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Abstract

Analytic execution architectures have been proposed as a means to conceptualize
the cooperation between components such as programs, threads, states and services.
Interface groups provide a technique to combine interface elements into interfaces
with the flexibility to distinguish between permission and obligation and between
promise and expectation which all come into play when component interfaces are
specified.

The set of basic actions A that underlies any program algebra or thread alge-
bra generates the interface group for A (in additive notation). The main principle
that makes use of an interface group is that when composing a closed system of a
collection of interacting components, the sum of their interfaces must be 0.

Interface groups provide a setting in which architectures, components and roles
can be easily specified and discussed. As an example of this, we show that the
program algebra PGA essentially needs an infinite number of primitive instructions
to express all finite state threads.
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1 Introduction

In [9] we proposed “analytic execution architectures” as a means to concep-
tualize the cooperation between key components such as programs, threads,
states and services. Interfaces are a practical tool for the development of all
but the most elementary architectural designs.
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In this paper we propose interface groups as a technique to combine interface
elements into interfaces with the flexibility to distinguish between permission
and obligation and between promise and expectation, distinctions that all
come into play when component interfaces are specified and analyzed.

As a vehicle to present and investigate interface groups we use the program
algebra PGA as defined in [4] and thread algebra (abbreviated as TA, see
e.g. [23]). A quick introduction to PGA and TA is given in Appendix A.

From the set of basic actions A that underlies any program algebra or thread
algebra a set ife(A) of interface elements is derived. These generate the inter-
face group for A (in additive notation). The main principle that makes use
of an interface group is that when composing a closed system of a collection
of interacting components, the sum of their interfaces must be 0. The spec-
ification of various sorts of components is discussed in Section 3, and their
combination into architectures in Section 4.

Interface groups provide a setting in which architectures, components and
roles can be easily specified and discussed. As an example of this, we show in
Section 5 that the program algebra PGA essentially needs an infinite number
of primitive instructions to express all finite state threads.

The paper is ended with some discussion and concluding remarks in Section 6.

2 Interface elements and interface groups

In this section we introduce our basic technical ingredients: interface elements
and interface groups. When working on the design of an analytic execution
architecture, it is suggested that one is very precise about the interfaces of
the components and that all interfaces are chosen as elements of an interface
group.

2.1 Interface elements

Given a finite collection A of basic actions the following set of interface ele-
ments is introduced:

ife(A) = {a/TF, a/T, a/F, a/∗ | a ∈ A},

where T stands for true and F for false. The intended meaning of these ele-
ments and their complements (prefixed with −) is as follows:
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a/TF indicates the permission (option) of a component to issue request a
while expecting a reply in the set B = {T, F}.

a/T indicates the permission (option) of a component to issue request a while
expecting a reply T .

a/F indicates the permission (option) of a component to issue request a while
expecting a reply F .

a/∗ indicates the permission (option) of a component to issue request a while
expecting no reply at all.
−a/TF indicates the obligation (requirement) of a component to accept re-

quest a while promising a reply in the set B = {T, F}.
−a/T indicates the obligation (requirement) of a component to accept request
a while promising a reply T .
−a/F indicates the obligation (requirement) of a component to accept request
a while promising a reply F .
−a/∗ indicates the obligation (requirement) of a component to accept request
a while promising to produce no reply at all.

2.2 Interface groups

The interface group ifg(A) is the commutative group with additive notation,
freely generated from the set ife(A) as generators.

We distinguish the following subsets of ife(A) and their generated subgroups:

ifets(A), the subset of ife(A) that leaves out elements of the form a/∗. The
set ifets(A) contains the interface elements for threads and services. Its
subgroup ifg ts(A) is generated by ifets(A).

ifeB(A) (B = {T, F}). The set ifeB(A) contains only the interface elements of
the form a/TF . The subgroup ifgB(A) of ifg ts(A) is generated by ifeB(A).

ifeB/T (A), which excludes the interface elements of the form a/F , and its
generated subgroup ifgB/T (A).

ifeB/F (A), which excludes the interface elements of the form a/T , and its
generated subgroup ifgB/T (A).

ifep(A), the set of process interface elements consists of the elements of the
form a/∗ and these generate the interface group ifgp(A) which can be used
for the description of architectures involving components that are specified
in a symmetric process algebra (rather than a polarized process algebra such
as TA).

