
Frame-Based Process Logics
J.A. BERGSTRA AND A. PONSE

ABSTRACT We consider frames that can be defined by polynomi-
als over states and transitions States are elements from the natural
numbers with pairing, and (state-)transitions are labeled with ac-
tions from some finite set We study a connection with process alge-
bra pointing a frame by distinguishing either two states that func-
tion as a root and a tail, respectively, implements a terminating pro-
cess Only selecting a root can be used to model a non-terminating
process This implies that frame properties can be investigated with
process algebraic means
Providing further structure on frames by inserting propositions at
the states, gives a basic "framework" for Floyd Hoare logic, or a
modal logic with modalities Qa for all actions a considered

1 Introduction
This paper focusses on frames in the setting of piocess algebra, Floyd
Hoare logic, and modal logic Compared with frames as used m Knpke
semantics and modal logic, the most important difference is that we take
the accessibility relation ternary we consider transitions s -̂ -» s' between
states 5 and 5' with a label a taken from a finite set of actions (In the
next section the basics of algebraic frame representation are introduced)

In a simultaneous paper (Bergstra and Ponse 1994) we develop a direct,
algebraic notation for frames, and give some theoretical information and
examples In this paper we study frames at a more abstract level More
precisely, we consider three such levels, or "frame-based process logics" as
stated in the title First we approach a simple class of frames with process
algebra, or more specifically with axiom systems defined in the setting of
ACP (Algebra of Communicating Processes, see Bergstra and Klop 1984,
1985) In Section 3 we show that process algebra can be seen as a "frame-
based logic", or rather as an abstract version of a frame-based algebra

Modal Logic and Process Algebra
Alban Ponse Maarten de Rijke and Yde Venema, eds
Copyright © 1995 CSLI Publications

39

40 / J.A. BERGSTRA AND A. PONSE

Though, due to the axiomatic approach, different semantical settings have
emerged for process algebra, its correspondence with frames is quite nat-
ural. One easily depicts "frames" in reasoning about "processes". More
precisely, selecting a root state in some frame (and possibly a tail repre-
senting successful termination), can be used to extract a process algebra
expression. To this purpose, we introduce a process extraction operation.
As a consequence, pointed frames can be subject to process algebraic rea-
soning. In Section 4 we illustrate this by analyzing two counters. Next,
in Section 5, we also regard frames with "signal insertion", bringing us
into the semantical setting of prepositional dynamic logic. In particular,
states are equipped with propositions. This provides a semantical basis
for process algebra with conditions, which is shortly recalled in Section 6.
(In Baeten and Bergstra 1994, a similar connection is studied.) For signal
inserted frames, we introduce in Section 7 a simple Floyd Hoare logic over
conditional processes. We think its virtue is straightforwardness: each pro-
gram construct induces its own, simple correctness rule. In Section 8 we
present a modal proposition logic with modalities Da for all actions a, and
give some connections to process algebra with conditions.

Another motivation to study frames in the setting of process algebra is
bisimulation geared. We give a short explanation. The nesting operation
", introduced in Bergstra et al. 1994, and defined by

H Ha;" y = x(x* y)x + y
is crucial for this motivation. Ongoing research pointed out that each
recursively enumerable frame can be expressed up to weak bisimulation in
process algebra with " and *. Here * is the binary Kleene star, discussed
in Section 3. Currently, the "process-part" of this result is clear-cut (based
on the process algebraic representation of Turing machines). The "frame-
part" of this result is based on notions that are not widely spread. We
hope that our present papers on frames (this one, and Bergstra and Ponse
1994) will help to make these notions common property. In Section 9 we
return to this issue. (For other expressivity results, see e.g. Baeten et al.
1987, Vaandrager 1993, Bergstra et al. 1994.)

2 Frames and Frame Polynomials
Let the symbol N represent the naturals given by constant 0 and successor
function 5 (and equipped with equality predicate =). As usual, we repre-
sent the elements of N as numerals 0, 1, 2, 3, . . . , and we use meta-variables
k, l,m,n for these.

