
Science of
Computer

ELSEVIER Science of Computer Programming 29 (1997) 199-233
Programming

Grid protocols based on synchronous communication

Jan A. Bergstraa,b, Joris A. Hillebrand”, Alban Ponse”*
a University of Amsterdam, Programming Research Group, Kruislaan 403,

1098 SJ Amsterdam, The Netherlands
b Utrecht University, Department of Philosophy, P.O. Box 80126, 3508 TC Utrecht, The Netherlands

Abstract

We provide a short notation for processes with parallel inputs and outputs. With this specifi-
cation format synchronous networks or grid protocols can be specified in a straightforward way.
For a certain class of connected networks we prove a correctness theorem that characterizes I/O
behavior. We illustrate our approach by an example on the approximation of a one-dimensional
wave equation. 0 1997 Elsevier Science B.V.

Keywords: Grid protocol; Parallel computation; Stieam transformers; Parallel input and output;
Synchronous networks

1. Introduction

A grid protocol is a network that can be associated with parallel computation in a

grid-like architecture. Such an architecture can be a network of processors or (groups

of) points of measure in some physical phenomenon, for example a vibrating string.

A grid protocol is assumed to consist of modules, elementary processors of data that

can cooperate with each other by passing values. This cooperation can be modeled in

various ways. In this paper we consider value-passing by synchronization (communi-

cation actions). A module is characterized by a predefined function (its computational

identity), a current value, and a finite number of channels (or ports). A channel models

the connection with either one of the network’s modules, or with some external device.

In terms of behavior, a module repeatedly performs the parallel execution of input and

output actions (each one operating on a distinct channel), followed by an update of its

current value. This value update results from application of the module’s function to

the newly received value(s). In the case that all modules and internal channels of the

network form a connected graph and the external behavior is located at one module, we

obtain a simple characterization result: the order of the (internal) synchronizations is

not relevant and the network’s external behavior - stream transformation or generation

- is determined by simultaneous value updates.

* Corresponding author. E-mail: alban@fwi.uva.nl

0167-6423/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PZZ SOl67-6423(96)00035-4

200 J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

The point of departure is a combination of value-passing calculus CCS (Calculus of

Communicating Systems [20]) and the process algebraic approach ACP (Algebra of

Communicating Processes [3,5,6]). The technical construct underlying our approach is

the process prejix, a generalization of Milner’s action prefix which provides a means

for binding variables in CCS. With the process prefix and so called early read ac-

tions, a concise notation of parallel input is possible. In [I], Baeten and Bergstra

proposed axiom systems for action prefixes, process prefixes, and early read actions

in the setting of ACP. In order to specify and analyze grid protocols we need to

extend the process prefixing mechanism of [l] to an infinitaty setting. For the specifi-

cation of computable data and value-passing we use some machinery of &RI. [15], an

ACP-based approach in which both data and processes can be formally specified and

analyzed.

In terms of computation theory, our approach does not add to research performed

elsewhere, e.g., concerning simultaneous primitive recursion theory ’ . We only provide

results about a simple class of networks. A motivation for this work is to present an

operational perspective on the module level - value-passing by arbitrary interleaved
synchronizations - and to relate this perspective to a correctness characterization about

a network’s external input/output behavior.

After a brief introduction to the axiom system ACP’(A, y), iteration and alphabet

axioms (Section 2), we present ACP&.(A, y), which stands for ACP*(A, 7) with process

prefixes and early-read actions (Section 3). Then, in Section 4, we define modules.

For finite, connected networks with output located at one port, we present in Sec-

tion 5 a simple equation that characterizes external behavior, and hence correctness
of the specification. In Section 6 we further generalize our correctness result to a

type of networks that can consume input. We illustrate our specification format for

grid protocols in Section 7 by a parallel algorithm for the numerical computation of

solutions of the one-dimensional wave equation, which is a partial differential equa-

tion describing elementary wave phenomena, such as the transversal propagation of

vibrations in a string. In a straightforward manner, the algorithm is specified as a

connected network, from which its correctness follows. Furthermore, we pay some

attention to the elimination of process prefixes and early read actions in the speci-

fication, and to simulation issues. Section 8, containing some conclusions, ends the

paper.

1.1. Related work

Our modeling of modules and grid protocols is very much based on the work done

on synchronous concurrent algorithms (SCAs) in Swansea [22]. A particular reason

to follow the Swansea approach is given by the following citation: “many specialised

l In case all module functions are primitive recursive. Notice that in a many-sorted setting, this type of

recursion is inequivalent to non-simultaneous primitive recursion over many-sorted structures (see [22] for

further details and references).

J.A. Bergstra et al. I Science of Computer Programming 29 (1997) 199-233 201

models of computation possess the essential features of SCAs, including systolic arrays,

neural networks, cellular automata and coupled map lattices. The parallel algorithms,

architectures and dynamical systems that comprise the class SCAs have many applica-

tions, ranging from their use in special purpose devices [s + .] to computational models

of biological and physical phenomena”. We think that our example on the wave equa-

tion supports this claim, and that many practical examples can be obtained from the

work done on SCAs.

As mentioned above, in [I] the authors develop a different approach to process

prefixing. They circumvent the use of typed variables in value-passing, and related

questions of bound variables and a-conversion. A price to be paid is the restriction to

a finite data type. In [7] a more abstract approach is followed (network algebra for

synchronous and asynchronous dataflow).

Finally, in [161 a tool is described that translates a specification in the early-read

format into a standard &RI specification (without early reads). This gives way to

simulation tools and standard &XL proof theory.

2. Process algebra, axioms and rules

In this section we recall some basic process algebra (without explicit use of data):

the system ACPT(A, y), standard concurrency, and iteration. We quote an expressivity

result on ACP’(A, y) with iteration, and give a new, short proof. Finally, we discuss

generalized merges, expansion and alphabet axioms, all of which are essential for the

specification and verification of grid protocols.

2.1. ACPT(A, y), standard concurrency and iteration

The process algebraic framework ACP”(A, y) (ACP with branching bisimulation) has

two parameters: a set A of constants modeling atomic actions, and a (partial) binary,

commutative and associative communication function y on A, defining which actions

communicate. Furthermore, there are constants 6 (deadlock or inaction) and r (silent

step). Process operations in ACP”(A, y) are alternative composition or choice (+), se-

quential composition (.), parallel composition or merge (]I), left and communication

merge (Land 1, used for the axiomatization of II), encapsulation (a~), and hiding (71).

We mostly suppress the . in process expressions, and brackets according to the follow-

ing precedences: . > {II,k,I} > +. P recess expressions are subject to the axioms of

ACP’(A, y), displayed in Table 1 (x, y,z,. . . ranging over processes). Note that + and

are associative.

We further assume commutativity and associativity of II and 1, also known as SC

(standard concurrency [S]). In this paper we only consider two-party communication

or handshaking, axiomatized by x I y] z = 6 (see [S]). For a detailed introduction to

ACP’(A, y) and SC we refer to [3].

202 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Table 1

The axioms of ACP’(A,y) and for the binary Kleene star, where a, b E A6,r, H, I CA

(Al)
t-421
(A3)

(-44)

(-45)

(‘46)

(A7)

x+Y

x+(y+z)
.X+.X

tx + Y)Z

(XY)z
X+6

6x

(CFl)

(CP2)
alb = y(a,b) if -da,b) 1
alb = 6 otherwise

(CMl) * II Y

(CM2) a lLx
(CM3) mlLY
(CM4) (1 + Y) iLz
(CM5) 4b
(CM(j) a I bx

(CM7) ax I by
(CMS) (x+y) Iz
(CM9) x I (y+z)

(BKSl)

(BKS2)

(BKS3)

X*Y
x*tYz)

(x + Y)*z

= y+x
= (x+y)+z

X
= xz + yz

= 4yz)
=X

zz 6

= xlLY+YLx+xIY

=0X

= 4 II Y)
= xU_.+y~z

= (a I b)x
= (a I b)x
= (a I b)(x II Y)
= xlz+ylz
= xly+xlz

= x(x*y)+y
= (x*y)z

= x*(y((x + y)*z) + z)

(Bl) XT = x

032) X(T(Y + 2) + Y) = X(Y + z)

(Dl)

W)

(D3)

(D4)

tTI1)
tTI2)
(TI3)

(TI4)

(BKS4)

(BKS5)

&(a) = a if a @H

&(a) = 6 if a E H

aH(X+Y) = aH(d+aH(Y)

aHbY) = aH(.+aH(.Y)

zr(a) = a if a $Z I

~[(a) = z if a E I

ZIG+ Y) = a(x)+ V(Y)

V(XY) = V(X).dY)

aHH(X*Y) = aH(x)*aH(Y)

zI(x*Y) = w-)*~I(Y)

In order to describe iterative processes we shall use the (binary) Kleene star [4,17],

of which the defining axiom is

(BKSl) x*y = x(x*y) + y.

