
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 388 (2007) 319–336
www.elsevier.com/locate/tcs

Belnap’s logic and conditional composition

Alban Ponse, Mark B. van der Zwaag∗

Department of Computer Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Received 19 July 2005; received in revised form 10 August 2006; accepted 21 September 2007

Communicated by F. Pfenning

Abstract

We study two alternative bases for Belnap’s four-valued logic and provide complete equational axiomatizations for them. One
is called conditional composition logic. It has a single, ternary if-then-else connective with a sequential, operational reading, and
four constants for the truth values. The other logic is called guard logic. The main motivation for this logic lies in its technical
properties. It admits a useful type of canonical form (term representation), and a relatively simple strategy for equational reasoning.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Belnap’s logic; Equational axiomatizations; Conditional composition; Guard logic; Completeness

1. Introduction

In 1977, N.D. Belnap introduced his “useful four-valued logic” in [2], see also the exposition in [1] (1992, Chapter
XII). At present this logic is called Belnap’s logic, and is well-known, mainly in the context of Entailment and
Relevance Logic (see, e.g., [1,18]).

Belnap designed his logic to be used by question-answering computers that perform deductions based on
information from multiple sources. The logic allows the computer to perform meaningful deductions when confronted
with an inconsistency, as may arise when these sources provide mutually conflicting information. In particular, the ex
falso principle (from an inconsistency, anything follows) is not valid in this logic.

For atomic questions, such a question-answering computer will reply T (true) to question p, if p has been asserted
by one or more of its sources, and denied by none, and it will reply F (false) to question p, if one or more of its sources
have denied p, and none has asserted it. If at least one source has asserted p, and at least one (other) source has denied
p, the computer will reply B (both) to p, and if none of the sources has asserted or denied p, it will answer N (none).

This provides an intuition for the four truth values B, T, F, and N. An important notion is the information ordering
≤ corresponding to the uphill ordering in the approximation lattice:

N

T F

B

JJ

 JJ

∗ Corresponding author. Tel.: +31 20 525 7584.
E-mail address: mbz@science.uva.nl (M.B. van der Zwaag).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.09.027

Author's personal copy

320 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

Here a ≤ b is read as a “approximates the information in” b. The value N does not give information at all, and B gives
too much (inconsistent) information.

Belnap further defines the connectives negation, conjunction and disjunction. These definitions follow in a technical
sense, and this is argued most clearly in [1], from the following requirements: (1) the connectives should be defined
classically on {T, F}, (2) the connectives should be monotonic with respect to the information ordering, and (3)
conjunction and disjunction should be duals in that they satisfy

a ∧ b = a iff a ∨ b = b, and a ∧ b = b iff a ∨ b = a.

The resulting truth tables:

¬

B B
T F
F T
N N

∧ B T F N

B B B F F
T B T F N
F F F F F
N F N F N

∨ B T F N

B B T B T
T T T T T
F B T F N
N T T N N

In [2,1], these definitions are also given an intuitive motivation in the setting of a question-answering computer as
sketched above. A perhaps not so obvious case is the conjunction of B and N. For this case we can envisage that B
stands for concurrent T and F answers, and that T answers in conjunction with N vanish, while F answers remain, so that

B ∧ N = F ∧ N = F.

We shall denote Belnap’s logic by B4.
Observe that Belnap’s conjunction and disjunction are commutative, which is in line with the classical assumption

that in the evaluation of a compound sentence the evaluation of the parts is directly available. In this article we shall
consider sequential connectives over Belnap’s truth values, i.e., connectives in which the evaluation of the subterms
is ordered. In computer science there is ample reason for such a more operational perspective, as is witnessed by the
sequential evaluation of logical connectives implemented in programming languages as diverse as, e.g., Java, Lisp and
Prolog.

A well-known example of a sequential connective is the (non-commutative) conjunction of McCarthy’s three-
valued logic [16], which has the property that F ∧ x = F, and ∗ ∧ x = ∗, for all x , where ∗ is the third truth value
(next to T and F) in McCarthy’s logic. Here it can be said that evaluation is lazy and proceeds sequentially from left
to right: one only evaluates as far as is needed to evaluate the sentence. In this article we consider another sequential,
programming-oriented connective called conditional composition. This is a ternary connective which stems from the
programming construct if-then-else. Usually the if part is a (Boolean) condition, while the other two arguments are
program fragments. In our variant all three arguments are logical formulas. We use the notation

x C y B z

(read as if y then x else z), taken from the 1987 article Laws of programming by Hayes et al [13], and find

x C T B y = x, and x C F B y = y.

So, in x C y B z, first the condition y is evaluated, and depending on the result x or z. We propose a sequential logic
over Belnap’s truth values, with conditional composition defined further by

x C B B y = x ⊕ y, and x C N B y = N,

where ⊕ is defined as the least upper bound operator in the information ordering given above. We can now give
the following intuitive reading to x C y B z. If there is evidence for both the truth and the falsity of the condition y,
continue with the sum of the information that can be obtained from the alternatives x and z, and if there is no evidence
for y, stop (we are in a situation with no further alternatives). Observe that this reading is rather close to that of the
programming construct if-then-else. This correspondence of the logical conditional composition with the operational
if-then-else is made precise in our article [17], see Section 7.2 for a brief discussion.

Belnap demonstrates how useful reasoning with inconsistent information is tied to the monotonicity of operations
with respect to the information ordering. We feel that conditional composition, being monotonic, is a natural

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 321

connective for this kind of reasoning, perhaps even more so than conjunction and disjunction; an intuitive motivation
for the classical connectives, although convincingly established in [2,1], is not quite straightforward.

It turns out that the conditional composition operation is definable in B4, be it in a rather complex way. Conversely,
and perhaps even more interestingly, any B4 term can be expressed using only conditional composition and the four
constants B, T, F and N. The crucial identities are rather simple:

¬x = F C x B T,

x ∧ y = (y C x B F) C B B (x C y B F),

x ∨ y = (T C x B y) C B B (T C y B x).

Thus we have a sequential variant of Belnap’s logic. We call this logic conditional composition logic and denote it by
C4. The establishment of C4 and its axiomatization is the main contribution of this paper.

To bridge the gap between B4 and C4, we define a guard logic G4 over Belnap’s truth values. The primitives of
this logic are the constant F, negation, ⊕ (as mentioned above), and a binary guard connective that is strongly related
to Dijkstra’s guarded command [10]; both resemble an if-then composition. The guard connective is defined in C4 by

x : y = y C x B N.

The main motivation for G4 is a technical one: terms can be rewritten to a convenient type of canonical form allowing
proof strategies that culminate in a highly non-trivial completeness proof of our G4 axiomatization. The completeness
of our C4 axioms then follows quite easily.