Let § be a set of states, obtained by an embedding i^ of N in § and a
pairing function)—(: §2 —> §. We further abbreviate IN(TC) by n.

Let A be a finite set of action symbols or labels. We define the signature
of the set F of (simple) frames by

FRAME-BASED PROCESS LOGICS / 41

1. An embedding is of § in F;
2. Binary operations . -^-> . : §2 —* F for all a 6 A, so called transitions

having a label in A;
3. The empty frame 0 € F;
4. The binary frame operation ®, alternative frame composition or frame

union.
We further write n instead of is(«) or tN(*s(n))i so e.g., 0)-(1 is considered
a frame. The signature introduced above can be depicted as follows:

. -2-> . (for all a £ A)

The constant 0 denotes the empty frame, containing neither states nor tran-
sitions. The operation ® on frames gives the union of the states and tran-
sitions of both its arguments, and is defined in Table 1 (see also Bergstra
and Ponse 1994). For s, s' e S, frames of the form 5 or s -^-> 5' are called
atomic. The set of states of frame F is denoted by \F\ C S. The purpose
of the pairing function }-(is twofold:

1. It provides a simple means to define "fresh" states to be used for the
construction of frames, e.g., {0)-(s | s 6 |F|} is a fresh copy of |F|.

2. In Bergstra and Ponse 1994 it is used to define "concurrent frame
composition".

We define iterated alternative composition by

fc f
l=n l 1 otherwise.

Now each frame has a representation of the form where the Fl are

42 / J A BERGSTRA AND A PONSE

TABLE 1 Axioms for frames

(FA1) X@Y = Y®X

(FA2) X®(Y®Z) = (X@Y)®Z

(FA3) X®X = X

(FA4) X ® 0 = X

(FAS) a ®(a-2W) = s^s'

(FA6) 5' 0 (a -% s') = s -^ s'

atomic Below we prove this property for a generalized syntax for frame
representation

Let V be a countable infinity of variables x,y, (possibly primed or
subscripted) over N In the following we define frame polynomials over V, §
and A of which a simple example is x for some x £ V Let B[V] be defined
as the set obtained by closure under the function)-(on (S U V)2, and let
is be appropriately extended Quantification over states can be expressed
with the generalized frame sum ®^, defined by

®zF(a:) = F[0/x] ® F[l/x] ® F[2/x] 0
where F[n/x] denotes the substitution of n for x in F Frame polynomials
over V, § and A are formally defined by the following BNF grammar with
x 6 V, s,s' € S[V] and a £ A

F = 0 s (a -^W) I F0F | ©X(F)
Let FV(F) be the set of free variables in polynomial F (variables not bound
by a ®x application) A frame polynomial is closed if FV(F) = 0 A closed
frame polynomial will be further referred to as a frame So from now on
we consider frames that may have an infinite number of states and/or
transitions, and F now denotes this set

Frame polynomials can also be equated An example of an obvious
identity is

®> ̂ S (x)) = (0 -% 1) ® @x(S(x) ^ 52(x))
In order to formalize reasoning about equality between (closed) frame poly-
nomials, we give the axioms in Table 1 with the s, s' now ranging over §[V],
and the axioms in Table 2 In this latter table, the proviso
"x does not occur in F"
means that variable x occurs neither free, nor bounded in F Note that
bounded variables may always be renamed (FP2)

FRAME-BASED PROCESS LOGICS / 43

TABLE 2 Additional axioms for frame polynomials, x,y € V.