When working on the design of an analytic execution architecture it is now
suggested that one aims at being precise about component interfaces and that
one of the groups above is chosen and all interfaces are taken as elements of
that group.

3



The intended meaning of interfaces derives from the intended meaning of
positive and negative elements as described above. In a composed interface
I + J it is implied that the combination of two permissions is a permission
to choose between them (i.e., the ability to do both) and the combination
of two obligations is the obligation to accept both requests. Complementary
elements are cancelled because the interface group mechanism incorporates the
assumption that when composing two components, complementary interface
elements are used for internal interaction as much as possible.

Note that an element such as a/T+a/F just represents that a can be requested
in two ways, one that expects the single reply T and one that expects the single
reply F .

The partial ordering < on interfaces in ifg(A) is generated by these rules:

• 0 < p for all interface elements p ∈ ife(A),
• a/TF < a/T ,
• a/TF < a/F ,
• X < Y if and only if X + Z < Y + Z.

It is not assumed that a/T < a/∗ because a/∗ expresses the expectation
that no reply will be returned (and needs to be received) which cannot be
understood as a refinement of the expectation that T will be returned, whereas
the latter expectation indeed refines the expectation that either T or F will
returned after completion of processing the request a by another component.
As ususal, we write X ≤ Y whenever X < Y or X = Y , and common identities
like X ≤ X + Y if and only if 0 ≤ Y follow easily.

Note 1 We could incorporate interface elements of the form a/TF∗, describ-
ing maximal freedom in the expectation of an answer, and of the form a/T∗
and a/F∗. Then, ≤ can be characterized by a/v ≤ a/w if and only if V ⊇ W
where v (w) is interpreted as a set V (W ) ⊆ {T, F, ∗}. Similarly, this holds
for <, replacing ⊇ by ).

Interfaces as modeled by interface groups have less structure than the signa-
tures used as interfaces in the module algebra of [3]. This can be remedied
by providing more structure to the basic action set (see Section 4.2). Module
algebra, however fails to provide any concept of complementarity and for that
reason it has a bias in the direction of the combination of services (rather than
clients). Module algebra and similar approaches fail to provide the basic tech-
nical ingredients needed for the description of analytic execution architectures
which are meant to combine various components such as clients and services
in asymmetric ways.
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3 Components, interfaces and embodiments

In this section we distinguish various types of components and classify these
by the nature of their interfaces.

3.1 Components and compliance

Several terms are used to indicate the working of components in a system.
In previous work we used programs, program objects, instruction sequences
and polarized processes (in [4,1]), and threads, services and multi-threads (e.g.
in [7]). State machines occur in [8] and risk assessment services (architecture
sensitive services) are used in [2]. In [6] a special form of state machines (state
machine services) is used under the name of ‘Maurer computers’.

What these terms have in common is that they make reference to descriptions
of the functionality (behavior, inner structure, underlying mechanism) of parts
of conceivable systems. These parts are either named by their role (thread,
client or service) or by their mathematical identity (process, program object,
polarized process).

It is tempting to view these references as references to actual, potential, de-
signed or contemplated system components but we will propose not to do so.
Instead we will propose to view a component as a pair

[I, E]

of an interface I and an embodiment E. Threads, programs, services and so on
are typical embodiments while the elements of the aforementioned interface
groups may act as interfaces.