So x* y is the process that chooses between x and y, and upon termination of x has

this choice again. Thus, if x is a terminating process then x*6 is the process that

repeatedly executes x. Remaining axioms for the *-operation are included in Table 1.

In [lo], Fokkink and Zantema prove that Al-A5 and BKSl-BKS3 axiomatize strong

bisimilarity for processes defined with +, . and *.

For the interested reader, we elaborate a little on the way one can reason with

iterative processes. An advantage of the * -operation is that one can reason equationally

on infinite processes. As a trivial example, consider

Finally, we quote the following expressivity result on regular processes,2 and give a

new, short proof.

2 That is, processes specifiable by a finite, linear system of recursive equations.

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 203

Theorem 2.1 ([4, Theorem 3.41). For each regular process P ouer A U (6) there is
a jinite extension B of A such that P can be expressed in ACP,(B, y) with iteration
and handshaking only, and the actions in A not subject to communication.

Proof. Let the regular process PI be given by fi = xT=l(ai,i .q) + f3i where ai,j and

/$ are finite sums of actions or 6.

Define B as the extension of A with the following 3 + 2n fresh actions:

112, kop, Sstop, and rj,sj (j = 1,. . . , n).

Let y(rj,sj) sf y(q,p,s,t,,p) kf in be th e only communications defined (handshaking).

As to provide some intuition, these actions model the following behavior:

Sj: instruct the jth process to start,

rj: read instruction to start the jth process,

sstop : order termination, and

Gtop: receive the order to terminate.

Let H = {Gtop,S,tOp }U{rj,sj 1 i= l,..., } d n an consider the following processes:

2 (%, j ’ sj > + Pi . Sstop abbreviated by Gi for i = 1,. . . , n
j=l

2 (rj . Sj)*(G,op . sstop) abbreviated by Mem
j=l

2 (rj ’ Gj)*Gtop abbreviated by P.
j=l

We derive:

8H(Gi . P 1) Mem) = C~H
CC

,$ (Q,j . Sj . P> + Pi . sstop . P

))

/I Mem

= ,c (%,j . aH(sj * P II Mew)) + Bi . aff(Smp . P (1 Mem)

= ,$ (G,j . ia . aff(P II Sj . Mem)) + Pi . in . ~H(P II Smp)

= ,$ (ai,j in . in . d,(Gj P II Mem)) + pi . in . in.

Consequently, 7tin) o dH(Gi P II Mem) satisfies the equations for fi (i = 1,. . . , n). By

the principle RSP (a conditional rule, stating that each guarded recursive specification

has a unique solution per variable, see e.g. [3]), it follows that fi = Z{in) 0 8&G; . P II

Mem) (i = l,..., n). 0

2.2. Generalized merge, expansion and alphabet axioms

The generalized merge [IlicI~] abbreviates the expression

(5 II pi, II ... II %>

204 J.A. Bergstra et al. /Science of Computer Programming 29 (1997) 199-233

for I = {iI,&..., in} a non-empty, finite set of indices. This notation is justified by

commutativity and associativity of 11 (SC). If I is a singleton, say f = {il},

[1 II 9 =el
iE{i,}

which can be useful in inductive proofs. In some cases it is convenient to use the

notation

[1 Il”r: rather than
i=l

A basic result is the following.

Lemma 2.2 (Merge Lemma).

AcPT(A,7)+Sc~x([ir:~~i] llz) =x([ijrYi] llZ)-

Proof. By induction on n.

n = 1. We derive

X(SY II z> = X~(~Y II z)
= x (rrykz)

= x(ryLLz)

=xr(y II z>

=x(y II z>.

Notice that by commutativity of ((we obtain x(zy I(rz) = x(y ((zz) = x(y ((z).

n > l-Letz=([ijlYi] HZ).

We derive

x([ij:rYi] llz) =x(ryl II ([ii:zYi] llz))

(case n=l)

= x(TY* II T([ij:TYi] Ilz))

‘E x(zy1 11 TZ)

(=n=‘) x (Y, 11 Z) . 0

Furthermore, in the setting of handshaking we can use the Expansion Theorem (cf.

[31):

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 205

Table 2

Alphabet axioms, a E A

CAB11
(AEQ)

W3)

g(6) = 0 = cc(T)

0) = {a)
U(TX) = E(X)

w34)

(f=S)

(AW

u(a) = {a} U a(x)

4X + Y) = 4X) U U(Y)

G*Y) = u(x) U E(Y)

Table 3

Conditional alphabet axioms, H, I & A

CC.411
(CA21
(CA3)
(CA4)

a(x) I (a(u) n ff) C H
4x1 I (a(y) n 0 = 0
N(X) n H = ‘8
a(x) n I zz 0

=+ aH(x 11 Y) = aH(x 11 aH(Y))
* TZ(X II Y) = TZ(X II TZ(Y))
* &(x) = x
* q(x) = X

Under certain conditions the scope or action sets I,H of ZI and & applications can

be changed. These conditions always depend on the alphabet of a process: the set of

atomic actions it can execute. In Table 2 we give some axioms, where a(P) CA is the

alphabet of process P. Except for AB6, these axioms stem from [2].

Starting from the alphabet of a process, the conditional alphabet axioms in Table 3

(taken from [2]) give conditions for changing scope or action sets I,H of ZI and aH

applications. Here B 1 C for B, C CA denotes the subset {a E A 1 a = y(b,c) for some

b E B,c E C}.

3. Data and process prefixing

In this section we discuss the way in which data and value-passing are specified, and

spell out an example on value-passing. Then we introduce an operation and axioms for

process prefixing, and apply these to the value-passing example.

3.1. Data and value-passing

In order to reason about processes that manipulate data, we need some minimal

assumptions about the data involved: computability in the sense of [9], with only total

functions and decidable equality. We adopt a simple specification paradigm for data

and actions parameterized with data, which originates from &RL [151. Data are used

in two ways: in data-parametric sums and in communications.

206 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Table 4

Send-read communication for value-passing, a, b E A

alb= c;(t) if {a,b} = {ri(t),si(t)},
s otherwise.

Let for instance a be typed as an action that can carry values of type N (the natural

numbers) and of type N x N. So a(O),a(l), . . . ,a(O, 0), . . . are considered actions. An

example of a data-parametric sum is the expression ‘jJu : N, a(u)), denoting a process

that for an arbitrary value 12 of RJ can once perform u(n) after which it is terminated.

A typical use of this construct is

c<u: N,u(u)~u(u,u+u)),

which represents the infinite summation u(O).u(O, O)+u(l).u(1,2)+~(2).~(2,4)+. . . .

Note that the type of the variable u is declared in the scope of the C-operation. For

the C-operation, axioms and a proof rule are defined in [13,14]. In particular, these

comprise cr-conversion and axioms to change its scope.

We further adopt the usual send-read communication paradigm as defined in

Table 4. Here the idea is that i is a channel or port identifier, and action si(t)

models the sending of a data value t along port i. An action q(t) models the reading
of the particular value t along channel i. We assume that the communications defined

in Table 4 are the only communications defined; in particular this means that the

handshaking paradigm is satisfied.

With help of send-read communication and the encapsulation operations & one can

easily model value-passing (cf. [20]). For a small, typical example consider

R = C (u : N, q(u) . s2(u + I))*&

a process that is willing to receive any natural along channel 1, and q(5). S, a process

that initially sends the value 5 along channel 1. The value-passing of 5 between these

two can be represented by

a{r,,s,}(R II Q(5) 0

where we adopt the notation a,,,,,,), only mentioning the identifiers ri , s1 , from &XL.

Hence, single q(n) and q(n) actions cannot occur and are thus enforced to commu-

nicate. We derive

a{,,,,,)@ II s1(5).S) B!9 a{,,,,,l(C(a: Nrl(u).e(~+ 1)l.R II s1(5).S)

= c1(5) . a{r,,s,~M6)~ R II 0

where the second identity follows from the axioms of ACP’(A, y) and those for the

C-operation. So, by encapsulation, the action q(5) enforces the communication action

~~(5). Hence, this communication action models the value-passing of 5 along channel 1

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 207

between the two parallel components of 8 {,,,,,)(R)I s,(5). S). The resulting process is

8{,,,,,)(~2(6).R I] S). In the setting of &RL, a detailed treatment of this value-passing

format can be found in [12, p. 691.