(FP1)

(FP2)

(FP3)

(FPA1)

(FPA2)

® fT\ p
x\JSy

@X(F®F>)

F provided x does not occur in F

@xF[x/y\ provided x does not occur in F

= F[Q/x]®QxF[S(x)/x]

For convenience, we shall often write 0J.] ^ instead of

Definition 2.1. A frame polynomial is in normal form if it is of the form
® k ff* Ft=lU7i,, ,x,f*

with all Fl atomic, i.e. each Ft is either of the form s, or s -^-> s' for some
s,s' e§[V] and a £ A.
The following representation property of frames follows easily by structural
induction.
Lemma 2.2. Each (infinite) frame F can be represented by a polynomial
in normal form. D

3 Process Algebra over Frames
We shortly introduce "process algebra", or more precisely, that part of
ACP that plays a role in this section. For an overview, in which many
more references can be found, we refer to Baeten and Weijland 1990. We
consider processes with syntax

P •:= P + P | P-P | P*P \6\a€A.
Let P be the set of processes. We adopt the conventions that + (sum
or choice) binds weakest, and • (product or sequential composition) binds
strongest of all operations, and to leave out the symbol • in a product. The
operation *, the Binary Kleene Star (Kleene 1956, Bergstra et al 1994),
has as its defining axiom

(BKS1) x*y = x(x*y) + y
and is relatively new in process algebra (but see Milner 1984, where a unary
* is discussed in the setting of regular behaviours). The constant 6 is not
an element of A (so no frame has a transition labeled with 6) and is called
deadlock or inaction. For example, a • 6 is a process that has no (successful)
termination and is stuck after executing a.

44 / J.A. BERGSTRA AND A. PONSE

TABLES The axiom system BPA«(A).

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

x + y

(x + y) + z

X + X

(x + y)z

(xy)z

x + 6

8x

= y + x

= x + (y + z)

= x

= xz + yz

= x(yz)

= x

= 8

Besides the axiom for *, other process algebra axioms that shall be
used in this section are those of BPA.s(A) (Basic Process Algebra with 6),
displayed in Table 3. We write EPA*S(A) if BKS1 is included. A further
rule on *-processes is

(RSP*) x = y-x + z ==> x = y*z.
As an example, we derive

c-6)*b =

= a - ((a + c - 6)*b) +c-6-((a + c- 6)*b)

Hence, with BPA^(^) and RSP* it follows that (a + c-6)*b - a*(b + c - 6) .
In the rest of this section we apply process algebraic techniques to prove

particular properties of frames. Our method is to "point" a frame, i.e. to
distinguish one of its states as a root modelling the start of a process, and
one as a tail, representing (successful) termination of the process. The pos-
sible paths that can be traversed, starting from the root, then may deter-
mine a certain process term. Various root-tail interpretations are possible.
For example, the frame

FRAME-BASED PROCESS LOGICS / 45

or, less pictorial 0 -^-> 0, with (its only) state 0 as root can either be
associated with the single process a with tail 0, or with the process a"
(after each execution of a re-entering the root). This latter process can
also be denoted by a*6. For each view, we introduce different operations:
r^t where r is the root and t the tail in some frame; and operations 5° with
s the root and no tail, that capture non-terminating behaviour. Typical
identities are:

0^0(0 -%0) = a and 0°(0 -2-» 0) = a*6.
A simple way to express that a transition s -2-> s' is part of a frame F is

F = F 0 (s -^ 5') or shortly s -% s' GF F.
Because equality is decidable for the class of frames under consideration
(proved in Bergstra and Ponse 1994), this notion is well-defined.

We first define the process extraction operation
~ : §2 -> (F -> P)

for the root-tail case as follows:

5 -^ r 6F F) :̂ a • (r

where s -̂ -> i £p F takes the value t or f ("true" or "false"), and the
expression :— > denotes the "guarded command" (see Dijkstra 1976):

t :— > x = x

f :-» x = 6.

Furthermore, empty sums equal 6 and we take ^,€/<5 = 6 for / infinite.
Note that the process extraction operation never returns processes of the
form (x + y)z (cf. axiom A4). Some examples:

(KM(0-%0) = a -(KM (0-^0)

= a • a • 0~1(0 -?-* 0)

and thus undefined so far, and

The partiality of n with respect to BPA^(J4), illustrated in the first
example above, can also be caused by the fact that £^6/ Xl on'y 1S a Process

46 / J.A. BERGSTRA AND A. PONSE

TABLE 4 Rules for reachability in a frame F.

s -%• s' 6F F => F \= s —> s'

F\=s
F\=s"

term if / is finite, namely for / = {i0,i\, ...,in} a term equivalent to
X -4- T • _1_ . . . -1_ <r*

10 ~ J'^l ' "~ ^ln '

So frames having a state with an infinite out-degree may not be "pointable"
to a process term. However, process extraction can be extended uniquely
to a total operation if we replace P by a process algebra with infinite sums
and unique solutions for guarded, linear equations.