The paper is structured as follows: in the next section we present the three logics mentioned in detail and provide
their complete axiomatizations. In Section 3 we provide translations between our three logics, and show that they are
equally expressive. In Section 4 we define canonical forms for G4 and discuss some of their elementary properties.
In Section 5 we prove that our G4 axiomatization is complete, and in Section 6 we derive the completeness of our
C4 axiomatization. In Section 7, we discuss first a relation between B4 and Kleene’s three-valued logic [15], and
then some related work on the combination of process algebra and many-valued logics. We end with conclusions in
Section 8.

2. Three logics over Belnap’s truth values

We present three logics over Belnap’s truth values. For each we provide a complete equational axiomatization. We
start with Belnap’s logic B4. Then we define C4 which has conditional composition as its only connective. Finally, we
define a so-called guard logic, notation G4, which is based on a binary guard connective.

In this section we prove only for B4 that the provided axiomatization is complete. The completeness proofs for G4
and C4 are based on the completeness of B4, and are given in Sections 5 and 6.

2.1. Belnap’s four-valued logic B4

In Belnap’s Logic B4, the connectives negation, conjunction and disjunction are defined by the truth tables
presented above in Section 1. Observe that conjunction (∧) and disjunction (∨) can also be characterized as the
greatest lower bound and the least upper bound operators of the following distributive lattice called the truth [11] or
logical [2] lattice:

F

B N

T

JJ

 JJ
(1)

Further observe that negation is an involution, i.e., ¬¬x = x is valid, and that the set {∧, ¬, B, N} is a functional basis
for B4: as usual, disjunction is defined in terms of negation and conjunction by

x ∨ y = ¬(¬x ∧ ¬y), (2)

and we define F = B ∧ N and T = B ∨ N.

Author's personal copy

322 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

Table 1
B4 axioms

B1 x ∧ y = y ∧ x B5 (B ∨ N) ∧ x = x
B2 x ∧ (y ∧ z) = (x ∧ y) ∧ z B6 ¬¬x = x
B3 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) B7 ¬B = B

B4 x ∨ (x ∧ y) = x B8 ¬N = N

The characterization of B4 as a distributive lattice with involution leads directly to the finite and complete
equational axiomatization presented in Table 1. Axioms B1–B4 characterize the truth ordering as a distributive
lattice, and axiom B6 characterizes negation as an involution. The axioms are easily shown to be sound using truth
tables. The dual identities for the axioms (with ∧ and ∨ interchanged), and the idempotence of disjunction and
conjunction, are derivable using the definition of disjunction (2). These (standard) results are collected in the following
lemma.

Lemma 1. The following identities are derivable in B4:

x ∨ y = y ∨ x, (3)
x ∨ (y ∨ z) = (x ∨ y) ∨ z, (4)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), (5)
x ∧ (x ∨ y) = x, (6)
(B ∧ N) ∨ x = x, (7)

x ∧ x = x, (8)
x ∨ x = x . (9)

Proof. For (6) we find that the left-hand side equals ¬(¬x ∨ (¬x ∧ ¬y)) using (2) and B6. By B4 this term equals
¬¬x . Now use B6. In this vein each of (3)–(7) is easily derived using the dual axiom. Idempotence of conjunction is
derived by x = x ∧ (x ∨ (x ∧ x)) = x ∧ x using (6) and B4. Idempotence of disjunction is derived similarly. �

The proof of the completeness theorem below is due to Luttik and Rodenburg (personal communication); it is based
on [14]. We use this lemma:

Lemma 2. Every closed term of B4 is derivably equal to one, and only one, of the four values B, T, F, and N.

Proof. By induction on the size of terms.
Base case. The terms B, T, F, and N are mutually not derivably equal. Suppose that two of them are. Then they

should have the same interpretation in any model of the axioms. In the four-element model constituted by the logical
lattice (1) with negation, they have a distinct interpretation, a contradiction.

Inductive case. We first look at the negation ¬t for some term t derivably equal to a ∈ {B, T, F, N}. If a = B, use
axiom B7, if a = N, use axiom B8. If a = T, recall that T = B ∨ N and F = B ∧ N by definition and derive

¬T = ¬(B ∨ N) = ¬B ∧ ¬N = B ∧ N = F,

using (2) and axioms B6, B7, and B8. Similarly, for a = F, derive

¬F = ¬(B ∧ N) = ¬(¬B ∧ ¬N) = B ∨ N = T.

Now consider the conjunction t ∧ u for some terms t and u that are derivably equal to truth values a and b
respectively. Note that we have T ∧ x = x (axiom B5), and

F ∧ x = ¬(T ∨ ¬x) = ¬(T ∨ (T ∧ ¬x)) = ¬T = F

using (2), B6, B5, B1, B4. Further using idempotence (8) and commutativity (B1) of conjunction, we find the only
remaining case B ∧ N which equals F by definition. �

Theorem 3. The B4 axioms are complete.

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 323

Table 2
C4 axioms

C1 x1 C (y1 C z B y2) B x2 = (x1 C y1 B x2) C z B (x1 C y2 B x2)

C2 (x1 C u B x2) C z B (y1 C u B y2) = (x1 C z B y1) C u B (x2 C z B y2)

C3 (x1 C y B x2) C y B x3 = x1 C y B (x2 C y B x3)

C4 T C x B F = x

C5 x C T B y = x C8 x C B B y = y C B B x
C6 x C F B y = y C9 x C B B N = x
C7 x C N B y = N C10 B C B B x = B

Proof. Let the B4 axioms in Table 1 denote the variety of algebras with conjunction, disjunction, negation, and the
four values B, T, F, and N.

First, it easily follows from Lemma 2 that the initial B4 algebra is the four-element distributive lattice (1) with
involution and with the two distinct fixed points of negation B and N.

We apply the following theorem from [14]: Any distributive lattice with involution is isomorphic with a subdirect
product of isomorphic images of the four-element distributive lattice with involution and with two distinct fixed points
of negation. From this theorem it follows that the B4 axioms completely axiomatize the initial B4 algebra. Suppose
that t = u is true in the initial algebra. Then this identity holds in any subdirect power of it, and since any B4 algebra
is isomorphic to such a subdirect power, we may conclude that B4 |= t = u. Hence B4 ` t = u follows by Birkhoff’s
completeness theorem for equational logic [9]. �

2.2. Conditional composition logic C4

The alternative logic C4 over Belnap’s truth values has one, ternary operator C B called conditional composition
as its only connective. A composition x C y B z is read as if y then x else z; we define

x C T B y = x, x C F B y = y, x C N B y = N,

and x C B B y = x ⊕ y, where ⊕ is the least upper bound operator of the information ordering lattice

N

T F

B

JJ

 JJ
(10)

that we presented already above in Section 1. (The truth table for conditional composition is implicit in this definition.)
We use ⊕ as an auxiliary operation, keeping in mind that it is defined as CBB . The set {CB, B, T, F, N} is a functional
basis for C4.