We finish this section with an example that describes a simple, one-module network.

Example 3.1. Consider the following two processes, abbreviated by R and S :

R = C(u : N, Q(U). SI(U + l))*S,

S = C(u : N n(u)(s2(~) II &wto4))*~.

Let H = {rl, s1,r2, s2}. The behavior of a,#]I (~(0)]I q&O)). S) can

and visualized as follows (note that actions s,,,(j) cannot be involved in

cation):

be analyzed

a communi-

&f(R II (sz(O) II h4dO)) .S)

= c2(0) . aHhu) . R II &m,(O) . S)

+ %do). &@ ii S2(0) .s>

= ~269 %,m. aHh(l) -R II s)

+ &mt(O)~ c2(0). ad.a .R II S)

R

2 1

F

(40) II ~o”lms

= C2(0).S,,t(O).Cl(l).aH(R II (S2(1) II &dl))‘~)

i- Soudo>. C2(0). Cl(l). aH(R II @2(l) iI hd)). s).
Sout PI

Let I = {c~,c~} and let P(n) = ZI 0 &(R]I @2(n)]I q&n)) .S) for some n E N. From

the derivation above it follows that the one-module network P(n) satisfies

P(n) = Z . Sour(n) . P(n + 1) + &wt(n) . P(n + 1).

Hence r .P(n) = r .s,&n) .P(n + l), expressing that z *P(n) outputs the infinite stream

r . s&n) . s,,t(n + 1) . S,,t(ll + 2)

3.2. Process prefixing

Let D be some data type. We consider the process prefix operation, notation ;, and

early-read actions eri(u) with i a channel or port identifier and v a variable of type D
(cf. [l]). The early-read axiom scheme, parameterized with data type D, is

eri(u);x = C(u : D,ri(u) .x)

(so u may occur in an instantiation of x). 3 As an example consider

eri(u); Sj(V) = C (V : D, ri(u) . Sj(V)),

3 This axiom reflects Milner’s translation of the basic CCS term a(x).E into the value-passing CCS term

xuEV a”.Ez} where V is the value set and- the translation function [20].

208 J.A. Bergstra et al. /Science of Computer Programming 29 (1997) 199-233

Table 5

Process prefixing, a E A

(PPl) &x=6 (PP4) erk(u);x =c (u : D, rk(u) .x)

w7) T;x=T.x (PP5) (x + y); 2 =x; 2 + y; z

(PP3) a;x=a -x (PP6) (X y);z =x; (y;z)

which is an expression without free data-variables. Furthermore,

Us; sj(t) = C (U : D, Yi(U) . sj(t))

for t a closed term of type D.

Let A,, be the extension of A (the set of atomic actions) with early-read actions

for any action ri : D1 x . ’ . x D, declared over A. Axioms for process prefixing are

given in Table 5. The axiom PP4 is considered to be parameterized with the type of

the ri action. In the &RL setting, this implies that an early read over pairs of values

corresponds with two C-applications (which commute [13,14]), e.g., for rk : D x N,

function F : D x N -+ N, and action sl : Nat we obtain

erk(c, w); sr(F(u, w)) = c (U : D, c (w : N, rk(& w) . sdF(u, w)>>) .

Alternatively, one can consider a setting with variables over products of the data types

involved. Note that for the er actions we use globally typed variables.

Let ACPi,(A, y) be the extension of ACP’(A, y) with early-read actions and process

prefixes as introduced above. A particular - and intended - consequence of the send-

read communication paradigm (see Table 4) is that eri(u) f a = 6 for all CI E A,. This

is used in the following example, in which parallel input is unraveled (u,w,F typed

as above):

(m(u) II er2(w));W’(u,w))

= (erl(u>~erz(w> + erdw>Lerl(u) + erl(u) I er2(w));M’(u,w))

= (erl(v) . erz(w) + erz(w) . erl(u) + 6); sr(F(u, w))

= (erl(u) . erdw));W’(v,w)) + (en(w) . erl(u));.W(~,w))

= erl(u); (erz(w>; sr(F(u, w))) -t edw); ten(u); sM’(v, w))).

Furthermore, rI and 8H-applications also apply to er-actions via axiom PP4, using the

pCRL axioms that state that these applications commute with the x-operation. For

instance,

J{,,j(erl(u);f3 + er2(w>;P2)

= a{,,} CC(u : Qrl(u)fT))+ J{,,) Cc<w : Nr2(w)f’d)

= C(u : D,J{,,)(rl(u)fi)) + c(w : NJ{,,}h(w)h))

= C(u : D, 6) + c(w : Nrdw>J{,,~~d)

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 209

= 6 + er2(w); a{r,j(h)

= er2(w); a{,, }V2 1.

Example 3.2. The process P(n) from Example 3.1 can now be specified by

71 0 &f(((er2(y);sl(~ + 1)>*~)ll(s2(n)lls~ut(n>>. (en(o); +2(fl) II lout*@>

with u a variable of type N.

4. Modules and networks, specification

In this section we propose a specification format for modules, elementary processors

of data, Next we introduce networks as a format for the parallel execution of such

modules. In fact, the process P(n) defined in Example 3.1 exemplifies the most simple

type of network that we consider, containing one module. Our modeling is based on

[22], in which SCAs (synchronous concurrent algorithms) are analyzed.

4.1. Modules

A module Mi is supposed to contain a value, a (ppsitive) number n of input channels,

and a (positive) number m of output channels. To keep things simple, we first restrict

ourselves to a setting with only one data type D. The computational functionality of

a module Mi is characterized by a (total) value function Fi : D” + D. We specify

a module Mi(d) with current value d, input channels ii,. . . , i, and output channels

01,. . . , o, by means of two iterative processes. The first one of these defines the receive-

part Reci of the module (modeling the read actions), the second its send-part Sendi

(ready to send the value d along the ports 01,. . . ,o,). These two parts communicate

along some channel i, internal to module Mi. The computational functionality of module

Mi is modeled in the (internal) si-action of Reci, which can take place after all parallel

read actions of Reci have been executed. This yields the following specification and

picture of hfi(d):

M(d) = r{cl) 0 d{,,,)(Reci (1 Sendi(d il i,

Reci =

([1 II”eGj(vi) ;Si(~i:i(Q,.--5%)) *6,
j=l

Sendi = jIy+(d) . Sendi,
[1

Sendi = (eri(u); 1 lrsO,(v)j] j *a.

M,(d)

\ Lj=l _I/

210 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Now assume that {ii ,..., i,}n{oi ,..., 0,) = 0. It then follows that Mi(r.f) has a process

prefix

(eri, tm > ll . . . II e%(h) II b,(d) II ... II %(d))

(this is a consequence of Theorem 6.1). After having read certain values Q, dz, . . . , d,,

along channels ii , . . . , in, and having sent d along ports 01,. . . , o,, the module’s current

value is updated to Fi(dl, . . . , d,,) (by a communication along channel i, renamed into

the silent action r), and the next process prefix is ready to be performed:

(ec,(ul) II . . . II ea(M II So,(Fi(dl,...,dn)) II . . . II s~,,,Vd4,...,4))).

The case that a module reads its own value as an input, i.e. {il,. . . , in} n (01,. . . ,o,} #
0, is called feedback. Per module, at most one feedback channel is allowed in our

setting.

For readability, we introduce the following abbreviation for synchronization and

abstraction over some port i: we shall often write

p IL Q instead of ycr) 0 d{,,si}V’ II Q>.

Henceforth, Mi(d) = Reci Iii Sendi(

It is evident that the specific typing of the channels (i.e., of the read and send

actions) is not relevant, as long as the function Fi is compatible with it. Therefore,

we further consider a many-sorted setting. We assume that each variable is uniquely

typed.

4.2. Networks

A network is just a collection of modules, in which the read/send connections respect

the typing of the corresponding modules. A general restriction is that there is at most

one channel for transmission of data from a module to a module (which may be the

sending module). In this paper we consider networks of the form

where the C?H applications model value-passing synchronizations between the modules

Ml,..., M,,. We further distinguish the following network characteristics:

Definition 4.1. (1) The Input/Output of a network, Z/O for short, denotes the net-

work’s external actions, i.e., read or send actions that have no communication partner

within the network.

(2) A network is an Z/O network if it has a positive number of external actions. It

is single-output if its If0 consists of exactly one output action, which will be referred

_ to as so&. . -).