Next we extract * (Binary Kleene Star) from pointed frames. We pro-
vide two ways of doing so, one for processes that can terminate, and a
second one for non-terminating processes. To this end, we define a notion
of reachability that extends connectedness of two states by a single tran-
sition: F (= 5 —> s' if there is a path in F from s to s'. This notion is
defined in Table 4. We write F \£ s —> s' if s' is not reachable from s
in F. In this way one can express that a state s is not part of some loop:
F ^ s —> s. For extraction of *-processes, we have the following two
rules:

(FBKS1) W n l y l = W **\X\ Y*S-S

(FBKS2) s°X = (s^sX)*S.
In some cases, the rule FBKS1 can be applied in different ways. For exam-
ple, if

F = (o ̂ o) e (o -*-» i) e (o -£-> 2),
then decomposing F in the union of (0 -% 0) 0 (0 -^ 2) and (0 -^ 1)
yields

O^IF = o~o((o -%o)©(o -%2))*rrM(o -*-> i)
-5-+ 0) ® (0 -

Splitting up F into the union of (0 -^ 0) and (0 -^-> 1) 0 (0 -^ 2) gives

FRAME-BASED PROCESS LOGICS / 47

with FBKS1 that

(TMF = 0^0(0 -^ 0)*0~1((0 -^ 1)8(0 -^2))

= o*(6 + c -2 r x l ((0 -^1)®(0 -^2))

= a*(b + c - 6) .

However, as showed above, both these *-processes are equal.
The first of the examples above can now be computed with rule FBKS1:

0^1(0-^0) = 0^1((0 -^0)00)

= (0^0(0 -2->0))*((TM(0))

= a*6.

One can prove 0°(0 -^ 1) = ab with the second identity FBKS2:

0°(0 -2-* 1) = (0^0(0 -i* 1))*<5

= (a-(1~0(0-%!)))*«

= (a6)*6

= (a6)-((a6)*6) + 6

= aS.
We further define two auxiliary operations on frames. The purpose of

these operations is to unfold a pointed frame in such a way that FBKSl
and FBKS2 become applicable (one can imagine more such operations and
rules, especially for extracting " from pointed frames). The first operation
is tail-unwinding. The idea is that a frame can be provided with a fresh
tail. A (perhaps too simple) motivation for this operator is the following.
Consider the frame F defined by:

Clearly, (TMF = a • (O^IF) + b. Hence, by RSP* we find OnlF = a*b.
However, we cannot apply FBKSl on this frame because of the c-transition.
On infinite frames, RSP* need not so easily be applicable, if at all. There-
fore we apply a tail-unwinding on F, making FBKSl applicable, by adding
a fresh tail 2 for the 6-transition:

48 / J.A. BERGSTRA AND A. PONSE

.1

Call the resulting frame F' . Then both 0^2F' = a • (0^2F') + b and
0^2F' FB=S1 a*b.

We define tail-unwinding by the operation
tu : (S x § x IF) -> F,

where tu(s,t,F) stands for "replace £ by s in F", in an inductive manner:

tu(s,t,®) = 9
tu(s,t,s') = s'

((s' -2-. a) ® *' iit = t'
tu(s,t,s' -2->i') = <

I s' -2-> t' otherwise

tu(s, t, X © Y) = tu(s, «, X) © tw(s, £, Y)

(the summand .. © t' in the definition of tu(s,t,s' -^-> £') originates from
the axiom s' -2-> £' = (5' -^ t1) © t', see Table 1).
As to frames defined by (closed) polynomials, the definition of tu is little
more involved. By Lemma 2.2 it is sufficient to define tu for closed poly-
nomials in normal form (see Definition 2.1).
For F = @Xl< ...jX(s' we simply define

tu(s,t,F) = F.
For F = Q)x x s' -̂ -* t' we distinguish two cases:

!• t & I©*,,.. .,*/!• In this case tu(s,t,F) = F.
2. t £ |0X] xt'\. We decompose F into a number of instantiations,

and a rest-polynomial in which t does not occur. Assume t contains k
occurrences of the successor function 5. With the axioms in Table 2
we can decompose F into the union of the (k + 1)' instantiations
of 5' -2-> t' in which each variable xt has one of the instantiations
0, . . . , fc , and the rest-polynomial

where [Sk+l(xt)/xl] abbreviates application of the / substitutions
[Sh+1(x0)/xo}...[Sk+l(xi)/xi]. Clearly, t cannot be an element of this
rest-polynomial, so that tu(s,t, .) is defined on it by 1 above. As the

FRAME-BASED PROCESS LOGICS / 49

(k + I)1 instantiations are non-polynomial, tu(s,t,.) also is defined
on these.

An example:
MOHo,o,02(S(2) -2->*))

= *u(0)-{0,0,l ^0)

The second operation that we shall use for frame transformation is the
extension of the successor function 5 to frame polynomials (s,t £

5(0) = 0

S(s}-it) = 5(s)H5(0

5(5 -% 0 = S(s) -i+ S(t)

S(X®Y) = S (X) ® S (Y)

This operation gives rise to the following law (for s,t € §):
s^tX = 5(s)rv5(f) S (X) .

Validity is trivial: this law only concerns a "global state renaming".

4 Analyzing Counters
Employing tail-unwinding and the successor function, we can prove some
properties of pointed frames with process algebraic techniques. Consider
the frames F and G defined by

These frames can be depicted as in Figure 1.
Two general types of counters that are often considered in the setting

of ACP are pointed versions of the frames F and G. The counter 0°F
is a perpetual one with root state 0, while the counter Or%(0)-(0)G can
terminate from its root 0 by an action stop to its tail 0)— (0. We shall prove
that both these counters indeed satisfy standard recursive specifications in
process algebra. To this end, we first show

O^OF = a • ((CTOF)*&)

50 / J.A. BERGSTRA AND A. PONSE

stop

G

OHO

FIGURE 1 Two frames.

(an auxiliary statement used in both proofs).

(0 -i» !)©(! - 0))

= o~(oHo)(s(F) ® [(o ju i) ® (i J_> OHO) ® o])
= a • (1~(OHO)(S(F) ® [(0 -^ 1) ® (1 -^ OHO)]))
(=' a - ((1-15(F))*(1-(OHO)((0 JU 1) ® (1 -^ OHO))))

(* }

(where = follows by FBKSl, and = by the successor-law mentioned in
the previous section).

The following recursive specification defines a non-terminating counter

FRAME-BASED PROCESS LOGICS / 51

NC in process algebra:

NC = X*6

X = aY

Y = aYY + b.

Theorem 4.1. Let F = ©z((x -^ S(x)) ® (S(x) -^ x)) . Then
O^F = NC, where NC is the non-termmatmg counter as defined above.
Proof. This follows by the Recursive Specification Principle RSP (see e.g.,
Baeten and Weijland 1990). The rule RSP implies that each (recursively,
properly) defined process that satisfies the equation for NC, is equal to NC '
SoO°F = NCitX = OnOF. Above we showed 0~OF = a- ((O^OF)***). So
proving that (O^OF)*6 solves the equation for Y finishes the proof. This
follows straightforward:

(0~OF)*6 = (0~OF) - ((0~OF)*6) + b

= a • ((O^OF)*6) • ((0~OF)*6) + 6.
n

Secondly, a standard specification of a terminating counter TC in process
algebra is

TC = X*stop
with X (and Y) specified as above.
Theorem 4.2. Let G = F0 (0 -^ 0)-(0) and F = ®x((x -^ S(x)) ®
(S(x) -^ x)) . Then 0^(0}-(0)G = TC, where TC is the terminating
counter as defined above.
Proof. We derive

F B S 1

(CT OF)
According to Theorem 4.1, X = (O^OF), and hence 0^(0)-{0)G = TC. D

Different counters can be algebraically analyzed in this way, eg., versions
that have at their root (or at all states) also the possibility to perform non-
counting, looping actions n °°p> n. The general idea is to unfold a pointed
frame using tail-unwinding and successor function into subframes on which
rules such as FBKSl can be applied (one can define more such rules, e.g.,
for extracting " (see Introduction) from a pointed frame).