In Table 2 we give a complete set of axioms for C4. Soundness of these axioms is easily verified using
truth tables. Axiom C1 expresses that a composition that occurs nested in a condition can be pushed outwards.
Axiom C2 says that if the subsequent condition is equal for both alternatives of a conditional composition, then
the order in which the conditions are evaluated can be changed. Axiom C3 says that C x B is associative
for any x . Axiom C4 may be interpreted as expressing idempotence of conditional composition (the identity
x C x B x = x is derivable, see Section 4.2). Axioms C5 and C6 characterize the if-then-else reading of
conditional composition for the classical truth values. A composition is undefined if its condition is undefined
(axiom C7). Finally, the axioms C8–C10 complete the characterization of C B B as the least upper bound
operator for the information ordering. In Section 6 we give a detailed proof of the completeness of this C4
axiomatization.

We conclude the introduction of C4 with some typical identities concerning B, N, and the distribution of conditional
composition over the auxiliary connective ⊕ (that is, C B B).

Author's personal copy

324 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

Table 3
G4 axioms

G1 x ⊕ y = y ⊕ x G9 x = x : ¬F ⊕ ¬x : F

G2 (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) G10 ¬F : x = x
G3 x ⊕ x = x G11 F : x = F : y
G4 (F ⊕ ¬F) ⊕ x = F ⊕ ¬F G12 x : (y ⊕ z) = x : y ⊕ x : z
G5 F : x ⊕ y = y G13 (x ⊕ y) : z = x : z ⊕ y : z
G6 x : (y : z) = y : (x : z) G14 ¬(x ⊕ y) = ¬x ⊕ ¬y
G7 (x : y) : z = x : (y : z) G15 ¬(x : y) = x : ¬y
G8 x : (x : y) = x : y G16 ¬¬x = x

Lemma 4. The following identities are derivable in C4:

x C B B x = x, (11)
N C x B N = N, (12)

(x1 ⊕ x2) C y B z = (x1 C y B z) ⊕ (x2 C y B z), (13)
x C (y1 ⊕ y2) B z = (x C y1 B z) ⊕ (x C y2 B z), (14)
x C y B (z1 ⊕ z2) = (x C y B z1) ⊕ (x C y B z2). (15)

Proof. For (11) we derive using axiom C9 that x C B B x equals

(x C B B N) C B B (x C B B N)

which is derivably equal to x by axioms C1, C10, and C9. The left-hand side of (12) equals (yCNBy)CxB(yCNBy)

by axiom C7. Now apply C2 and C7. Eqs. (13) and (15) are derived using (11) and axiom C2. Eq. (14) is an instance
of axiom C1. �

2.3. Guard logic G4

The last logic we consider is based on the binary guard connective : defined by

x : y = y C x B N,

where x is called the guard of y. We note that both the guard connective and the ⊕ are introduced in [11], where the
latter is called the gullibility operator. Furthermore, the guard connective corresponds to Dijkstra’s guarded command
construct [10]. Together with ⊕ and negation, we obtain the expressiveness of C4 and B4, as will be shown in Section 3.
We refer to this logic, with primitives {⊕, :, ¬, F}, as guard logic, denoted by G4. The remaining truth values are
defined by T = ¬F, B = F ⊕ ¬F, and N = F : F.

Let ¬ bind strongest and ⊕ bind weakest. The axioms of G4 are collected in Table 3. These axioms are sound: this
is easily verified using truth tables (for ⊕ and : the truth tables follow from their definitions). These axioms are also
complete: see Section 5.

Some typical identities characterizing G4 are collected in the following lemma.

Lemma 5. The following identities are derivable in G4:

x : N = N, (16)
N : x = N, (17)
B : x = x, (18)
¬B = B (19)
¬N = N. (20)

Proof. Eq. (16) is easily derived using the definition N = F : F and axioms G6 and G11. Derivation of (17) is similar
using G7 and G11. Eq. (18) is easily derived using the definition B = F⊕¬F and axioms G13, G10, and G5. Similarly,
(19) is derived using G14, G16, and G1. Eq. (20) is derived using G15 and G11. �

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 325

Table 4
Translations; x ′ stands for the inductive application of the translation on x

B4 to C4
¬t 7→ F C t ′ B T t ∧ u 7→ (u′ C t ′ B F) C B B (t ′ C u′ B F)

t 7→ t for t = B, N t ∨ u 7→ (T C t ′ B u′) C B B (T C u′ B t ′)

C4 to B4
t C u B v 7→ ((t ′ ∧ u′) ∨ (v′

∧ ¬u′)) ∨ (((t ′ ∧ v′) ∧ N) ∨ ((u′
∧ ¬u′) ∧ N))

B 7→ B F 7→ B ∧ N N 7→ N T 7→ B ∨ N

C4 to G4
t C u B v 7→ u′

: t ′ ⊕ ¬u′
: v′

B 7→ F ⊕ ¬F T 7→ ¬F F 7→ F N 7→ F : F

G4 to C4
t : u 7→ u′ C t ′ B N F 7→ F

t ⊕ u 7→ t ′ C B B u′
¬t 7→ F C t ′ B T

G4 to B4
t : u 7→ ((t ′ ∧ u′) ∨ (¬t ′ ∧ N)) ∨ (u′

∧ N) F 7→ B ∧ N

t ⊕ u 7→ ((t ′ ∧ B) ∨ (u′
∧ B)) ∨ ((t ′ ∧ u′) ∧ N) ¬t 7→ ¬t ′

B4 to G4
¬t 7→ ¬t ′ t ∧ u 7→ (t ′ : u′

⊕ ¬t ′ : F) ⊕ (u′
: t ′ ⊕ ¬u′

: F)

B 7→ F ⊕ ¬F t ∨ u 7→ (t ′ : ¬F ⊕ ¬t ′ : u′) ⊕ (u′
: ¬F ⊕ ¬u′

: t ′)
N 7→ F : F

3. Expressiveness results

We have defined three logics over Belnap’s truth values. In Section 3.1 we show that these logics have exactly
the same expressiveness, that is, their operators can be defined in terms of the other logics. Hence the logics can
be considered the same, but with a different functional basis. So, we can freely use those operators that seem most
appropriate. As in G4, we let ¬ bind strongest, and ⊕ bind weakest, when we combine operators from these logics.