J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 211

(3) A network determines its underlying graph by taking its module identifiers as

nodes, and its internal communication channels as (undirected) edges. A network is

connected if its underlying graph is connected. 4

Below we give an example for computing a Fibonacci sequence using a connected

single-output network consisting of modules Mt and M2. This example also illustrates

the reason for computing the next ‘current value’ in a module only after all the current

input and output actions have been performed: the latter may have to communicate

with some of the module’s input actions (in the case of feedback).

Example 4.2 (Fibonacci Network). Recall the Fibonacci sequence defined by fo =

j-1 = 1, fn+2 = h + h+1. Consider the following network in which all data to be

transmitted are of type N. A channel name ij indicates that values are transmitted from

module Mi to module Mj:

I 1 I
22

Reel ReC2
_ _ _ _ _

11

_ _ _ _ _ _ _ _ _ _ _

Afl (n) _ _ _ _ _ _ _ _ 12 _ _ _ _ _ _ _ -

Send1 (71) Send&n)

I / I 1
/ \ I

sout(7~) 1 l
We can specify these modules by the

M2(m):

1 I

following two iterative processes Ml(n) and

Ml(n) = Reel 111 Sendl(n), N(m) = Rec2 II2 Senddm),
Rec1 = (enl(u);sl(v))*& Rec2 = ((em(ul) II er22(uz));sz(u1 + u2))*4

Sendl(n) = (s&n) II m(n)). SendI, Send2(m) = @21(m) II m(m)). Se&,
Send1 = k-l(~); (G&U) II Mu>))*4 Send2 = (m(u); (m(u) llm(u)))*~.

Let I = {c~1,c12,c22} and H = {rzl,s21,rlz,slz,r22,s22}. The Fibonacci Network

TI 0 &Wl(1) II M2U)>

computes the ordinary Fibonacci sequence 1,1,2,3,5,8,. . . as the values of its consec-

utive sOUt-actions:

r. 710 &f(W(l) II M2(1>)

= z . s,,t(l) . s,,,(l) . G&) . s,,,(3) . sod9 . +4t@) . . * . 3

4 Recall: two nodes in a finite, undirected graph are connected if there is a path that connects them; the

graph is connected if each pair of different nodes is connected.

212 J.A. Bergsrra et al. IScience of Computer Programming 29 (1997) 199-233

where the leftmost r’s smooth the difference between the networks first possible actions:

either s,& 1) or z resulting from some (internal) value-passing. A different characteri-

zation is given by the equation

r . TI 0 aY(M1(n) II Mz(m)) = z . &x4,(~) TI 0 &@f1(m) II Mz(n + m>>

from which it is immediately clear that z.r~oa~(Mi(1) 11 M2(1)) computes the Fibonacci

sequence. This equation can easily be grasped from the picture above; its correctness

follows from Theorem 5.5 discussed in the following section.

5. Verification of connected, single-output networks

This section leads to a correctness result on connected, single-output networks,

quoted here.

Theorem 5.5. Let n 2 1, d’ = d I,, . , , d, be a collection of typed values, and let

N(a) = zI 0 aH ([i$M(d~l])
be a network that is connected and single-output, where Ml is the output-module.

Then

7 . Nd> = z . sotAd > . J’J(Fl Cd; I,. . . Jr,<&)I,

where Fi is the value function of module Mi, and ;i abbreviates di, , . . , , di, whenever
Fi computes on the values of modules Mi, , . . . , Mi,, respectively.

For the case n = 1, the proof of the theorem is trivial. In a connected, single-

output network with more than one module, all modules but the output module can be

partitioned in a number of connected sub-networks that perform I/O with the output

module only. From this perspective, the theorem can be easily proved.

The reader not interested in the technical details of the proof of Theorem 5.5 can

skip the rest of this section (Section 5), in which we propose some uniform notation,

and establish various intermediate results that we use for the proof of the theorem

quoted above.

5.1. Notational conventions

First we fix some notation. We consider data types D,D,, Dz,. . . and functions

FI, F2,. . . over these. For an I/O network

of size n with di E Di, we assume that module Mj(dj) = Recj I/j Send(dj), SO the

(internal) channel between the receive and send part of module Mj has identifier j.

J.A. Bergstra et al. /Science of Computer Programming 29 (19973 199-233 213

We further assume that Recj has input channels indexed from a (non-empty) set Rj and

value function I$, and that Sendj has output channels indexed from a (non-empty) set

Sj. Observe that both these sets are disjoint with { 1,. . . , n}, the set of internal channels

of the modules Ml, . . . , M,, , respectively.

As to characterize typical states in the execution of a network, we introduce some

abbreviations. The receive-part Reel of a module Ml either has received all data of the

appropriate type, or has not (2 below is typed as the domain of 4):

For the send-part Sendk of a module Mk we introduce

Sendk if S’ = 0

Sendk(S’, d) dz

[,is, s,(d)] . Sendk if S’ C Sk and S’ # 0.

Observe that by our definition of modules (see Section 4.1) and the abbreviations

introduced above, Sendk(dk) E SeIIdk(Sk,dk).

5.2. Some network properties

In this section we establish four intermediate results, which we use in the proof of

our correctness result. The first of these states that a value-passing communication in

a network is not observable in a r . [] context.

Lemma 5.1. Let module Mk transmit values to Ml along channel j, and S’ C Sk,

R’ G RI and (RI U Sk) 3 j $Z! (R’ U S’). Then

7. (Recl(R’ u {j},.?) Ilj Sendk(S’ U { j},d)) = 7. (Recr(R’,.?) IIj Qn&(S’,d)),

where i # j =+ xi = yi and yj = d. (Note that S’ n R’ = 0 and that the case k = 1,

i.e., feedback, is not excluded.)

Proof. By induction on JR’1 + IS’1 = N.

In case R’ = S’ = 0 we are done: the communication along channel j is the only

possible action.

214 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

In case N > 0 and S’ = 8, R’ # 8, we derive

r. (Recl(R’ U {j},?) JJj Sendk({j),d))

7. (RecdR’,y’) Ilj SdAf44)

(2 z . +

C er,(u,>;(Recr((R’\{m)) U {_i),X-> iii ~ed4{_%0)
\ mER’

ZH,(*) zz 7.

(RMR’, v’) IJj Senh4@ 4)

+

ms, er,(M; WecdR’\{m), Y’) IIj Sehd@y 4)

mg, elm; (RecdR’\{m),_G) Ilj ~ed$JJ))

(Recl(R’, Y’) I/j Se4@,4)
B2
zz 7. +

m& er,(u,); (RecdR’\{m), v’) IIj Sen4(0,d))

‘2 z. (Recl(R’,y’) Ilj Send&&d)).

As for (*), first observe that the process prefix

[
mtR!$i) er??2(um) 1

is by the Expansion Theorem equal to

of Recl(R’ U {j},?), i.e.,

so by axiom (PP6) we get Recl(R’ U {j},-?> = zkER’u(j) erk(Uk) ; Recr((R’ U {j}>\

{,4),x’). Furthermore, it is essential that a Sendk(S,d) process does not contain free

variable v,. For this reason we can use the identity

which is a particular instance of a ,uCRL axiom5 on getting . . . LQ into the scope of

a C-application:

(=C<u m : D, rm(urn) . V’ II Q>> = erm(~m); (f’ II Q,>

where Q may not contain u, as a free variable.

5 The axiom SUM6, see [13, 141.

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

The case N > 0 and R’ = 0, S’ # 0 is similar. Let R’ # 8 # S’. We derive

\
C s,(d). (Recl(R' u {j},-?> Ilj Sen&((S’\{m)) U CW))

rnES’

f (Rect(R’, v’) Ilj SenddS’, d))
+

7.
m’, et-&u,); (Recr(R’\{m), u’> Ilj Sen&(S’,d))

+
IH,(*)

= 7.

C s,(d) . (Req(R’, y’) Ilj Scndk((S’\{m)) U W,d))
rnES’ 1’

ms, erm(o,); (Recr(R’\{m}, y’) IIj Scndk(S’,d))

+

+

C s,(d) + (Recr(R’, y’) Ilj Sendk((S’\{m)) U {j),d))
m&Y' 1

“2’ 7. (Recr(R’,y’) Ilj Sendk(S’,d)).

As a corollary we obtain that the particular

munications in a network is not relevant.

215

order of the possible value-passing com-

Corollary 5.2. For an I/O network N(a) = ZI o 8,y ([(Ir=‘=,Mi(di)]) it holds that

74(d)=7.710aH i~(Req(RPU’, 4) [Ii Sendi(S,o”‘,di)) I)
where RpU’ represents the input channels of module A4i that are not connected in the

network, and $“‘I the non-connected output channels.