1This is the case because the specification of NC is "guarded", the unguarded specifi-
cation X — X certainly does not determine a process

52 / J.A. BERGSTRA AND A. PONSE

TABLE 5 A proof system for prepositional logic.

(PI) 0 — » (tp — » 0)

(P2) ((0 -»• (V> -> 0) -> ((</» -»

(P3) ((-0 - -V) -» (tf -> 0))

(P4) t *-» (p -> p)

(P5) f* -+- i t

• V>) -* (0 -» 0))

5 Frames with Signal Insertion
In the sequel of the paper, we consider frames over an extended signa-
ture, so called signal inserted frames. A similar notion occurred earlier in
Baeten and Bergstra 1992. In Baeten and Bergstra 1994, an additional
requirement is made: signals are propositions. The starting point of view
in that paper can be paraphrased by "the visible part (signal) of a process
is a proposition". In this way, the conditions in conditional expressions
(discussed in the next section) such as the 4> m 'if—<t>—then—P—fi' are
complementary to signals, and the latter provide whether conditions can be
evaluated, and to what result. In this paper, we also stick to propositions as
signals, but—as remarked in Baeten and Bergstra 1994—one can imagine
many modifications, such as first order signals, higher order signals, in-
finitary and non-classical logics for the entailment relation between signals
and conditions, modal and temporal logics for processes with prepositional
signals.

Let the symbol P represent propositions, constructed from atomic
propositions fat, denoted by p,q,r,..., the connectives ->,—>•, and t ("true")
and f ("false"). Let </>,if),... range over propositions. As usual, we write
<t>VV for -i0 —> if>, <j>/\ip for -i(->0V-<V), and (j> <-» $ for (P —> ip) A (i p —> 0).
In Table 5 we give a common prepositional calculus that is complete.

We define the signature of the set (F, P) of signal inserted frames by
1. An embedding i§ of § in (F,P);
2. Binary operations . -̂ -» . : S2 —» (F, P) for all a € A, transitions with

a label in A;
3. The signal insertion operation ̂ : P x (F,P) -> (F, P);
4. The empty frame 0 6 (F,P);
5. The binary frame operation ®, alternative frame composition or frame

union.

FRAME-BASED PROCESS LOGICS / 53

Recall that A is a finite set of action symbols or labels. The signature of
signal inserted frames can be depicted as follows:

(for all a G A)

The operation "" is defined in Table 6, where Ins4-8 characterize specific
combinations with ©. This latter operation still gives the union of the
states of both arguments, but not in each case that of the transitions.
Signal inserted states equivalent to f~*"s absorb all in-going and out-going
transitions from s (see Ins7-8). The remaining axioms for signal inserted
frames are those given in Table 1 (see Section 2). Recall the notation
s -?-* s' GF F (defined by (s -2-> s') ® F = F) and consider

F = (s -5->a')®f^*®fV-
Then the transition s -2-> s' actually is not a part of this frame. So this
notation does not apply to signal inserted frames.

Frame polynomials may now include signals. Recall that S[V] is defined
as the set obtained by closure under the function)-(on (S U F)2, and is
is appropriately extended. Frame polynomials over V,S,A and P take the
following syntax for x € V, s, s' e S[V], a e A and <j> & F:

F ::= 0 | s \ (s -±+3') \ 0JF) | <^F \ F ® F.
Frame polynomials with signal insertion satisfy the axioms in Tables 1, 2
and 6 with the s, s' now ranging over B[V\. The following representation
property follows easily by structural induction (cf. Lemma 2.2).