Then, in Section 3.2, we characterize the expressiveness of the logics: in our three logics we can express exactly
those functions on the truth values that are monotonic with respect to the information ordering (10).

Finally, in Section 3.3, we show that with the addition of one non-monotonic operator, we can express every
function on the truth values.

3.1. Translations

We present translations between the logics B4, C4, and G4; that is, we show how to express any term in one logic
using the primitives of each of the other logics. The translations are given in Table 4. For simplicity we use disjunction,
which we defined as an auxiliary connective, in the translations to and from B4.

Theorem 6. The translations in Table 4 are sound.

Proof. Straightforward using truth tables. �

We conclude that the logics

• B4 with functional basis {∧, ¬, B, N},
• C4 with functional basis {CB, B, T, F, N}, and
• G4 with functional basis {⊕, :, ¬, F}

are equally expressive.

3.2. Truth-functional completeness for monotonic functions

We show that, with respect to the information ordering defined by lattice (10), the logic C4 (and hence also B4 and
G4) is truth functionally complete for monotonic functions. Write T for the set {B, T, F, N} of truth values.

Author's personal copy

326 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

Recall that an n-ary function f over T is monotonic with respect to a partial ordering ≤ on T , if whenever ai ≤ bi
for 1 ≤ i ≤ n, then

f (a1, . . . , an) ≤ f (b1, . . . , bn).

Let ≤ be the information ordering. First note that conditional composition is monotonic. This follows from the fact
that x ≤ y if and only if x ⊕ y = y and that conditional composition distributes over ⊕ (Lemma 4). Furthermore, an
n-ary function f over T can be expressed in C4 if there is a term t with variables x1, . . . , xn , and no others, such that

f (a1, . . . , an) = t[a1/x1, . . . , an/xn]

for all a1, . . . , an ∈ T .

Theorem 7. Functions that are monotonic with respect to the information ordering can be expressed in C4.

Proof. Let f be a (k + 1)-ary monotonic function on T , and write x̄, y for (k + 1)-tuples (x̄ may be empty). We prove
that the function f is expressible by induction on k; assume that f (x̄, a) is expressible, for all a ∈ T .

We define

f (x̄, y) = f (x̄, N) ⊕ f (x̄, T) C y B f (x̄, F) ⊕ (N C y B f (x̄, B)) C y B N.

To see that this indeed defines f , we make a case distinction on the value of y. For the respective cases y = N, T, F, B,
we find that the right-hand side equals

(1) f (x̄, N) ⊕ N ⊕ N

(2) f (x̄, N) ⊕ f (x̄, T) ⊕ N,
(3) f (x̄, N) ⊕ f (x̄, F) ⊕ N, and
(4) f (x̄, N) ⊕ f (x̄, T) ⊕ f (x̄, F) ⊕ f (x̄, B).

For each case it is easily found that this term equals f (x̄, y) using the monotonicity of f (for example, N < T, so
f (x̄, N) ⊕ f (x̄, T) = f (x̄, T)). �

3.3. Truth-functional completeness

Because all operators defined so far are monotonic, we cannot express non-monotonic functions on the truth values.
We show that with the addition of one non-monotonic operator, we can express every function on the truth values.
The unary definedness operator ↓ (see [3]) is defined by

↓B = F, ↓T = T, ↓F = T, ↓N = F.

This operator is not monotonic; for example, we have T ≤ B while ↓T 6≤ ↓B.

Theorem 8. With the addition of the definedness operator ↓ to B4, C4, or G4 we obtain a logic that is truth
functionally complete.

Proof. It is sufficient to prove this for B4. We introduce auxiliary functions κa() that satisfy

κa(b) =

{
T if a = b,

F otherwise,

for a, b ∈ T :

κB(x) = ↓((x ∧ ¬x) ∨ N),

κT(x) = ↓x ∧ x,

κF(x) = κT(¬x),

κN(x) = ↓((x ∧ ¬x) ∨ B).

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 327

Let f be a (k + 1)-ary function on T . Write x̄, y for (k + 1)-tuples. We define

f (x̄, y) =

∨
a∈T

(κa(y) ∧ f (x̄, a)).

Hence, the theorem follows by induction on k. �

We remark that another non-monotonic operator which adds full expressiveness is Fitting’s unary conflation
operator −, defined by −B = N, −T = T, −F = F, and −N = B, see [11]. Using conflation, the definedness
operator is defined by

↓x = (x ∨ ¬x) ∧ −(x ∨ ¬x).

4. Canonical forms for guard logic

We define a canonical form representation for G4 terms. We prove that we can derive so-called optimal canonical
forms for terms, and suggest a general strategy for proving equality of terms.

4.1. Definition of canonical forms

Since the guard connective is associative (by G7), we shall not write parentheses in a term

u1 : · · · : un : t.

We call the terms u1, . . . , un the guards of t . Since the guards are unordered (by G6), and multiple occurrences of the
same guard can be identified (by G9), we shall, when this is convenient, use the set-like notation

{u1, . . . , un}t

for such a term, where it is understood that the guards are distinct and unordered. We use the letters α, β to stand for
a finite set of guards; so αt stands for some u1 : · · · : uk : t with k ≥ 0. (In particular the set may be empty; we let
∅t = t .)

Proposition 9. For all terms t, u1, . . . , un we have

u1 : · · · : un : t = (u1 ∧ · · · ∧ un) : t = (u1 ⊗ · · · ⊗ un) : t,

where ⊗ is the greatest lower bound operation for the information ordering lattice.

We define simple canonical forms as follows: the truth values T and F are simple canonical forms; if t is a simple
canonical form, then u : t is a simple canonical form for any term u. We see that every simple canonical form is of the
form

u1 : · · · : un : a

with n ≥ 0 and a ∈ {T, F}, and using the convention introduced above this may be written as {u1, . . . , un}a.
A simple canonical form {u1, . . . , un}a is optimal if all of its guards are literals, where a literal is defined as being

either a variable or a negated variable.
A canonical form is either N, in which case we say it is empty, or a least upper bound

t0 ⊕ · · · ⊕ tn

of simple canonical forms t0, . . . , tn with n ≥ 0. A canonical form is optimal if either it is empty or each of its simple
canonical forms is optimal.

Proposition 10. A canonical form can be written as⊕
i

αi T ⊕

⊕
j

β j F,

in which the finite sets αi , β j may be seen as the support for T and F, respectively.

Author's personal copy

328 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

4.2. Deriving canonical forms

Deriving a canonical form is trivial: any term t equals the canonical form t : T ⊕ ¬t : F by G9. Canonical forms are
optimized, i.e., rewritten towards an optimal canonical form, by pushing ⊕ outwards, and negation inwards.

