability Functions

In this section we provide a completeness result for BA + Md + Sign + PFP

(Sect. 4.1) and discuss the use of a free Boolean algebra as an event space
(Sect. 4.2).

4.1 Completeness of BA + Md + Sign + PFP

In [4] it is shown that Md+Sign constitutes a finite basis for the equational theory
of signed cancellation meadows. Stated differently: for each equation t = r, if
Md + Sign + PFP + IL |= t = r then also Md + Sign + PFP � t = r, where IL
is the inverse law defined in Table 4. This fact is understood as a completeness

http://arxiv.org/abs/1307.5173v4
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result because a stronger set of axioms would necessarily exclude some meadows
that are expansions of ordered fields. In a preceding version of this paper6 it was
shown that the basis theorem extends to the setting with probability functions:
if BA+Md+Sign+PFP + IL |= t = r then also BA+Md+Sign+PFP � t = r.

For the purposes of this paper we prefer to make use of a different complete-
ness result for the same equational theory that allows us to obtain a more intu-
itively appealing completeness result for the axiom system BA+Md+Sign+PFP .
This second completeness result is given in terms of validity of equations relative
to a single signed meadow rather than in an elementary class of structures.

We recall the following result [5, Theorem 3.14], where we write IR0 for the
meadow that is the expansion of the field of real numbers IR with total inverse
operator and 0−1 = 0, and (IR0, s) for IR0 expanded with the sign function s( ).

Theorem 4.1.1. For an equation t = r in the signature of signed meadows:
(IR0, s) |= t = r if and only if Md + Sign � t = r.

One can apply this theorem to obtain a simple proof of Theorem 3.1.3: let
φ(u, v) = 0|u|+|v| · u. Then (IR0, s) |= φ(u, v) = 0, so by Theorem 4.1.1 one
obtains Md + Sign � φ(u, v) = 0. Substituting P (y ∧ x) for u and P (y ∧ ¬x) for
v and applying Theorem 3.1.1, one derives

BA + Md + Sign + PFP � 0 =
(
1 − |P (y ∧ x)| + |P (y ∧ ¬x)|

|P (y ∧ x)| + |P (y ∧ ¬x)|
)
·P (y ∧ x)

=
(
1 − P (y)

P (y)

)
·P (y ∧ x),

from which the required result follows immediately.
The same completeness result as Theorem 4.1.1 works for conditional equa-

tions (for a proof see http://arxiv.org/abs/1307.5173v4).

Theorem 4.1.2. For a conditional equation t1 = r1 ∧ . . . ∧ tn = rn → t = r in
the signature of signed meadows: (IR0, s) |= t1 = r1 ∧ . . . ∧ tn = rn → t = r if
and only if Md + Sign � t1 = r1 ∧ . . . ∧ tn = rn → t = r.

A K(IR0, P )-structure is a model of BA + Md + Sign + PFP that contains
the meadow of signed reals, (IR0, s), as the domain of its values. We will write
K(IR0, P ) for the class of K(IR0, P )-structures.

Theorem 4.1.1 can be extended to the setting of K(IR0, P )-structures, thus
obtaining a satisfactory completeness result for BA + Md + Sign + PFP (see
http://arxiv.org/abs/1307.5173v4 for a proof that depends on Theorem 4.1.2).

Theorem 4.1.3. The axiom system BA+Md+ Sign+PFP is sound and com-
plete for the equational theory of K(IR0, P ).7

6 http://arxiv.org/abs/1307.5173v1.
7 More generally, BA+Md+Sign+PFP is sound for the class of K(IM, P )-structures

with IM a signed cancellation meadow.

http://arxiv.org/abs/1307.5173v4
http://arxiv.org/abs/1307.5173v4
http://arxiv.org/abs/1307.5173v1
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4.2 Using Free Boolean Algebras as Event Spaces

For the purpose of reformulating some elementary aspects of probability the-
ory and statistics the generality of working with arbitrary Boolean algebras is
inessential, at least at this initial stage in the development of an equational cal-
lus of probabilities. For that reason we will now introduce several simplifying
assumptions:

– A finite set C of constants for events is provided. Elements of C are called
primitive events. We will only consider free Boolean algebras generated by
the primitive events.