Given a component [I, E] it is plausible to require in addition that the em-
bodiment E is compliant (in some sense to be specified depending on the kind
of embodiment and the interface group used) with the interface I. As an al-
ternative to ‘embodiment’ the term ‘precomponent’ will also be used. We will
assume that a notion of compliance is available but it will not be assumed that
compliance is a precondition for the definition of a component. The definition
of compliance takes the following form: an operator i( ) which determines for
a precomponent E its derived interface, i.e., the coarsest interface in which it
exists. So, for E it is then required that i(E) ≤ I. For example, for a PGA
program p containing (test) actions a1, ..., ak we define

i(p) =
k∑
i=1

ai/TF.
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Note that in case I contains negative interface elements, i(E) ≤ I implies that
these majorize their counterparts in i(E), e.g., if −a/TF occurs in I, then i(E)
contains −a/T , −a/F or −a/TF . Components with non-interface compliant
embodiments are conceivable as well. In that case an implicit restriction to
the embodiment such that it then fits the interface should be made. We will
not discuss this case further in this paper.

Because embodiments invariably have their origin in one of a number of classes
of system specifications it is also reasonable to classify components according
to the same classification. The next two sections describe some simple exam-
ples.

3.2 Program and thread components

A component can be called active whenever its compliant interface is com-
posed of positive interface elements only. A program component is an active
component embodied by a program. Some examples:

(1) [a/TF + b/TF,+a; b; !] may be called a program component (i.e. a com-
ponent embodied by a program).

(2) Similarly [a/TF+b/F,+a; b; !] is a program component, though one which
requires slightly more about its context (namely that b always gives rise
to reply F ).

The interface a/TF + b/TF + c/∗ is not a natural candidate for the program
c; +a; #4;−b; !; #0 because upon execution, the action c is seen as a request,
although the actual reply does not control further execution.

Program components may claim more permissions than they will use, as e.g.,

[a/TF + b/TF + c/T + d/F,+a;−b; #1; !].

This may be useful if design rules for closed system architectures are to be
met. We return to this subject in Section 4.

A thread component is an active component embodied by a thread. Some
examples:

(1) [a/TF + b/TF + c/T + d/F, |+a;−b; #2;−c; d; !|] is a thread component
because the embodiment is presented in the form of a thread extraction
|+a;−b; #2;−c; d; !| from a PGA program.

(2) [a/TF +b/TF +c/T +d/F, ((S�c�d◦S)�b�d◦S)�a� (S�c�d◦S)]
is the same component in thread algebra notation.

Note 2 A reason for not requiring that i(E) ≤ I for a component [I, E] may
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be that it is also reasonable to assume that by default the behavior of the body is
restricted (encapsulated) by the capabilities listed in the interface. For instance,
[a/TF + c/TF,+a; b; !] may also be called a program component but now it is
necessary that a semantic account is given of what a request b amounts to,
given that it is not permitted by the interface. A reasonable default is that the
system deadlocks in that case. Dropping the requirement i(E) ≤ I can be called
interface restriction.

3.3 Service components and reactor components

A component whose interface consists solely of negative interface elements is
called a service. Upon requests, a service serves the operation of one or more
active components. Some examples of common services:

(1) A boolean register service component

[−set:true/T − set:false/T − eq:true/TF − eq:false, Hbool]

(where Hbool is the boolean register) works as follows: the request for a
set:true or a set:false action always succeeds and sets the internal
boolean value. The actions eq:true and eq:false test the current value.
In this case it is necessary to prescribe some particular initialization of
Hbool (e.g., it has initial value false, or all eq:b requests reply F until
the first set:b action has been executed).

(2) Given data elements 1, ..., n, the stack service component over these data
elements is [I, S], where

I = −empty/TF − pop/TF − (Σn
i=1push:i/T + topeq:i/TF )

and S works as follows: initially S is empty and the action empty replies
T in this state, while pop replies F ; both these actions leave the stack
empty. A push:i action pushes value i onto the stack and always replies
T . The test actions topeq:i test whether value i is on top of the stack,
and pop pops the non-empty stack with reply T .

In [8] a few more services (called state machines in that paper) and their pos-
sible use are explained. In [9] we consider services such as the Turing machine
tape and rational agents, as well as the notion of a reactor, a service that may
also be active with respect to other components or ‘the environment’. Typi-
cally, the interface of a reactor is a composition of both positive and negative
interface elements. Furthermore, we assume that such an interface is always
given in normal form:

Definition 1 An interface is in normal form if all positive and negative in-
terface elements are cancelled out.
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If the body of a reactor component is simply known as X, an interface may
already be given, e.g.,

[−a1/TF − a2/TF − b/T − c/T + d/TF + e1/T + e2/T,X].