Lemma 11. The term t : u is derivably equal to an optimal canonical form, for all optimal simple canonical forms t
and u.

Proof. Take optimal simple canonical forms t = αa and u = βb, where a, b ∈ {T, F}, and α, β finite sets of literals.
Using G7 we derive that t : u equals α(a : u). If a = T, then, by G10, t : u = αu = (α ∪ β)b, which is an optimal

canonical form. Otherwise, if a = F, then, by G7, G11, and (16), t : u = αN = N, which is an optimal canonical
form. �

Lemma 12. The term t : u is derivably equal to an optimal canonical form, for all optimal canonical forms t and u.

Proof. Take optimal canonical forms t =
⊕

i ti and u =
⊕

j u j , where the ti and u j are optimal simple canonical
forms.

If t and/or u is empty, i.e., equal to N, then we find by (16) and (17) that t :u equals N, which is an optimal canonical
form. So we further assume that both are non-empty. It is easy to derive that t equals⊕

i, j

(ti : u j)

using G12 and G13. Each ti : u j is derivably equal to an optimal canonical form by Lemma 11. �

Lemma 13. The term ¬t is derivably equal to an optimal canonical form, for all optimal canonical forms t.

Proof. Easy, using induction on the number of symbols in t , and G14 and G15. �

Theorem 14. Every G4 term is derivably equal to an optimal canonical form.

Proof. Let t be a term. We use induction on the number of symbols in t .
If t ∈ {T, F, N}, then it is an optimal canonical form.
If t = B, then t = B : T ⊕ ¬B : F = T ⊕ F by G9, (18), and (19), and this right-hand side is an optimal canonical

form.
If t is a variable, then it equals the optimal canonical form t : T ⊕ ¬t : F by axiom G9.
If t = ¬t1 then it is derivably equal to an optimal canonical form by the induction hypothesis and application of

Lemma 13.
If t = t1 : t2, then we use the induction hypothesis and Lemma 12.
Finally, if t = t1 ⊕ t2 we only use the induction hypothesis. �

For example, we derive for variables x, y, z that

x C y B z = y : x ⊕ ¬y : z

= y : (x : T ⊕ ¬x : F) ⊕ ¬y : (z : T ⊕ ¬z : F)

= y : x : T ⊕ y : ¬x : F ⊕ ¬y : z : T ⊕ ¬y : ¬z : F,

where we eliminated the conditional composition according to its translation (see Table 4), and we used G9 and G12.
Using our set-like notation for guards we may write

x C y B z = {x, y}T ⊕ {¬x, y}F ⊕ {¬y, z}T ⊕ {¬y, ¬z}F (21)

for this identity.

Lemma 15 (Absorption). The following identity is derivable:

x : y : z ⊕ y : z = y : z. (Abs)

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 329

Proof. Using (18), G13, G1, and G4, we derive

x : y : z ⊕ y : z = x : y : z ⊕ B : y : z = (x ⊕ B) : y : z = B : y : z = y : z. �

In the next section, where we frequently use the set-like notation for canonical forms, we shall use this absorption
property to let a summand αx absorb a summand (α ∪ β)x . As an example, we derive the identity x C x B x = x :

x C x B x = {x}T ⊕ {x, ¬x}F ⊕ {x, ¬x}T ⊕ {¬x}F

= {x}T ⊕ {¬x}F

= x,

using (21), absorption, and G9. Note that, to apply this, the canonical forms need not be optimal. Our general strategy
for proving equations between open terms is to write both sides as canonical forms, optimize them as far as is needed,
and then apply absorption.

Finally, the following identity is easy to derive using G9:

αx = (α ∪ {x})T ⊕ (α ∪ {¬x})F. (22)

5. Completeness of guard logic

We have presented the three equally expressive logics B4, G4, and C4, and we proved completeness for the B4
axiomatization (Theorem 3). Also, we have defined sound translations between these logics in Table 4. In this section
we prove the completeness of G4 from the completeness of B4. In Section 6 we prove completeness of C4 in the same
way, but then relative to the completeness of G4.

We argue as follows. If the translation of each B4 axiom is derivable in G4, then each B4 derivation can be mimicked
in G4. To complete the proof we argue that the translations are invariant with respect to derivability. We explain this
in some more detail: for t a term in the G4 signature, we write t ′ for its translation to B4 and for t a term in the B4
signature, we write t∗ for its translation to G4. Now assume G4 |= u = v. Then, by translation and the completeness
of B4, we have B4 ` u′

= v′. Since we have proved that every derivation for this identity can be mimicked in G4,
it follows that G4 ` (u′)∗ = (v′)∗. Finally, invariance of our back-and-forth translation, i.e., G4 ` t = (t ′)∗, yields
G4 ` u = v, as was to be shown.

We repeat here the translations between B4 and G4 as defined above in Table 4. From B4 to G4:

B∗
= F ⊕ ¬F,

N∗
= F : F,

(¬x)∗ = ¬x∗,

(x ∧ y)∗ = (x∗
: y∗

⊕ ¬x∗
: F) ⊕ (y∗

: x∗
⊕ ¬y∗

: F),

(x ∨ y)∗ = (x∗
: ¬F ⊕ ¬x∗

: y∗) ⊕ (y∗
: ¬F ⊕ ¬y∗

: x∗).

And vice versa:

F′
= B ∧ N,

(¬x)′ = ¬x ′,

(x : y)′ = ((x ′
∧ y′) ∨ (¬x ′

∧ N)) ∨ (y′
∧ N),

(x ⊕ y)′ = ((x ′
∧ B) ∨ (y′

∧ B)) ∨ ((x ′
∧ y′) ∧ N).

Variables translate to themselves.

5.1. Derivation of the B4 axioms in G4

We prove for every B4 axiom t = u that G4 ` t∗ = u∗. In the cases of the axioms B2–B4, it is not easy to find
a “direct” derivation; in these cases we use rewriting to canonical forms, after which application of absorption (Abs)
yields the required identity. We have omitted the details of this straightforward rewriting.

Author's personal copy

330 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

B1. This axiom translates to

(x : y ⊕ ¬x : F) ⊕ (y : x ⊕ ¬y : F) = (y : x ⊕ ¬y : F) ⊕ (x : y ⊕ ¬x : F),

which is an instance of axiom G1.
B2. It is easy to derive using straightforward rewriting towards canonical forms and absorption, that the translations

of both sides equal the canonical form

{x, y}z ⊕ {x, z}y ⊕ {z, y}x ⊕ {¬x}F ⊕ {¬y}F ⊕ {¬z}F.