Proof. First observe that by the alphabet axioms, one can interchange synchronization

of the internal communication of a module Mj (along channel j and enforced by I/j,

modeling its value-update) and a value-passing communication as considered in the

previous lemma. Now apply Lemma 5.1 on all internal value-passing channels of N

(including feedback channels), while using the Merge Lemma 2.2 when appropriate.

It is clear that the order in which this is done is not relevant: each two possible

value-passing communications commute. 0

216 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Also we shall need the following result, stating that the value-update communications

of the modules of a network are not observable in a z . [] context.

Lemma 5.3. For an Z/O network N(a) = 71 o a,([IlblMi(di)]) it holds

z. zI oaH CL i~(Req(O,&) Iii Sendi) I) = z . N(F,@,), . . . ,F,(i&J).

where d’i abbreviates diI,. . . ,dik whenever Fi computes on the values

M;, , . . . , Mi,, respectively.

Proof. Immediately from the Merge Lemma 2.2. 0

that

of modules

We further restrict attention to networks that are connected. The following intermediate

result (the last one we need) states that a connected I/O network can initially perform

at most a finite number of internal actions, i.e., r-steps, arriving in a unique state in

which no further internal steps are possible, and an I/O action must be performed. This

depends on connectedness: consider the network discussed in Example 3.2. Extending

this one with a single, isolated module of the form

(only performing feedback) yields a network in which the internal feedback-activity

sketched above - resulting in r-steps - can be performed in each state.

Lemma 5.4 (External Action Lemma). Let N(a) = r~ o aH([Il:,,Mi(di)]) be a con-

nected I/O network. Then there is an expression fi(d’) such that

1. r.N(a) = r.g(&, and

2. fi(d’) cannot perform an internal action.

Proof. In case the size of N(a) is 1, the statement is trivial: at most one internal

‘feedback action’ can be performed. Assume N(a) contains at least two modules. By

Corollary 5.2 we have

t.N(d) = r.zrOaH
(1

il(~(~eciUY'~ i'i) Iii Sendi(S$v”‘,di)) I) .
Because N(a) performs I/O, at least one of RpU’ U Syf is non-empty and the corre-

sponding module can only perform an external action. In case all are non-empty, we

have found our E(d). If not, partition { 1 , . . . , n} into Extern and Intern such that

j E Intern ++ RT” U ST’* = 0.

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 217

Notice that 0 g Intern g { 1,. . , n} in this case. We derive

Possible internal steps are between the Intern-modules. We repeat a similar procedure

on the set Intern. Exhaust all internal communications between the Intern-modules

according to Lemma 5.1. Let the resulting index sets be Ry’,’ and Srt’l. By connect-

edness, there is at least one connection with an Extern-module, so the corresponding
,;ut, 1 ” ,Ft, 1 is non-empty. In case all Intern-modules are connected with an Extern-

module we have found our @(a). If not, partition Intern into Intern1 and Intern2 such

that

j E Intern1 H Ry”’ US?“’ = 8.

By assumption and connectedness, 8 g Intern1 g Intern. Let e’ = ei,. . . ,e, where

ei = Fi(Ji). Consider the derivation in Table 6. Possible internal steps are between the

Znternl-modules. Now we can repeat a similar procedure on the set Znternl. Continuing

in this fashion, we end up with an expression that initially only allows external actions:

each further partition yields a smaller set of possible internal actions. 0

5.3. Correctness of connected, single-output networks

Using the results from the preceding section, we are able to give a short proof of

the correctness result quoted before.

Theorem 5.5. Let n > 1, d’ = dl, . . . , d, be a collection of typed values, and let

be a network that is single-output and connected, where Ml is the output-module.

Then

x.Wd) = z.s,,,(dl).N(Fl(d;),...,F,(~)),

where Fi is the value function of module Mi, and di abbreviates di,, , . . , dt, whenever

Fi computes on the values of modules Mi, , . . . ,Mi,, respectively.

218 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Table 6

Proving the External Action Lemma 5.4.

=T.ZI 06H
[

ll (Jh(R, ourx’, ji) /Ii Setdi(Sz?“‘, ei))
iEInfern2 1

II

11 (Reci(Ry’,.?i) Iii Sendi(SF’,&))
iE Exrern

(5.3)
= Z TI 0 68 1 [

II

[
II

[
II (Reci(Ry’,Zi) 11; 5’edi(S10u’,di))

i~EXtt-r?l 1

Proof. We distinguish the cases n = 1 and IZ > 1.

IZ = 1. In this case Mi(di) necessarily is a module with one feedback chamiel and

no other inputs, say

kf~(d~) = ((eY2(21);S,(FI(V)))*6 111 Mdl) Ils,,,(dl)).((er~(u); @z(u) II k(~)))*@)

with feedback channel 2. A typical case that proves the theorem is spelled out in

Examples 3.1 and 3.2 (apart from some trivial applications of the alphabet axioms).

n > 1. Partition the underlying graph of {A&, . . . ,M,} (see Definition 4.1.3) into con-

nected subgraphs of maximal size. Notice that this partition is unique. Let Cl,. . . , Ck

represent this partition (Ci 5 { 2,. . . , n} and lQk<n - 1). Consider for j E {l,...,k}

the network

where Ij,Hj refer to all channels between the Cj-indexed modules. Observe that each

such network is connected and performs I/O with Mi only.

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 219

Let 4 be the sequence (di)iEcj and

- Nj(dj) = TIj o aHj ([l,r(n.l]) .

Furthermore, let Z = et , . . . ,e, where ei = Fi(Ji). We derive (see explanation below):

z . ~(2) (2 z . zI o aH u _?> Iii Sendi(Sp’, di)) I>
(B)
= z. zI oaH

((3
= z. TI oaH

(Recl(0,dl) 111 sendl({outl,dl))

11 (Reci(B,Ji) Iii Sendi)
iECj I) II

(sl(Fl(dl)) . Reel Ill souddl). Send1 >
II

[1
Ilk z . Nj(g)

j=l

CD)
(sl(Fl(dl)> . Reel II 1 sddl) . Send1)

= z. zI oaH

03
= z. &,,(dl). zI 0 dH

(F) = z . sO,t(dl) . zI 0 aH

(G)
= z. s,,t(dl) N(F’l(& 1,. . . ,&(dJ).

Explanation: in most steps we tacitly use the Merge Lemma 2.2. Furthermore,

(A)

03)
(Cl

Here we apply Corollary 5.2. Notice that all RpU’ and SpU’ sets are empty, except

for SF* consisting of out.
Here we apply the alphabet axioms.

Here we replace Reel (0, 21) and Send 1 ({out}, d 1) by their definitions, and apply

Lemma 5.3.

220 J. A. Bergstra et al. lScience of Computer Programming 29 (1997j 199-233

CD)

(El

Here we apply Lemma 5.4 on&l cj(G).

Because each action of each Nj(ej) is external with respect to Ij,Hj and can

only perform an (internal) communication with Mi, the only possible step is the

s,&di)-action.

07 The internal step of Mi and Lemma 5.4 are applied.

(G) The alphabet axioms are applied. 0

6. Generalizations, specifications and verifications

We can relax the conditions under which the execution of a network satisfies a

single process prefix, followed by a recursive update of its data state. Output may be

modified or multiplied, and a restricted form of external input can be allowed. In the

rest of this section we make this precise.

6.1. Output modijication

Our first generalizations concern the output actions of a connected, single-output

network. It is not hard to see that the previous correctness result is preserved if such

a network outputs actions of the form

for some function F rather than of the form s,,,(d). We call this output modification

of the out-channel.

A second generalization concerns additional external output of the network. Assume

that a network

\Li=l A/

has more than one output channel, and that I is such that all extra output channels

are hidden. Then Theorem 5.5 still is applicable. We prove this below. Notice that it

is sufficient to show that one extra, hidden output action does not change the external

behavior of the network when considered in a t. [] context. Now assume extra is the

identifier of such an additional, hidden output channel that originates from module Mk,

So sCxtra E I. Let

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 221

By induction on l&l (recall: I& > 0) it follows easily that

r’ Z(extra> ([i~sk~~exlr,~si~~~]) = z’ [iJLksdtl] .

Furthermore, rlextra) (SUZ~~“~) = Sendk because the r{,trO) application distributes over

all operations mvolved:

Hence, z . ~{extra) (Sends’“) = 7. Sendk(dk).
Now let

Mrtra(dk) = (Reck Ilk Sendy’“(dk)).

With some applications of the alphabet axioms it follows that

7 . ~{extra)(M~fra(&)) = 7 ‘M/c(&).