4 Combining components and describing architectures

In this section we discuss how components can be combined on the abstract
level introduced thus far. We propose to describe analytic architectures using
actions that have more structure (the focus.method notation introduced in
[4]).

4.1 Combining components

We start with an example: assume

I = a/TF + b/TF + c/T

is the interface of the program p = c; +a; #4;−b; !; #0, whereas

J = −a/TF − b/T − c/T

is the interface of a service H. When p and H are put together as a closed
system (all requests issued by p are meant for H and all requests accepted by
H are issued by p) then the sum of both interfaces should vanish (equal 0).
But that is not the case because

I + J = (a/TF + b/TF + c/T ) + (−a/TF − b/T − c/T )

= b/TF − b/T,

which differs from 0 (in fact, b/TF − b/T < 0). This is indicative of an archi-
tectural mismatch. This mismatch may for instance be resolved by replacing
J by J + b/T − b/TF which weakens its promise to reply positively at request
b by the promise to reply either positive or negative.

Using components one may provide information about an architecture which
has been formalized only in part. For instance a power control unit component
PCU (taking the name from the role of its body) may be postulated with
interface

on/TF + off /∗ − quit/∗,
representing that another part of the system can be switched ‘on’ while leading
to a positive reply at success and a negative reply if the component at stake
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is already active and that it can be switched off (upon which no reply is
generated) and that the system can itself decide to quit which is accepted as a
message while no reaction is foreseen. Probably this is not entirely satisfactory
because the option to have no reply in the case of a defect might be taken into
account as well. To do so may require the addition of new interface elements,
e.g. a/TF∗ explicitly indicating the possibility of no-reply (cf. Note 1). The
method of interface groups is sufficiently flexible to make these adaptations,
though we will stick below to the given set of groups. The power control
unit component can be presented as [on/TF + off /∗− quit/∗,PCU ] with the
behavior PCU yet unspecified.

The power control unit component PCU can be combined with a program
component which has been adapted to take the power control commands into
account as e.g. in

[−on/TF − off /∗+ quit/∗+ a/TF + b/T,+a; b; !].

In the description of this component an informal explanation takes care of
explaining the role of the PCU interaction commands, whereas the behavior
along the other part of the interface is given using thread extraction. Un-
avoidably this leads to subtleties that have to be resolved in a later stage, e.g.,
concerning the precise effects of the off request on various parts of a system
in operation.

With −a/TF − a/TF (= −2 · a/TF ) it is expressed that a component can
accept (and reply to) request a in two different ways (e.g. from two different
other components), similarly 2 · a/TF = a/TF + a/TF expresses the option
for a component to issue request a in two different ways (and to expect the
corresponding replies so that they can be distinguished). If a service with body
H is shared by two other active components its interface requires duplication
as in [−2.a/TF − 2.b/TF − 2.c/T,H], if it is active as well this may lead to
an active service component (a reactor), e.g.,

[−2.a/TF − 2.b/TF − 2.c/T + d/TF + e1/T + e2/T,H]

which combines single and double multiplicities.

4.2 Architecture descriptions and focus prefixing

An architectural description provides a list of components (some of which
will have token bodies because no behavior is known together with a directed
graph structure on the components, where the polarized interaction arrow

C1 −→ C2
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indicates that requests issued by C1 may be accepted by C2. If also C1 −→ C3,
i.e.,

C1

↙ ↘
C2 C3

a choice is made between both components preferably on the basis of the avail-
able interface information. It is a design rule that architectural descriptions
resolve that form of ambiguity. If also C4 −→ C2, thus

C4

↘
C1

↙ ↘
C2 C3

this implies that C2 receives requests in two different ways. If both C1 and
C4 may issue identical requests that will be reflected in the duplication of
interface elements in C2.