B3. Both sides rewrite to the optimal canonical form

{¬x}F ⊕ {¬y, ¬z}F ⊕ {x, y}T ⊕ {x, z}T,

using absorption and (22) during optimization.
B4. It is not difficult to derive both sides equal to the optimal canonical form {x}T ⊕ {¬x}F.
B5. First, the translation of B ∨ N equals (T ⊕ N) ⊕ (N ⊕ N), where T = ¬F and N = F : F by definition, using the

identities of Lemma 5. This term is derivably equal to T by axioms G1, G2, and G5. Next, we find that (B ∨ N) ∧ x
translates to

(T : x ⊕ ¬T : F) ⊕ (x : T ⊕ ¬x : F)

which equals

x ⊕ (x : T ⊕ ¬x : F)

by G10, G16, G1, G5. The proof is finished straightforwardly using axiom G9 and G3.
B6. Equals G16.
B7 and B8. Have been derived in Lemma 5.

5.2. Translation invariance

We give a proof of the translation invariance: we show that every term t of G4 is derivably equal to (t ′)∗.
We consider the cases t = u ⊕ v, t = u : v, and t = ¬u, where u and v are arbitrary terms. We prove that (t ′)∗

is derivably equal to t in G4 using induction on terms: we assume that (x ′)∗ is derivably equal to x for x = u, v. The
last case (negation) is trivial.

Let t = u ⊕ v. First we translate to B4:

t ′ = ((s1 ∨ s2) ∨ s3),

where

s1 = u′
∧ B,

s2 = v′
∧ B,

s3 = (u′
∧ v′) ∧ N.

Now, we translate t ′ back to G4. We apply this translation bottom-up: we first translate the si . Using B, T, and N as
abbreviations in G4, we find

s∗

1 = ((u′)∗ : B ⊕ ¬((u′)∗) : F) ⊕ (B : (u′)∗ ⊕ ¬B : F)

= (u : B ⊕ ¬u : F) ⊕ (B : u ⊕ ¬B : F)

= (u : B ⊕ ¬u : F) ⊕ (u ⊕ F)

= (u : T ⊕ u : F ⊕ ¬u : F) ⊕ (u : T ⊕ ¬u : F ⊕ F)

= {u}T ⊕ F,

using first the induction hypothesis and Lemma 5, then G9, and finally absorption. In the same way we find

s∗

2 = {v}T ⊕ F,

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 331

and, using straightforward rewriting and absorption,

s∗

3 = {¬u}F ⊕ {¬v}F.

Now, we compute a canonical form for (s1 ∨ s2)
∗. We find that

(s1 ∨ s2)
∗

= (s∗

1 : T ⊕ ¬s∗

1 : s∗

2) ⊕ (s∗

2 : T ⊕ ¬s∗

2 : s∗

1).

We derive

s∗

1 : T ⊕ ¬s∗

1 : s∗

2 = ({u}T ⊕ F) : T ⊕ ¬({u}T ⊕ F) : ({v}T ⊕ F)

= {u}T ⊕ {v}T ⊕ F.

Similarly, we find that

s∗

2 : T ⊕ ¬s∗

2 : s∗

1 = {u}T ⊕ {v}T ⊕ F,

so that

(s1 ∨ s2)
∗

= {u}T ⊕ {v}T ⊕ F.

For (t ′)∗ we find

(t ′)∗ = ((s1 ∨ s2) ∨ s3)
∗

= r1 ⊕ r2 ⊕ r3 ⊕ r4,

where

r1 = (s1 ∨ s2)
∗

: T,

r2 = ¬(s1 ∨ s2)
∗

: s∗

3 ,

r3 = s∗

3 : T,

r4 = ¬s∗

3 : (s1 ∨ s2)
∗.

It is easy to derive

r1 = {u}T ⊕ {v}T,

r2 = {¬u}F ⊕ {¬v}F,

r3 = N,

r4 = {¬u, u}T ⊕ {¬u, v}T ⊕ {¬u}F ⊕ {¬v, u}T ⊕ {¬v, v}T ⊕ {¬v}F.

Using absorption we find

(t ′)∗ = {u}T ⊕ {v}T ⊕ {¬u}F ⊕ {¬v}F.

Now we finish this case using G9.
For the next case let t = u : v. First we translate to B4:

t ′ = ((s1 ∨ s2) ∨ s3),

where

s1 = u′
∧ v′,

s2 = ¬u′
∧ N,

s3 = v′
∧ N.

Now, we translate t ′ back to G4. We apply this translation bottom-up: we first translate the si . We find

s∗

1 = {u}v ⊕ {¬u}F ⊕ {v}u ⊕ {¬v}F,

using the induction hypothesis, i.e., u = (u′)∗, v = (v′)∗. Similarly we find s∗

2 = {u}F, and s∗

3 = {¬v}F.

Author's personal copy

332 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

Now, we compute a canonical form for (s1 ∨ s2)
∗. We find that

(s1 ∨ s2)
∗

= (s∗

1 : T ⊕ ¬s∗

1 : s∗

2) ⊕ (s∗

2 : T ⊕ ¬s∗

2 : s∗

1).

We derive optimal canonical forms for each of these summands:

s∗

1 : T = {u, v}T,

¬s∗

1 : s∗

2 = {u, ¬v}F ⊕ {u, ¬u}F,

s∗

2 : T = N,

¬s∗

2 : s∗

1 = {u, v}T ⊕ {u, ¬v}F ⊕ {u, ¬u}F,

so that

(s1 ∨ s2)
∗

= {u, v}T ⊕ {u, ¬v}F ⊕ {u, ¬u}F.

For (t ′)∗ we find

(t ′)∗ = ((s1 ∨ s2) ∨ s3)
∗

= r1 ⊕ r2 ⊕ r3 ⊕ r4,

where

r1 = (s1 ∨ s2)
∗

: T,

r2 = ¬(s1 ∨ s2)
∗

: s∗

3 ,

r3 = s∗

3 : T,

r4 = ¬s∗

3 : (s1 ∨ s2)
∗.

It is easy to derive

r1 = {u, v}T,

r2 = {u, ¬v}F,

r3 = N,

r4 = {u, v,¬v}T ⊕ {u, ¬v}F ⊕ {u, ¬u, ¬v}F.

Using absorption we find

(t ′)∗ = {u, v}T ⊕ {u, ¬v}F.

Now we finish this case using (22).

6. Completeness of conditional composition logic

By the same argument as used above to prove the completeness of G4 relative to the completeness of B4, we prove
the completeness of C4 relative to the completeness of G4.

We repeat here the translations between G4 and C4 as defined in Table 4. From G4 to C4:
F∗

= F,

(¬x)∗ = F C x∗ B T,

(x ⊕ y)∗ = x∗ C B B y∗,

(x : y)∗ = y∗ C x∗ B N.