Finally, let Nexrra(& be obtained from N(a) by replacing Mk(dk) with A4rtra(dk).
From the alphabet axioms and the Merge Lemma 2.2 it easily follows that

r . N”““(a) = 7. A@).

Consequently, a correctness characterization for r . Nextro(a) can be obtained from

Theorem 5.5 :

z. Nex’ya) = 7. N(2)
5.5
= .r . soddl) . WI(&), . . . >F,(d:,))

-+ + = z. s,,,(dl) .iVeX’“(F”(d,),. . .,F,(d,,)).

We further consider a single-output, connected network as one that may contain

extra, hidden output channels, and that may return ‘modified’ output.

222 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

6.2. Single-I/O networks

A network is single-I/O if all its I/O activity (its collection of external read and

send actions) stems from a single module, the I/O-module. In this section we establish

a characterization result for single-I/O networks. This gives way to regarding networks

as stream transformers, be it that the I/O connection is located at a single module. In

particular, this allows one to connect a single output-network to a single-I/O network

while preserving a simple correctness characterization.

Including the generalizations from the previous section, we extend our characteriza-

tion result to the class of connected, single-I/O networks.

Theorem 6.1. Let n B 1, d’ = d 1,. . . , d,, be a collection of typed values, and let

N@)=no&([,:,(di)])

be a network that is connected and single-I/O, where Ml is the I/O-module and
Extern is the set of indices of the I/O channels. (Notice that Extern # 0 and may

hide output from non-I/O-modules.)
Then

(sl(fi(xi)). Reel III Sendl)

z.N(&=z. LJ!rirna4 ;zlodH (i/p@&)]) 3
where
l in case n = 1, the post$x expression reads ZI o 8~(sl(Fl($))~ Reel 111 Sendl).
a Fi is the value function of module Mi,
a for i E Extern, either ai f si(Gi(dl)) where Gi is the output modijcation of

channel i, or ai E eri(vi),
a for i > 1, Ji abbreviates d. ,L,. . . , di, whenever Fi computes on the values of modules

Mil,..., M,, respectively,
l Tl is dejined similar, except for its Extern-coordinates (see the third clause).

Proof. Almost exactly as in the proof of Theorem 5.5. Differences are:

1. In step (B) the expression Recl@,&) II 1 Sendl({out}, dl) has to be replaced by
+

ReciW,di) 111 Sendi(Out,di)

where In U Out = Extern, and In (Out) is the index set of the network’s external

input (output) actions, and

2. In step (E), the complete prefix [IliEExrern ai(has to pass the scope of the zzoa~-

application. An application of the Expansion Theorem is helpful here. 0

Observe that in case there are no external input actions, we find a straightforward

generalization of Theorem 5.5: in a r . [] context the network recursively outputs a

J.A. Bergstra et af. /Science of Computer Programming 29 (1997) 199-233 223

single prefix containing a merge of (modified) output actions, after which it updates

its values.

In case there is input, executing the prefix

includes the performance of the external read actions, after which the network can

continue with its updated data state.

7. An example: the wave equation

In this section we study a parallel algorithm for an approximation of a wave equation.

We specify a given algorithm for this approximation in a single-output and connected

network. The resulting network can be characterized as a grid protocol. We refrain from

a formal definition of such protocols, and - as stated before - use the term for networks

that can be associated with grids (processors or points of measure in some physical

phenomenon, for instance a string). Finally, we present some simulation results.

7.1. The wave equation

Consider the following linear homogeneous partial differential equation:

85 c&=o
at2 ax2 *

This equation is known in wave mechanics as the one-dimensional wave equation; it

describes the transversal propagation along the n-coordinate or amplitude y(x, t) of a

wave. Various wave phenomena may be modeled by this equation. One can think for

instance of vibrations in a string, where it is required that the tension in the string is

approximately constant. The constant c is described by ,/i$, where T is the tension

in the string and p the string mass per unit of length. In general, in solutions y(x, t)

the constant c is interpreted as the propagation velocity of the wave in transversal

direction. Throughout this section we keep the string example in mind.

In order to solve the wave equation boundary conditions and initial conditions are

needed. As boundary conditions we assume that ~(0, t) = y(Z, t) = 0 for t >O, i.e. that

the string is fixed in x = 0 and x = 1. With these boundary conditions a string amplitude

at some time t, as a function of X, may be graphically represented as in Fig. 1.

We moreover require that we have y(n, 0) and ay/dt ll=o as given initial conditions for

0 dx d 1. From these two functions it is possible to derive an approximation of y(x, At),

where At is a very small time interval. The values y(x, 0) and y(x, At) will be needed

later on for initializing an algorithm that numerically solves the wave equation.

Let N be a natural number, and Ax = Z/N a very small length interval. We define

2

m,ZZAa) = 221 - z2 +

(>
cg (Zj - 22, +zq),

224 J.A. Bergstra et al. /Science of Computer Programming 29 (1997) 199-233

Fig. 1. Some string amplitude at time t.

and

~i(t + At) = F(Yi(t), Yi(t - At), Yi-l(t), Yi+l(t>).

From numerical analysis it is known that yi(t) approximates y(iAx, t) for 1 <id

N - 1, and ta2At (see e.g. [11,21]). Therefore, the above equation for yi(t + At)

may serve as a basis for numerical approximation of solutions of the wave equation.

Now an algorithm for calculating wave amplitudes vi(t) may be designed which

uses one processor per sample point on the x-axis, i.e., one for every i and one for

each boundary. As a result the calculations for the sting amplitude at some sample

moment t will be carried out by N + 1 processors in parallel. In fact, N - 1 processors

will suffice, since the values at the sample points i = 0 and i = N are already known

from the boundary conditions.

In the subsequent pages we specify such a parallel algorithm based on the networks

as studied in the previous section. For simplicity we assume that AX and At are given,

and that there is no interaction between a user of the algorithm and the algorithm

itself; the algorithm just produces an infinite stream of outputs. Of course we need a

criterion for correctness; we require that the algorithm outputs approximations of the

total string amplitudes on the successive sample moments:

?(O), ?(At), ?(2At), . . . ,

where y’(t) abbreviates ye(t), . . . , yN(t). Other requirements are that the algorithm con-

tains no deadlocks or livelocks, so that it is always able to proceed. We will see

from one simple equation on the external behavior of the algorithm that these three

requirements are satisfied. This equation immediately follows from Theorem 5.5.

7.2. A grid protocol modeling the wave

In the previous section we established the following equation for the calculation of

the new value of coordinate yi:

yi(t + At) = F(yi(t), yi(t - At), yi-l(t), yi+l(t)).

J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 225

This equation shows that the current values (at time t) of coordinates yi, yi_1,

and yi+l are needed, as well as the previous value (at time t - At) of coordinate

yi. Given these values, the function F calculates the new value (at time t + At) of

yi. When we model the approximation of the wave equation as a grid protocol, we

need a number of processors, each calculating the consecutive values of one or more

coordinates as floating reals. We choose to let one processor calculate the values of

one coordinate. For N + 1 coordinates, we thus define N+ 1 processors PO . . . PN. Each

processor 4 (0 < i < N) needs the following input:

l the output of processor Pi-l,

l the output of processor Pi (itself),

l the output of processor Pi+,, and

l the previous output of processor Pi (itself).

Naturally, processors PO and PN do not need input at all. However, for reasons of

uniformity we also use channels from PI to PO and from PN__I to PN.

The last item above requires that we store the output of each processor for one

time slot. This is, however, not possible in a single module. We solve this problem

by splitting each processor fi into a calculating module Mi and a delay module 0,.

The delay module does nothing more than storing the output value of the calculat-

ing module for one time slot. After that, this value is sent back to the calculating

module. We can now state that the input of each module Mi (0 < i < N) should

be:

l the output of module Mi-1,

l the output of module Mi (itself),

l the output of module A4i+t, and

l the output of module Di.

We can visualize this as follows:

- - - 1 l-----------1 r-------

-‘-J L” _ _ _ _ _ _ _
t

_ J L?+l_ _ _ _ - -
v

Now that we have composed a grid protocol modeling the wave equation, we can

start writing a specification in the early-read format. This is not difficult: just read what

happens from the picture. To start with, we specify the Di (0 < i < N) modules:

226 J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Here, er(Ml,o,)(u) and s(Q,M~u~)(u) stand for an early read or a send action on the ports

connecting Mi and Di. Note that (Mi,Di) is the port from Mi to Di and (Di,Mi) the

port from Di to A4i. The actions er(o<)(v) and As stand for an early read or a send

action on the internal port of the concerning module.