If a component is imported in an architecture as available under a focus, this
will be indicated by a labeled polarized interaction arrow:

C1
f−→ C2

indicates that only requests carrying the prefix f. are meant to be processed
by C2. It is equivalent to write C1 −→ f.C2 where the focus prefixing operator
f.C prefixes each negative interface element of C with an f and a dot. (This
is meaningful only on normal form interfaces where positive and negative
elements have already been fully cancelled out). Below we shall use this so-
called focus.method notation, which was introduced in [4].

If nothing is known about an external environment it may be simply repre-
sented by a token name EEB for external environment behavior: in the case
of a program component [a/TF + b/TF + c/T,+a;−b; c; !] this leads to a
component

[−a/TF − b/TF − c/T,EEB ].

In [9] we have proposed so-called analytic execution architectures as a model
for the cooperation between a program and other system components. In par-
ticular a program may use a number of services and thereby produce a thread
along its external interface. For example program component [I, p] may be
composed with service component [J,H] available under focus f and with
service component [K,H ′] available under focus g in order to interact with
an external environment behavior component [Ie,EEB ] that is placed in the
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analytic architecture under focus ext , i.e.,

[I, p]
ext−−→ [Ie,EEB ]

f ↙ ↘ g

[J,H] [K,H ′]

(1)

Under the assumption that this analytic execution architecture constitutes a
closed system we have

I + ext .Ie + f.J + g.K = 0

which implies ext .Ie = −(I + f.J + g.K).

This is a general model for explaining the operation of a program p (or its
extracted thread |p|) in the presence of auxiliary services with the objective
to realize intended behavior along the external interface Ie. In [7] the external
interface (or more precisely: −ext .Iext) has been named the target interface (of
P ) and the interface −(f.J+g.K) is referred to as P ’s co-target interface, thus
emphasizing the auxiliary nature of the components available under the foci
f and g. It is a definite advantage of the use of the interface group notation
that explicit notations for these interfaces can be given so that these unusual
mnemonic descriptions become additional rather than essential.

5 Analytical execution architectures

In this section we discuss the expressiveness of a few programming notations;
a topic that arises in a context where architectures, components and roles can
be easily specified and discussed. Technically it can be discussed without the
use of an interface group but the explicit use of interfaces is definitely helpful
to set the scene for the question that will be addressed.

5.1 Formal instruction sequences

The program algebra PGA of [4] provides a practical notation for P by writing
P = |p| with p an instruction sequence expressed as a closed term in PGA.
The term p denotes a so-called program object. This is a finite or infinite (and
repeating) instruction sequence over the collection of primitive instructions
of PGA. Given a set A of basic actions, PGA’s primitive instruction set is
‘universal’ in the sense that it admits writing notations for all finite state
threads over A. Now consider the analytic execution architecture depicted in
(1) above. Whenever a finite state discretely timed mechanism can produce
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a thread along the external interface with the help of both auxiliary services
and the service H is finite state, this can also be achieved by an instruction
sequence expressed in PGA that does not use the service component [J,H]. A
key observation at this point is that PGA’s primitive instruction set is infinite
because it contains an infinite number of different jump instructions #k for
k ∈ N.

This raises the question whether or not a finite instruction set could have been
used instead. Taking for granted that if a universal finite instruction set can
be found it can also be reduced to two elements, there is now the following
problem:

Problem 2 How to formalize what it means that finite or infinite boolean
sequences can be used as a program notation instead?

As an answer to this problem we take the following:

Requirements 3 To establish that boolean sequences can be used as a uni-
versal program notation (for finite state threads, using finite state means of
execution) we fix the external interface Ie as above in (1) as follows:

−ext .Ie = ext .b/TF + ext .c/T + ext .d/T,

so that we can express all finite state threads with interface b/TF + c/T +
d/T . Further we encode the boolean sequence, say α, in the service component
[K,H ′] as follows: let K = −eof /TF − gnv/TF and H ′ = Hα produces T on
all requests after eof has been positively answered once, while until that stage
eof leads to a negative reply without state change and gnv (‘getnextvalue’)
dequeues the first boolean (or bit) from the sequence α while returning its
value as a reply. We will refer to α in this context as a formal instruction
sequence.