And vice versa:
(x C y B z)′ = y′

: x ′
⊕ ¬y′

: z′,

B′
= F ⊕ ¬F,

T′
= ¬F,

F′
= F,

N′
= F : F.

Variables translate to themselves.

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 333

6.1. Derivation of the G4 axioms in C4

We prove for every G4 axiom t = u that C4 ` t∗ = u∗.
Axiom G1 translates to an instance of axiom C8, and G2 translates to an instance of axiom C3. G3 is derived above

as (11). G4 translates to an instance of C10. Derivation of G5 is easy by C8, C9. In the case of G6, the left-hand side
equals (z C y B N) C x B (N C y B N) by definition and by (12). Now apply C2 and again (12). Derivation of G7 is
easy using C1 and C7, and derivation of G8 is easy by C3 and (12).

Axiom G9 is derived as follows.

x = T C x B F (by C4)

= (T C B B N) C x B (N C B B F) (by C9, C8)

= (T C x B N) C B B (N C x B F) (by C2)

= (T C x B N) C B B (F C (F C x B T) B N) (by C1, C5, C6)

= (x : T ⊕ ¬x : F)∗ (definition).

G10 translates to an instance of C5; G11 to an instance of C6; and G12 to an instance of (13). G13 and G14 translate
to instances of C1 (and of (14)). G15 is easy to derive using axioms C1 and C7. G16 is derived using axioms C1, C5,
C6, and C4.

6.2. Translation invariance

As in Section 5.2, we apply induction on terms. The cases for the truth constants are trivial. Take C4 term
t = u C v B w. We show that C4 ` (t ′)∗ = t . First,

t ′ = v′
: u′

⊕ ¬v′
: w′.

Back to C4:

(t ′)∗ = ((u′)∗ C (v′)∗ B N) C B B ((w′)∗ C (F C (v′)∗ B T) B N)

= (u C v B N) C B B (w C (F C v B T) B N)

= (u C v B N) C B B (N C v B w)

= (u C B B N) C v B (N C B B w)

= u C v B w,

using the induction hypothesis, then C1, C5, C6, then C2, and finally C8, C9.

7. Digression

We discuss two matters which fall outside the main line of this article. First, in Section 7.1, we show that B4 arises
naturally from Kleene’s three-valued logic [15]. In itself, this is well-known, see [11], but our argument starts from
the preservation of the equational theory. Second, in Section 7.2 we discuss some related work on process algebra
with many-valued logics.

7.1. Belnap’s logic extends Kleene’s logic

Kleene’s three-valued logic [15] — denoted here by K3 and also known as partial logic — has, besides the values
true (T) and false (F), a third truth value undefined, for which we shall use the symbol ∗. Negation, disjunction and
conjunction are defined by the following truth tables.

¬

T F
F T
∗ ∗

∧ T F ∗

T T F ∗

F F F F
∗ ∗ F ∗

∨ T F ∗

T T T T
F T F ∗

∗ T ∗ ∗

Author's personal copy

334 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

This logic was designed in order to deal with partial recursive functions: if a partial function f is not defined for
argument a, and the truth value of a term φ depends on f (a), then φ may be classified as ∗. However, a term may still
make sense, that is, have a definite truth value, even if it has indefinite subterms; for example, F ∧ φ equals F, even
if φ is classified as ∗. Observe that this intuition also applies to Belnap’s truth values B and N. Above we introduced
Belnap’s logic as the logic characterizing the logical lattice (1). Alternatively, one can start with Kleene’s logic and
argue that the natural extension of this logic with distinct interpretations of the third truth value while respecting its
equational theory is, in fact, Belnap’s logic.

Consider extensions of Kleene’s logic that are obtained by distinguishing distinct readings of ∗. We require the
following:

(1) For an extension with X one of the interpretations of ∗, the subalgebra over {T, F, X} should be isomorphic to K3.
For example, this leads to the requirement that ¬X = X should be valid for any interpretation X of ∗.

(2) The extension should preserve the equational theory of K3. If the identity t = u is valid in K3, and X is one of the
interpretations of ∗, then t[∗ := X] = u[∗ := X] should be valid in the extension. In particular, commutativity,
associativity and idempotence of conjunction and disjunction, and absorption and distributivity, are valid in K3
and should also be valid in the extension. Moreover, negation should remain an involution.

We shall show that Belnap’s logic is the only possible extension of K3 satisfying these requirements.
Let B and N be two distinct readings of the value ∗. It is easy to verify that the requirements lead to the following

(incomplete) truth tables:

¬

B B
T F
F T
N N

∧ B T F N

B B B F
T B T F N
F F F F F
N N F N

In the following we argue that B ∧ N = N ∧ B = F (and hence that B ∨ N = N ∨ B = T), and that there are no more
than two possible readings of the third truth value ∗. Observe that absorption (x = x ∧ (x ∨ y)) is valid in K3, and so
are commutativity, associativity and idempotence of conjunction. Now B ∧ N 6∈ {B, N} by absorption and the identity
B ∨ N = ¬(B ∧ N). Suppose B ∧ N = N, then

B = B ∧ (B ∨ N) = B ∧ ¬(B ∧ N) = B ∧ ¬N = N.

(In the same way, B ∧ N = B can be refuted.) By associativity and idempotence of conjunction, B ∧ N 6= T (consider
B ∧ B ∧ N). Now assume that ∗ admits a third interpretation, say X, and B ∧ N = X (and thus B ∨ N = X). Then we
derive X = B as follows. First, we have that

B = B ∧ (B ∨ N) = B ∧ X = X ∧ B,

and hence

B = ¬B = ¬(B ∧ X) = ¬B ∨ ¬X = B ∨ X = X ∨ B.

It follows that

X = X ∧ (X ∨ B) = X ∧ B = B.

This shows that B ∧ N = F, and it remains to be shown that with this identity the assumption above, i.e., the
existence of a third reading X, is not compatible with B and N. Suppose the contrary. Then, as above, it follows
that B ∧ X = N ∧ X = F. Because distributivity is valid in K3, we can derive

B = B ∧ T = B ∧ (N ∨ X) = (B ∧ N) ∨ (B ∧ X) = F ∨ F = F,

which concludes our argument.

Author's personal copy

A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336 335

7.2. Process algebra and many-valued logics

As a second digression, we discuss some related work. This article emerged as a result of research on the
combination of process algebra and non-standard propositional logics, see, e.g., [5–8,17]. The main motivation for
this research is the characterization of erroneous behavior using propositional logics with non-standard truth values in
process algebra with conditional composition.