Likewise, we specify the modules A4i:

Mi(d) =

Ri =

Si =

Si(d) =

7{%bf,)) 0 a{r(Ml),s(Mz))(Ri II Sdd))

((er(Mi,Mi)(ul) II qD,,M)(uz) II qhf-,,d~3) II e%~+~,M,)(~4’4));

S(M,)(F(UI,~~,U~,~~)))*~

(qM)(u); (qM,M)(U) II %wh)(U) II (.s M,&,)(U) II Qw4,+1)(~)II %M,o,(~)))*~

(qM,,M,)(d) II wm(4 ll (s ,w,,.u_I)(4 II S(M,,.w+l)(d) II WL,O)(~)) . Si.

The port (Mi, 0) is the actual output port of the processor, leading to an output

module 0.

The processors fi (0 < i < N) can now be defined as follows:

fXd,e) = M(d) II Q(e),

with d and e the initial values of coordinate yi (Yi(At) and yi(O), respectively).

For N + 1 coordinate pairs, N - 1 of these processors are coupled together, the outer

ones also using two border processors (which are simple modules). The output of all

the calculating modules Mi (0 <i <IV) in the processors is sent to output module 0.

This module collects the computed values of all processors and bundles them in a

vector. In a picture:

+

As one can see from this picture, the first and the last processor only communicate

with their neighbor and the output module 0. The specification of these two processors

J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 221

is, therefore, very simple:

Po(4 = qc(Po)} O qr(Po,s(po,}(Ro II So(Q)

Ro = (e~(M,,po)(~);~(P,)(o))*~

so = (qp,)(u); (qPo,Ml)(~) II wo,o,w>*~
So(d) = (S(p,J4,)(4 II qFb,O)(4) . so,

fh(4 = T{c,qni,} O ~{r~~),s(~,p~ II M4)

RN = (er(MN_,,~)(v);s(~)(o))*s

SN = (er(P,)(u); &&f,,--~)(~) 11 s(f?v.~)(“>>)*s

sN(d> = (S(&,M,_,)(d) 11 s(Cv,O)(d)) ’ &‘.

Note that PO and PN need not to be split in a calculating and a delay module. Since

we describe a wave through a string with both ends tight, the output value of processors
PO and PN will remain zero all the time:

Po(d, e) = Pi(O) and PN(d, e) = PN(O).

The only thing left to specify is the output module 0:

O(do,. . . > dN) = z{c(,)} 0 &,,,sco,#O II so(do,...,dv))

RO = Kqp,,o)(~o) II qM,,o)(vl)ll .-. II er(M&3)(~N-1) Ilw~)(~x));

S(O)(oO,. . . > UN))*6

so = (er(O)(wO, . . . > WN 1; %d~O,. . . , “‘N)>*d

so(do,. . . ,dN) = &&do,. . . ,dN) ’ so.

Now the algorithm is specified by the parallel composition of 0 and all processors

q:

WAVE = r(+) 0 ~(~,,+) (o(y(0)) /] [i[M.Yi(At), Y.(O))]) 2

with vi(O), ri(At) (i = 0.. . N) arbitrary initial values, and p ranging over the following

set of ports:

{(~i,~;),(Mi,~i),(~i,~),(Mi,O)IO < i,i < N)

~{(PO,~~),(M~,PO),(P~,O),(MN-~,~N),(~N,~N--~),(~N,~)).

The external behavior of the algorithm can then be expressed by

z. WAVE = z ~s,,,(y’(O))~ s,,,(v'(At)) .s,,t(y'(aAt)).

228 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

This follows from Theorem 5.5, which gives the following characterization of our

specification:

r. T{%l 0 a{rp,sp)
(
OW. Al))

IN

ICjP;(Vd(k + 1) .At),~i(k 'At)>
i=O I)

= z . sou,W . At)) . z{cpj 0 $rp.spj
O(y’((k + 1) . At)) Irfi(yi((k + 2) ’ At), yi((k + 1) . At)) .

i=O I)
7.3. Simulation of the grid protocol

The early-read format that we used in the previous section has been formalized as an

adaptation of the specification language &RI [15]. See [16] for a description of this

adaptation. In the same paper, a tool is described, which translates a specification in

the early-read format into a specification without early reads. This makes it possible to

use the simulator from the PSF Toolkit [23] which means that we are able to simulate

our specification. The PSF Toolkit, to which the simulator belongs, is a set of tools

designed for the specification language PSF [l&19]. Since &RI can be considered

a small subset of PSF, an adapter was written so that the PSF Toolkit could be used

for @RI specifications as well. By removing the early reads from our specification,

we make the specification suited for this adapter.

The early reads can be removed, because they form no functional extension to

&XL. They have been added with the purpose of simplifying the specification of grid

protocols, but as argued before, it is possible to specify these protocols without early

reads. As an example, we give a specification of Ri from the previous section:

Without early reads, a straightforward specification of Ri is the following:

4 = CC (qw,M,)(ai > . <C (w,,~)(d . (C(r(~-,,M,)(w)
w 02 03

‘~(9f,+,,M,)(~4) ’ ~(M,,(~(~1,“2,~3,~4))))

+~&w~+~.M.)~~~~ . ~h4_d4d(~3) . %dF(~l~ u2,u3, u4))>)))
03

+~h4_,,~)(u3~ . E(r(D,,b4,)(~2) C@wz+,,h4,)(u4)
03 02 04

‘S(M,)(F(ul,U2,u3,U4))))

+C(q4,+d4,)(u4) . CG-(ht4,)(u2) . qhfAF(u1,u2, u3,u4))))))
04 02

+C (r(~+,,h4d~4) . CW(4,du2) . C@(M,-,,.du3)
04 02 03

qM,)vYul, 02, u3, D4))))

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 229

+~(7(M,_,,M,)@3) ’ c k(D,,M,)(u2) ’ ~(M,,(~(~1,~2,~3,“4))))))))
03 02

+C(qD,,Mz)(~2)
02

+c hw_I,M)(~3) . . .
01

+~@-(M,_,,M,)@‘3)~ ~(~(D,,M,)(uZ) ’ s(M,,(F(ul,u2,u3,u4))))))
03 w

+c e-(D,,M,)(~2) . (c(qM,,M,)h) C(qMz-&)(s)
02 VI 03

‘S(M,)(F(Ul,U2,u3, u4))))

+~(~(M,_,,M,)(~3) ~(~(M,,M,)h) ’ S(M,)(F(UI,U2,u3,u4))))))
VI

+; @(M_I,.dU3~ . E(~(M,M)(~1) . ce@,,M)(~2)
m 01 K!

qt4,)(QUl, u2, v3, u4))))

Note that we do not claim that this is the shortest @XL specification possible. In [161

a shorter, yet more tricky approach is presented. However, we think that this example

shows that the early-read format is a useful syntactical extension, which allows for

compact and simple specifications. Having automatically derived a conventional @XL

expression, we are now able to use it as input for the simulator.

Figs. 2-5 show different states of the simulation of module Ml. We left out encapsu-

lation and abstraction to be able to show all actions. It is for this that we will speak of

the unsynchronized module Ml. Each figure shows a Choose and a Trace window. The

Choose window presents the possible actions that can be performed in the current state.

The Trace window shows the actions that have been performed since initialization.

Fig. 2 shows the initial state Ml(RO): no actions have been executed yet. In the

Choose window, one can clearly distinguish the sending and the receiving part of the

module. Some initial output value RO can be sent via the five output ports; from the

four input ports arbitrary values can be read. Each read and send action has two argu-

ments, The first argument is the port that is being used, the second argument contains

the actual data (floating reals). The sums surrounding the read actions indicate that an

arbitrary value can be read. Which value will be read depends on which value is sent

by the other modules (or, in one case, by the same module). It can be seen that all

read and send actions can be executed in arbitrary order: each of the four read and

five send actions can be chosen.

230 J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

Ir- . _ ..,,,,,

uiwkm lmct: i I
s(p(n(l~. n(2)). RO)
r(pUl(l), tlt0,). RO)
~(p0l(l). D(l)), RO>
s(pwi). tw,,. RO)
scp0w. 0). RO)
SLm~Ul in RERL, r(p~tKl), nci,,. vi) * (rru~~v2 in RERL. r(p(LKi>r n(
SUII~V~ in REAL, ~-(p(rw. nti,), ~2) . hm<vl in REAL. r(pWl). tl(
sun(v3 in RERL, r(p(n(prsd(i)), II(l)). ~3) . kun(vl in RERL, r(pW

RERL, r(pMsucc(l)), II(l),, ~4) . bm~vl in RERL, r(p(bl(

Fig. 2. Ml(RO), the initial state of (unsynchronized) module Ml with current value RO.