54 / J.A. BERGSTRA AND A. PONSE

TABLE 6 Axioms for signal insertion.

(Insl)

(Ins2)
(Ins3)

(Ins4)

(Ins5)

(Ins6)

(Ins?)

(Ins8)

0-^0 = 0

T s*. ~ J\.

4>—(^X) = (0A^)^ X

(<j>—x)®(^x) = (<MVO^*
0— (X®Y) = (0^x)©(0^r)

0^(5-2^s') = (0^5) © (a -^ a') © (0^ a')
(f^a) ® (a -2-» s') = (f^a) © 5'

(s -2-» 5') © (f"^*"s') = 5 © (f^*"a')

Lemma 5.1. Each (infinite) frame F can be represented by a polynomial
of the form

with all Fi either of the form </>^*~s, or s -2-» 5' for some s, s' £ B[V\ and
a€ A. Q

It is useful to have an operation that extracts the propositions inserted
on a frame F relative to a state 5: the operation Ext(F, s) denned in Table 7
does the job. With this operation we can define whenever a signal inserted
frame F models a proposition </>, in symbols F \= $ (recall that |F| C §
denote the set of states of a (signal inserted) frame F):

Vse
F, s |= 0 4^ Ext(F, s)\=<(>

where tp \= (f> is defined as usual.

6 Process Algebra with Conditions
In this section we introduce "conditional processes" , parameterized over P.
We fist give syntax for such processes (0 £ P):

P ::= P + P | P-P | P*P |

P < (f > t > P \ < j > : ^ > P \ 6 a £ A.

We adopt the syntactical conventions introduced in Section 3: in particular
+ binds weakest, and • binds strongest of all operations considered. The
operation :— > denotes the guarded command or "if — then — fi" (see Dijkstra

FRAME-BASED PROCESS LOGICS / 55

TABLE 7 Axioms for proposition extraction

(PE1) Ext(9,s) = t

(PE2) Ext(s',s) = t

(PE3) Ext(s' -±>s",s) = t

(PE4) E x t (X (& Y , s) = Ext(X,s}/\Ext(Y,s)

, <b if s' = s
(PE5) Ext(<t>^s',s) =

t otherwise

TABLE

(Conl)

(Con2)

(Con3)

(Con4)

(Con5) (j>

(Con6)

(Con7) (4>

(Con8) 0 -

8 Axioms for conditional processes

x <(j>\> y = <j) — > x + -«j) — » y

t — + x = x

f -»X = 6

<j> -*6 = 6

^(x + y) = 0 -^x + 4> -+y

(<t> -* x)y = 4> -» xy

V ?/>) — > x = (j) -+ x + ip -+ x

> (j/i -» x) = (0 A V) — > x

1976, in Section 3 we already used this operation) The operation < >
represents "then—if—else—neht" and is introduced by Hoare et al 1987
Both operations are axiomatized in Table 8 (here we do not stick to conven-
tional axiom names) Further references to process algebra with conditions
are Baeten and Bergstra 1992, Groote and Ponse 1994

Next we define reachability of processes in frames F \= s —> s' if pro-
cess P has a path m F from s to s' In Table 9 we define F (= s —> s' in
an inductive manner, where the auxiliary notation xn y for n £ N stands
for

n def Ti-l-1 def f T) -,x° y = y, xn+l y = x (xn y)
The following soundness result follows straightforward

56 / J.A. BERGSTRA AND A. PONSE

TABLE 9 Reachability of conditional processes in signal inserted frames.

F = F ® S -% s' ,
F |= s -% s'

F, s £ f and F, 5' £ f

F h * -^a

i.F |= 5 ——^->

F |= s -*w

F \= s

Theorem 6.1. IfBPA*s(A) + RSP* + Conl-8 \- P = Q, then

F \= s -^ 5' <=> F (= 5 -^ s'.
We do not define process extraction for conditional processes and signal
inserted frames. This topic is quite involved, and raises several questions.
It is simpler to follow a reverse approach, and to investigate whether a
conditional process has (at least) a path in a certain frame. This brings us
to the setting of Floyd Hoare logic, discussed in the next section.