– With BAC we will denote the equations for Boolean algebra in a signature
which is expanded with the constants in C.

– The class of models of BAC +Md+ Sign+ PFP with a free event space over
C, (IR0, s) as its meadow of values, and a probability function P is denoted
KC(IR0, P ). Different structures in KC(IR0, P ) only differ in the choice (inter-
pretation) of the probability function P .

These assumptions correspond to what is needed for the specification of examples
of probabilistic reasoning.

Theorem 4.2.1. Md+ Sign+BAC +PFP is sound and complete for the equa-
tions of type V that are true in all structures in KC(IR0, P ). In other words, for t
and r terms of sort V : Md+Sign+BAC+PFP � t = r ⇐⇒ KC(IR0, P ) |= t = r.

Proof. The proof is merely a reformulation of the proof of Theorem 4.1.3. ��

5 Multi-dimensional Probability Functions

In this section we provide axioms for multi-dimensional PFs (Sect. 5.1), and
discuss a condition for the existence of a particular universal PF (Sect. 5.2).

5.1 Equational Axioms for a Probability Function Family

Let D = {a1, . . . , ad} be a finite, non-empty set. The elements of D are referred
to as dimensions. With Af

D we denote the set of finite non-empty sequences of
elements of D in which each dimension occurs at most once, and with �(w) we
denote the length of w ∈ Af

D. Note that Af
D is finite. Elements of Af

D serve
as arities of probability functions on a multi-dimensional event space of dimen-
sion �(w). If �(w) > 1, then w is written as a comma-separated sequence, e.g.
�(a1, a3) = 2 and we write (a1, a3) ∈ Af

D.
Given an event space E and a name P for a probability function, an arity

family for D is a subset W of Af
D that is closed under permutation and under

taking non-empty subsequences. Given an arity family W for D, a function
family for W consists of a function Pw : E�(w) → V for each arity w ∈ W . A
function family for dimension set D, arity family W and function name P is a
probability function family (PFF) if it satisfies the axioms of Table 6. Because in
an arity repetition of dimensions is disallowed, these axioms reduce to what we
had already in the case of a single dimension.
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Table 6. PFFW,P , axioms for a PFF with arity family W and name P , where a ∈ D,
k ∈ IN, x = x1, . . . , xk and P (y,x) = P (y) if k = 0, and w = (a, u) ∈ W with
�(w) = k + 1

Pa,v,b,v′
(y1, x1, . . . , xm, y2, z1, . . . , zn) = P b,v,a,v′

(y2, x1, . . . , xm, y1, z1, . . . , zn)
for all a, b ∈ D and (a, v, b, v′) ∈ W , where v, v′ can be empty (thus m = 0, n = 0)

(27)

Pa(�) = 1 (28)

Pa,v(�, x1, . . . , xk+1) = P v(x1, . . . , xk+1) (29)

Pw(⊥,x) = 0 (30)

Pw(y,x) = |Pw(y,x)| (31)

Pw(y ∨ z,x) = Pw(y,x) + Pw(z,x) − Pw(y ∧ z,x) (32)

5.2 Existence of a Universal Probability Function

A subset W of Af
D may or may not have a maximal element under inclusion.

If W has a maximal element w and if we have a probability function family
(Pw)w∈W for W , then Pw serves as a universal element for the family of prob-
ability functions because all other members of it can be found via successive
application of the axioms (27)–(30).

As it turns out some PFFs cannot be extended with a universal PF. In the
notation of our specification of probability families we will state a specific result
that may serve as a necessary condition for the possibility to extend a PFF with
a universal element.

Theorem 5.2.1. Given a set of dimensions D = {a, b, c, d}, an arity family W
for D that satisfies W ⊃ {(b, c), (b, d), (a, d), (a, c)}, and a PFF (Pw)w∈W , let
t be the following term:

t = P b,c(y, z) + P b,d(y, u) + P a,d(x, u) − P a,c(x, z) − P b(y) − P d(u).