In [3], Bergstra, Bethke and Rodenburg defined a four-valued propositional logic comprising the special values N
(in [3] called D, abbreviating deadlock or divergence) and M (meaningless) and proposed an “information ordering
lattice” in which M majorizes T and F, while N is their greatest lower bound. Furthermore, like Fitting in [11],
these authors introduced special connectives for the sequential interpretation of ∧ and ∨. In particular, left-sequential
conjunction, notation ∧a , can be motivated as providing an interpretation of conjunction with an operational, sequential
reading (for instance suitable to represent lazy, left-sequential evaluation of conditions in imperative programming).
Finally, the truth value M represents a catastrophic notion of meaningless: typically, x ∧ M = x ∨ M = ¬M = M,
whereas for instance F ∧a M = F. The truth values N and M can be motivated as covering all types of “errors” that one
would want to characterize in error modelling. This four-valued logic, with truth values {M, T, F, N}, is combined with
the process algebra ACP [4] in [7], where a strict correspondence between the truth value N and the deadlock process
δ was established.

In [6], Bergstra and Ponse defined a five-valued propositional logic with truth values {M, B, T, F, N}, where M
majorizes B (in [6] the value B was called C, for ‘choice’) in the information ordering lattice. Furthermore, in that
paper conditional composition is introduced as a logical connective, making left-sequential conjunction, as well as the
associated right-sequential and dual connectives, definable:

x ∧a y = y C x B F.

The correspondence of logical conditional composition with the programming construct if-then-else is the subject
of [8] and of our article [17]. In the latter we present a generalization of the process algebra ACP [4] with conditions
over C4. We write

P +φ Q

for if φ then P else Q, where P and Q are process terms. Process-algebraic conditional composition is defined by

P +B Q = P + Q,

P +T Q = P,

P +F Q = Q,

P +N Q = δ.

Here + is the well-known ACP operator that stands for choice (or alternative composition), and δ is the constant that
models inaction (also called deadlock). The intuition is that the choice is non-deterministic if there is evidence for
both the truth and the falsity of the condition, and that nothing happens if the value of the condition is undefined, e.g.,
because the evaluation diverges. This leads to the identification of the summand inclusion ordering ⊆ defined by

P ⊆ Q iff Q = P + Q

as the process-algebraic counterpart of the information ordering of Belnap’s logic. The process constant δ is the bottom
element in the summand inclusion ordering (x + δ = x is an axiom of ACP). ACP does not include a process constant
for the top element of the summand inclusion. Such a constant is Hoare’s chaos constant χ [12], which is combined
with δ in a single framework as the meaningless constant µ in [5,7]. In [7], a correspondence is established between
the process constant µ and the truth value M discussed above.

8. Conclusion

We have presented the three equationally axiomatized logics B4, C4 and G4 over Belnap’s truth values. Here, B4 has
Belnap’s classical connectives for conjunction and negation as primitives. This logic has a well-known characterization
as a distributive lattice with involution, from which a complete axiomatization follows directly. The logics C4 and G4

Author's personal copy

336 A. Ponse, M.B. van der Zwaag / Theoretical Computer Science 388 (2007) 319–336

have a sequential character (i.e., they have sequential connectives as primitives) and are, to our knowledge, new,
although the guard connective of G4 is also discussed by Fitting [11].

We motivated these logics as following naturally from an operational perspective on the evaluation of compound
logical propositions. This is worked out further in our article [17] in which we show the correspondence of logical
conditional composition with the notion of choice in process algebra.

We demonstrated the expressive equivalence between the three logics by providing translations. We proved
completeness of the axiomatizations: we started with a completeness proof for B4 and then based the completeness
proof for G4 on that of B4, and, consequently, that of C4 on the completeness of G4. The logic G4 thus played a role as
an intermediate in which we were able to do quite effective equational reasoning based on a certain type of canonical
forms.

References

[1] A.R. Anderson, N.D. Belnap, J.M. Dunn, Entailment: The Logic of Relevance and Necessity, Princeton University Press, 1992.
[2] N.D. Belnap, A useful four-valued logic, in: J.M. Dunn, G. Epstein (Eds.), Modern Uses of Multiple-Valued Logic, D. Reidel, 1977, pp. 8–37.
[3] J.A. Bergstra, I. Bethke, P.H. Rodenburg, A propositional logic with 4 values: True, false, divergent and meaningless, Journal of Applied and

Non-Classical Logics 5 (2) (1995) 199–218.
[4] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Control 60 (1–3) (1984) 109–137.
[5] J.A. Bergstra, A. Ponse, Bochvar-McCarthy logic and process algebra, Notre Dame Journal of Formal Logic 39 (4) (1998) 464–484.
[6] J.A. Bergstra, A. Ponse, Process algebra with five-valued logic, in: C.S. Calude, M.J. Dinneen (Eds.), Combinatorics, Computation and Logic,

in: Australian Computer Science Communications, vol. 21(3), Springer-Verlag, 1999, pp. 128–143.
[7] J.A. Bergstra, A. Ponse, Process algebra with four-valued logic, Journal of Applied Non-Classical Logics 10 (1) (2000) 27–53.
[8] J.A. Bergstra, A. Ponse, Process algebra and conditional composition, Information Processing Letters 80 (1) (2001) 41–49.
[9] G. Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society 31 (4) (1935) 433–454.

[10] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys (Ed.), Programming Languages, Academic Press, New York, 1968, pp. 43–112.
[11] M.C. Fitting, Kleene’s three valued logics and their children, Fundamenta Informaticae 20 (1994) 113–131.
[12] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating sequential processes, Journal of the ACM 31 (3) (1984) 560–599.
[13] I.J. Hayes, He Jifeng, C.A.R. Hoare, C.C. Morgan, A.W. Roscoe, J.W. Sanders, I.H. Sorensen, J.M. Spivey, B.A. Sufrin, Laws of programming,

Communications of the ACM 3 (8) (1987) 672–686.
[14] J.A. Kalman, Lattices with involution, Transactions of the American Mathematical Society 87 (1958) 485–491.
[15] S.C. Kleene, On a notation for ordinal numbers, Journal of Symbolic Logic 3 (1938) 150–155.
[16] J. McCarthy, A basis for a mathematical theory of computation, in: P. Braffort, D. Hirschberg (Eds.), Computer Programming and Formal

Systems, North-Holland, Amsterdam, 1963, pp. 33–70.
[17] A. Ponse, M.B. van der Zwaag, A generalization of ACP using Belnap’s logic, Journal of Logic and Algebraic Programming 70 (2) (2007)

222–235.
[18] E.N. Zalta (principal editor), The Stanford Encyclopedia of Philosophy, The Metaphysics Research Lab, Stanford University, 2006.

http://plato.stanford.edu/contents.html.