Then it suffices to find a single PGA program pint (interpreter program) and a
finite state service component [J,H] such that for each thread t with interface
−ext .Ie there exists a finite or infinite boolean sequence α such that the open
(= non-closed) analytic execution architecture made up from

(1) the program component [I, pint],
(2) the finite state auxiliary service component [J,H] in focus f with

[I, pint]
f−→ [J,H], and

(3) the formal instruction sequence provider component [K,Hα] in focus g
with [I, pint]

g−→ [K,Hα]

computes the thread t or more precisely, the thread component [−ext .Ie, t].
(End Requirements 3.)
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With these requirements, we have the following result:

Theorem 4 There exists no PGA program pint that meets Requirements 3.

PROOF. Towards a contradiction, suppose that p = pint is an interpreter
program from which all finite state threads over the given interface can be de-
veloped by feeding it with an appropriate α encoded as Hα. As a first step the
auxiliary service component [J,H] is removed because it can be incorporated
in the PGA program p according to [8]. This of course transforms p, but in a
uniform manner. We may then assume that p has the form

p = (u0; ...;un−1)ω

with no jump counter exceeding n. 1

Consider for i ≤ n the threads Ti = Ti+1 � b � ci ◦ d∞ with Tn+1 = S. Let α
be a bit sequence such that it generates T0 in our architecture.

Now n + 1 different cases can be distinguished according to the number of
times b returns T before returning F . Suppose that at its jth turn b returns F ,
while processing instruction number xj.n+ yj (with yj < n) having consumed
the first zj values from α (including its repeating tail if it has already reported
T on request g.eof ). Writing αj for the remaining part of α, we then find that
the simplified architecture (without [J,H]) equipped with program component

q = uyj+1; ...;un−1; (u0; ...;un−1)ω

and formal instruction sequence provision component [K,Hαj ] computes cj ◦
d∞. Such a triple xj, yj, zj can be found for n + 1 different values of j. The
xj turn out to be irrelevant but the zj are essential. Let zj0 be the maximum
of the zj. Then αj0 is a tail of each of the other αj. Now one follows for each
other value of j the corresponding computation until the precise moment that
it has consumed zj0 boolean values from α, thus leaving it in state αj0 . This
indicates that the computations for each of the triples pass a stage where the
remaining tails are identical. Because they compute different threads there
must be another difference and that is of course the instruction number yj + 1
in the current cycle of p. But there are only n different possibilities for n +
1 different threads. That is impossible and this contradiction concludes the
proof. 2

It has been proved in [4] that limiting PGA to bounded jump counters reduces
its expressive power, but the result shown here is considerably stronger. It

1 This can be seen in many ways, for instance following the projection semantics
of [4]: for each PGA program p, pglb2pga(pga2pglb(p)) has this form.
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implies the result from [4] assuming that the above proof works for formal
instruction sequences over a finite instruction set just as well.

It is obvious how to adapt the proof that there is no universal interpreter
program for formal instruction bit-sequences to arbitrary finite instruction sets
(interfaces). We may conclude that it is reasonable in hindsight that PGA has
an infinite set of primitive instructions because no other design would allow
one to reduce this to a finite number.

5.2 Structured Programming

The program notation PGLS as defined in [4] represents the class of while-
programs and qualifies as a structured program notation. It adds to PGA a
finite number of instructions for conditional constructs and while loops. Be-
cause PGLS (of course) does away with jumps its programs can be represented
as finite or infinite streams of instructions over a finite instruction alphabet.
Although it was shown in [4] that PGLS has weaker expressive power than
PGA it can be shown that a similar result as Theorem 4 holds for PGLS: no
interpreter program can compute all PGLS expressible threads from a formal
instruction sequence encoded as a bit stream in a formal instruction sequence
provider service.

Thus we conclude two major facts:

(1) structured programming primitives allow the representation of a large
number of threads using instruction streams over a finite instruction set,
but:

(2) executing these programs cannot be done by finite state means (and no
modification of the instruction set can change this).