Then, if W has a maximal element, then −1 ≤ t ≤ 0, that is, the following two
inequalities must hold for GW,P = BA + Md + Sign + PFFW,P :

GW,P � t + 1 = s(t + 1) · (t + 1) and GW,P � −t = s(−t) · −t.

Clearly if a PFF for D contains all of P b,c, P b,d, P a,d, P a,c and fails to meet
either one of the mentioned inequalities on t, then a universal PF cannot be
found for it.

These facts are known as the BCHS (Bell, Clauser, Horne, Shimony) inequali-
ties. Both were formulated and shown in a set theoretic framework for probability
theory in [15] and [10,11], and a straightforward proof is given in [13, Sect. 9.2],8

which we repeat here.

8 From this pair of inequalities one can derive the original Bell inequalities from [3].
The key observation of Bell was that quantum mechanics gives rise to the hypothesis
that a 4-dimensional event space exists in which a family of joint probabilities for at
most two dimensions can be found that violates the inequalities from the theorem.
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Proof (of Theorem 5.2.1, taken from [13]).

P b,c,d(y, z, u) = P a,b,c,d(x, y, z, u) + P a,b,c,d(¬x, y, z, u)

≤ P a,c(x, z) + P a,d(¬x, u)

= P a,c(x, z) + P d(u) − P a,d(x, u), (33)

P b,c,d(¬y, z, u) = P a,b,c,d(x,¬y, z, u) + P a,b,c,d(¬x,¬y, z, u)

≤ P a,d(x, u) + P a,c(¬x, z)

= P a,d(x, u) + P c(z) − P a,c(x, z), (34)

0 ≤ P b,c,d(y,¬z,¬u) = P b,c(y,¬z) − P b,c,d(y,¬z, u)

= P b(y) − P b,c(y, z) − P b,d(y, u) + P b,c,d(y, z, u). (35)

Combining (33) and (35) yields

0 ≤ P b(y) − P b,c(y, z) − P b,d(y, u) + P a,c(x, z) + P d(u) − P a,d(x, u). (36)

By (35) and the equality −P c,d(z, u) + P c,d(¬z,¬u) = 1 − P c(z) − P d(u),

0 ≤ P b,c,d(¬y,¬z,¬u) = P c,d(¬z,¬u) − P b,c,d(y,¬z,¬u)

= 1 − P b(y) − P c(z) − P d(u) + P b,c(y, z) + P b,d(y, u) + P b,c,d(¬y, z, u). (37)

Then from (34) and (37) we get

0 ≤ 1 − P b(y) − P d(u) + P b,c(y, z) + P b,d(y, u) + P a,d(x, u) − P a,c(x, z). (38)

Inequalities (36) and (38) prove the theorem. ��

6 Concluding Remarks

The incentive for this work came from a talk given by professor Ian Evett on
the occasion of the retirement of dr. Huub Hardy as a driving force behind the
MSc Forensic Science at the University of Amsterdam.9 That talk illustrated the
headway that the Bayesian approach to reasoning in forensic matters has made
in recent years. However, Evett also highlighted the conceptual and political
problems that may still lie ahead of its universal adoption in the legal process.

In order to improve the understanding of these issues an elementary log-
ical formalization of reasoning with probabilities might be useful. With that
perspective in mind we came to the conclusion that in spite of the abundance
of introductory texts to probability theory, the development of an axiomatic
approach from first principles may yet cover new ground. The formalization of
probabilities in terms of equational logic outlined above is intended to serve as a
point of departure from which to develop presentations of probability theory that

9 This meeting took place at Science Park Amsterdam, Friday June 7, 2013 under the
heading “Frontiers of Forensic Science”, and was organized by Andrea Haker.
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may be be helpful when a formal and logically precise perspective on reasoning
with probabilities is aimed at.

We acknowledge many discussions with Andrea Haker (University of Am-
sterdam) regarding the relevance of logically grounded reasoning methodologies
in forensic science. We thank both reviewers for their constructive comments.
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