.I ST ___

atoll S(pui(i), O), RO)
atoll r(p(D(l), tici)), R2)
aton r(p(n(2), n(l)), ~3)
aton s~p0l(l), n(2)). RO>
Ccl". cCpM1). nci)), RO)
atw scpuw, nto)), Ro)
at- r<pwo), nci)), ~1)

Fig. 3. Module A41 (unsynchronized) after reading all input and sending almost all output.

Fig. 3 shows the state in which all input has been read, and the initial output value

RO has been sent to all but one output ports (the port p (M (1) , D (11)). The read and

send action on port p (M(1) , M(1) > have synchronized into the communication action

c (p (MC 1) , M (1) I, RO) . The Trace window shows that the reading and sending has

been interspersed. The Choose window shows that the receiving part of the module has

read the real numbers RO to R3 and is ready to send the calculated value F(R0, R2,

RI, R3) on the internal port p (MCI > > to the sending part. The sending part, however,

is not yet ready to receive this value, because it still has to send the initial output

value RO to one output port (p(M(l), D(l))).

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 231

-_

aton sQ~(tl(l). O), RO)
atom r~p~Ll(l), Ml,,, R2)
aton r(p(n(2). Ml,,, R3)
aton s(p(n(l), nte,,, Ro)
~0". dpwi), nw), Ro)
at0n dpml), n(o)), ~0)
ah dpwo), tici)), RI)
aton dpam, O(l)), RO)

Fig. 4. Module Ml (unsynchronized!) ready to transfer the calculated value.

s(paw. n(2)>, FCRO. ~2. RI. ~3))
dpuw. MO>>, FCRO, RZ, Rl. R3))
+(p<Ml), Ml)), FCRO, R2, Rl. R3))
s(p0M). Ml,,, F(R0, R2, W, R3))
dpW1). 0). FWO. R2. Rl, R3))

w-m RESET ___

atoll scpuw, 0). RO)
atom r(p(O(l>, ncl,,, R2)
aton dpw2). nci)), ~3)
atom s(P(~(I). n(2)), ~0)
~0". dp(nw, ncl)), ~0)
aton r(pww. nto)), ~0)
aton dpwo), Ml,,, RI)
aton dpcnw. O(l)), RO)
corn.. dp(n(l)). FUlo, R2, Rl, R3))

Fig. 5. MI(F(RO, R2, Ill, R3)), module A+‘, (unsynchronized) with the next current value.

Fig. 4 shows the next state, in which the initial output value RO has also been sent to

the final output port. The Choose window now shows that the calculated value can be

read (by the sending part), sent (by the receiving part - which was already the case),

and therefore be communicated on the internal port p (MC 1) I. Note that the separate

read and send action on this internal port are visible only because we simulate an

unsynchronized version of Ml. When simulating the module with encapsulation, this

communication is enforced. Separate read and send actions will then be prohibited.

The communication mentioned above has taken place in Fig. 5. The unsynchronized

module has now evolved in M~(F(RO, R2, Rl, R3)), a state similar to the initial

232 J. A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233

state, as can be seen in the Choose window. The sending part of the module will now

send the calculated value F (RO, R2, Rl , R3) to its output ports, instead of the initial

output value RO.

8. Conclusions

We hope to have shown that process prefixing and early reads allow for a short and

clear notation of parallel algorithms and other concurrent phenomena. We think it is a

useful extension to ACP-based specification formalisms. Of course, much work remains

to be done, for example regarding extensions in the field of asynchronous networks.

Acknowledgements

We thank Jos van Wamel and Gerard Kok for the many contributions and discussions

that led to the final version of this paper. The present Section 7.1 is an extract from

an earlier work by these authors. We further thank Jaap Kaandorp, Matthew Poole,

Peter Sloot, John Tucker and the referees for comments and discussions.

The research of J.A. Bergstra and A. Ponse was partially sponsored by Esprit Work-

ing Group 8533 NADA - New Hardware Design Methods.

References

[l] J.C.M. Baeten and J.A. Bergstra, On sequential composition, action prefixes and process prefix,

J. Formal Aspects Comput. Sci. 6 (3) (1994) 83-98.
[2] J.C.M. Baeten, J.A. Bergstm and J.W. Klop, Conditional axioms and u/b calculus in process algebra,

in: M. Wirsing, ed., Formal Description of Programming Concepts - III, Proc. 3rd IFIP WG 2.2
Working Con$, Ebberup, 1986 (North-Holland, Amsterdam, 1987) 53-75.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra, Cambridge Tracts in Theoretical Computer Science,

Vol. 18 (Cambridge Univ. Press, Cambridge, 1990).

[4] J.A. Bergstra, I. Bethke and A. Ponse, Process algebra with iteration and nesting, Comput. J. 37 (4)
(1994) 243-258.

[5] J.A. Bergsha and J.W. Klop, The algebra of recursively defined processes and the algebra of regular

processes, in: J. Paredaens, ed., Proc. 11th ICALP, Antwerpen, Lecture Notes in Computer Science,

Vol. 172 (Springer, Berlin, 1984) 82-95; an extended version appeared in: A. Ponse, C. Verhoef

and S.F.M. van Vlijmen, eds., Algebra of Communicating Processes, Utrecht 1994, Workshops in

Computing (Springer, Berlin, 1995) l-25.
[6] J.A. Bergstra and J.W. Klop, Algebra of communicating processes with abstraction, Theoret. Comput.

Sci. 37 (1) (1985) 777121.

[7] J.A. Berg&a, C.A. Middelburg and Gh. Stefanescu, Network algebra for synchronous and asynchronous
dataflow, Tech. Report P9508, Programming Research Group, University of Amsterdam, 1995.

[8] J.A. Bergstra and J.V. Tucker, Top-down design and the algebra of communicating processes, Sci.
Comput. Programming 5 (2) (1985) 171-199.

[9] J.A. Berg&a and J.V. Tucker, Equational specifications, complete term rewriting systems, and
computable and semicomputable algebras, J. ACM 42 (6) (1995) 1194-1230.

[lo] W.J. Fokkink and H. Zantema, Basic process algebra with iteration: completeness of its equational

axioms, Comput. J 37 (4) (1994) 259-267.

J.A. Bergstra et al. IScience of Computer Programming 29 (1997) 199-233 233

[11] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker, General Techniques and Regular

Problems, Solving Problems on Concurrent Processors, Vol. 1 (Prentice-Hall, Englewood Cliffs, NJ,

1988).
[12] J.F. Groote and H. Korver, A correctness proof of the bakery protocol in &RL, in: A. Ponse, C. Verhoef

and S.F.M. van Vlijmen, eds., Algebra of Communicating Processes, Utrecht 1994, Workshops in

Computing (Springer, Berlin, 1995) 63-86.

[13] J.F. Groote and A. Ponse, Proof theory for &RL (extended version), Report CS-R9138, CWI,

Amsterdam, 1991.

[14] J.F. Groote and A. Ponse, Proof theory for @XL: a language for processes with data, in: D.J. Andrews,

J.F. Groote and CA. Middelburg, eds., Proc. Internat. Workshop on Semantics of Spec.$cation

Languages, Workshops in Computing (Springer, Berlin, 1994) 232-251.

[15] J.F. Groote and A. Ponse, The syntax and semantics of &XL, in: A. Ponse, C. Verhoef and S.F.M. van

Vlijmen, eds., Algebra of Communicating Processes, Utrecht 1994, Workshops in Computing (Springer,

Berlin, 1995) 26662.

[16] J.A. Hillebrand, A small language for the specification of grid protocols, Technical Report ~9608,

Programming Research Group, University of Amsterdam, 1996. Also appeared in: Experiments in

specification re-engineering, PhD. thesis, University of Amsterdam, 1996.

1171 S.C. Kleene, Representation of events in nerve nets and finite automata, in: Automata Studies (Princeton

Univ. Press, Princeton, NJ, 1956) 3-41.

[181 S. Mauw and G.J. Veltink, A process specification formalism, Fund. Inform. XIII (1990) 85-139.

[19] S. Mauw and G.J. Veltink eds., Algebraic Specification of Communication Protocols, Cambridge Tracts

in Theoretical Computer Science, Vol. 36 (Cambridge Univ. Press, Cambridge, 1993).

[20] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).

[21] G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, Oxford,

1965).

[22] B.C. Thompson and J.V. Tucker, Equational specification of synchronous concurrent algorithms and

architectures (2nd ed.), Report CSR 15-94, University of Wales, Swansea, 1994.

[23] G.J. Veltink, The PSF toolkit, Comput. Networks ZSDN Systems 25 (1993) 875-898.