As it turns out PGLS programs can be interpreted by a PGA program if that
is allowed to make use of an auxiliary service that provides a boolean stack.
This strategy of implementation uses an interpreter for PGLS. The alternative
is to transform PGLS programs to PGA, which is the strategy that uses a
compiler/assembler. But now there is a crucial disadvantage: either one has to
accept that arbitrary jump counters come into play or one accepts that only
a part of PGLS (or any other program notation with comparable expressive
power) is correctly translated (which is the practical situation). Because both
disadvantages are quite unsatisfactory and programs used in industry grow in
size all the time, it is understandable that a way out of this dilemma is needed.
This is obtained by taking a program notation of at least the expressive power
of PGLS as the endpoint of compilation at large (e.g. in the case of CIL [13]),
while limiting the role of compilation to executable form to so-called JIT (just
in time) transformations that are applied to fragments of the code only, thus
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limiting the risk that jump counters grow too large.

6 Discussion and concluding remarks

The term interface group has been discussed in [22] and occurs widely in the
literature about internet protocols; it was used by Keith Cheverst et. al. in
the context of groupware description [14]. These uses of the phrase make no
reference to the mathematical theory of groups. For that reason we consider
it justified to propose the meaning assigned to ‘interface group’ in this paper
for use in a theoretical context.

Both PSF (Process Specification Formalism [21]) and muCRL (micro Common
Representation Language [17]) are tool-supported, formal description tech-
niques developed for the ACP-style specification of concurrent systems. In
PSF, muCRL process interfaces are declared but not used, in TCSP [11] the
parallel composition operator depends on interface information requiring syn-
chronization over shared actions. One may require that precomponents are
computable in some sense derived from the concepts explained in e.g. [24] or
more recently [19]. However, that requirement is not strictly needed because an
embodiment need not be of a mechanistic nature, it may also be a functional
specification that defeats automatic execution, interpretation or simulation.

Explicit work on interfaces and components can be found in several lines of
research. In [16] a treatment of ACP-style process algebra is given which uses
a subsystem PAP of ACP that further decouples the axioms from interface in-
formation than most previous presentations have done. We mention Java [10]
where interfaces are a separate category but where the independent existence
of bodies that may or may not be combined with an interface to form a soft-
ware component is absent. A significant theory of interfaces and components is
given by Scheben in [26]. Issued requests are referred to as ‘required services’,
whereas accepted requests are referred to as ‘provided services’. Scheben also
designs a general notation for the description of component interfaces. In [27]
interfaces are cast in terms of ‘interface automata’. What is called a reply
service in [2] and a state machine service in [8] are special cases of interface
automata. In contrast to our proposals this line of work captures behavioral
and temporal information as a part of interface descriptions. This we have de-
liberately rejected in order to have more orthogonality between interfaces and
embodiments, forcing us, however, to accept mere behavioral specifications as
embodiments, a decision that may of course be disputed.

A convincing example of interfaces are the so-called instruction set architec-
tures for microprocessors, which can be given a theoretical basis by means
of the theory of Maurer in [20]. Maurer instruction set architectures, as pro-
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posed in [6] combine an interface description with operational information.
The importance of explicit interface descriptions also emerges from [18] where
essentially a conventional RISC processor interface is extended with four ad-
ditional instructions so that it can deal with a multi-thread rather than with
a single thread. These multi-threads are executed by multiplexing on a single
pipeline or by distribution over a number of pipelines. A part of the motivation
for the work on interface groups stems from a systematic attempt to develop
a theoretical account of the proposals made in [18] that we have set as a long
term goal.

The constraint that a boolean is given when a request a is accepted (−a/TF )
has been termed a ‘promise’. Promises is a topic that Mark Burgess has been
developing for the description of services in networks of autonomous com-
ponents (see [12]). Interface groups might be helpful in the formalization of
promises as well. We also expect interface groups to be useful for the descrip-
tion and further development of so-called sourcing architectures, for which a
rudimentary diagrammatic display method has been developed and used by
Rijsenbrij and Delen in [25] and subsequently in [15]. Their theory of atomic
outsourceable units depends on the proper use of interfaces. It is in this area
that we intend to work on practical applications of interface groups: start-
ing from a flexible theory of interfaces, it might be possible to develop the
equivalent of design patterns in the context of sourcing architectures.
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A Program Algebra and Thread Algebra

Program algebra (PGA, for ProGram Algebra) provides a rigid framework for
the understanding of imperative sequential programming. Starting point is the
perception of a program object as a possibly infinite sequence of instructions.
PGA programs are composed from instructions (explained below) and two
operators: concatenation X;Y and repetition. Concatenation is an associative
operator and usually we do not write brackets in repeated concatenations.

Execution of a program object is single-pass: the instructions are visited in
order and are dropped after having been executed. Execution of a basic or
test instruction is interpreted as a request to the execution environment: the
environment processes the request and replies with a boolean value true (T )
or false (notation F ).

We start with some typical examples. Given a set A of basic actions a, b, c, ...,
the PGA program +a; b; ! prescribes the following behavior: first the positive
test instruction +a is executed, leading to action a; then upon reply T , the
basic instruction b is executed (action b) and termination follows (by the ter-
mination instruction !); upon reply F , b is skipped and termination follows
immediately. A negative test instruction −a has the reverse effect: upon re-
ply T the next instruction is skipped. Furthermore, PGA contains a jump
instruction #k for each k ∈ N. For example, the PGA program

−a; #3; b; !

18



executes a and upon reply T continues with b and then terminates; if a yielded
reply F , execution continues with #3 (so jumps three instructions ahead),
which results into deadlock because there there are not that many instruc-
tions left. The instruction #0 (jump 0 instructions ahead) always results into
deadlock. A primitive instruction is just one of the above instructions, i.e. a
basic, test, termination or jump instruction.

In PGA, the notation for repetition is ( )ω. Repetition typically satisfies the
identity Xω = X;Xω (unfolding). For example, the PGA program (a; b)ω

executes a followed by b and repeats these two actions, as does a; (b; a)ω, while
the program (a; !; b; c)ω terminates after a has been executed.

Execution of PGA programs is modeled as threads, i.e., as elements of Thread
Algebra (TA). The primary operation of TA is postconditional composition
� a� for each action a:

P � a�Q

stands for the execution of action a, followed by execution of P if T is returned
and by Q if F is returned. In case P = Q, we use action prefix a ◦ P as a
shorthand for this behavior, thus a ◦ P = P � a� P .

Finite threads are built up from the constants D (deadlock) and S (termina-
tion) using postconditional composition. Thread extraction of a PGA program
p, notation |p|, is defined by the following thirteen equations, where a ranges
over the basic instructions, and u over the primitive instructions (k ∈ N):

(1) |!| = S, (2) |!;X| = S,

(3) |a| = a ◦ D, (4) |a;X| = a ◦ |X|,

(5) |+a| = a ◦ D, (6) |+a;X| = |X|� a� |#2;X|,

(7) |−a| = a ◦ D, (8) |−a;X| = |#2;X|� a� |X|,

(9) |#k| = D, (10) |#0;X| = D,

(11) |#1;X| = |X|,

(12) |#k+2;u| = D,

(13) |#k+2;u;X| = |#k+1;X|.

For PGA programs, these equations yield either finite threads, or in the case
that a non-empty loop occurs, finite state threads which can be captured by
a system of recursive equations. E.g.,
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|(a; +b)ω|= |a; +b; (a; +b)ω|
= a ◦ P, with

P = |+b; (a; +b)ω|
= |(a; +b)ω|� b� P.

In the particular case that these equations applied from left to right generate
a loop without any action, as for instance in

|(#2; +a)ω| = |#2; +a; (#2; +a)ω| = |#1; (#2; +a)ω| = |(#2; +a)ω|,

the extracted behavior is defined as D. As an example, we find

|(+a; #2)ω| = D � a� |(+a; #2)ω|.

Finite state threads can be characterized in various ways. For more informa-
tion, see e.g. [4] (where threads are called polarized processes) or [23].
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