7 Floyd Hoare Logic over Frames
A partial correctness assertion has syntax

where <j>, V are assertions, and P is a (conditional) process term. A general
overview of correctness assertions and their logic is given in Apt 1981. See
Ponse 1991, and Groote and Ponse 1994 for a process algebraic approach.

I

FRAME-BASED PROCESS LOGICS / 57

The interpretation of correctness assertions is defined as usual:

F \= {d>}P{i>} if Vs e |F|, F,s \=

F,s\= {</>}P{^} if Vs' e \F\

F,s\=4>, and 1
> => F, 5' |= i>.

F\=s-^s' J
Given F, an assertion f is a strongest postcondition of 0 and conditional
process P if

FNWttJ, and

An equivalent characterization is:
Vs (F, s [= £ <s=> 3s' e |F| (F, s' |= <£ & F |= s' -A 5)).

We say that F is strongly expressive if all strongest postconditions can
be expressed in P (cf. Cook and Oppen 1975). In this case the strongest
postcondition of (f> and P is denoted as

In Table 10 we give a simple proof system for deriving partial correct-
ness assertions, assuming expressibility of strongest postconditions of ac-
tions. Soundness follows straightforward. Furthermore, in case a frame F
is strongly expressive, this proof system is complete relative to all implica-
tions over P that are valid in F, say Th(F):
Theorem 7.1. F (= {4>}P{^} <=> Th(F) h {4>}P{^}.
Proof. Soundness follows by inspection of the rules. Completeness follows
easily by induction on the process terms involved. In fact, the only non-
trivial inductive step is the one for *.

For a proof, let
F |= WP*QW.

and let proposition £ be equivalent with the disjunction of <j> and the
strongest postcondition of 0 and P* P, i.e.,

We claim that

2.
3.

58 / J.A. BERGSTRA AND A. PONSE

TABLE 10 Axioms and rules for Floyd-Hoare Logic.

(0 {*]

(iv)

(v)
{<{>}x ?/{V}

•.n?i/w>\
(vii)

(viii)

With these claims, we establish derivability of {4>}P*Q{^}: by 1, 2 and
induction {£}P{£} and {£}Q{ip} can be derived; with rule (v) one derives

?{-0}; and {4>}P*Q{tt>} follows from 3 and rule (viii).
Proof of claim 1: assume the contrary. Then 3s, s1 € \F\ such that

Now F, s \= £ holds because one of the following cases:
(a) F, s |= 0, or

We show that both cases contradict F, s' ^ £'• in case (a) conclude by
F \= s -^ s' that F (= s -̂ -> s', hence F,s' ^= sp(0,P*P) and thus
F, s' |= f. Contradiction.

As for case (6), there necessarily exists s" such that F, s" [= 0 and
F \= s" -^ s, i.e., for some n, F \= s" P"+' > s. So F (= s" P"+2 > 5',
so F, s' |= sp(<j),P*P) and thus F, s' |= ^. Contradiction.

Claims 2 and 3 can be proved in a similar way. D

FRAME-BASED PROCESS LOGICS / 59

8 Modal Proposition Logic
In this section we introduce a simple, modal proposition logic. This version
is in between "minimal modal proposition logic", also called K (for an
overview of modal logics see Bull and Segerberg 1984) and "prepositional
dynamic logic", also known as PDL (see e.g. Harel 1984). This is because
we consider modalities labeled with elements of A. Our logic strongly
resembles the modal logic defined by Hennessy and Milner in Hennessy
and Milner 1985 (see also Milner 1989); the difference is that it does not
contain infinite conjunctions. We define the language £ of labeled modal
proposition logic as follows:

$::= Oa$ | $ -> $ | -,$ | p 6 Pat

(where Pat was the set of atomic propositions defining P).
The extra clause needed for defining the interpretation of £ is:

F,s|=Da$ i f V s ' e |F| (F\=s -*-*s' =» F,s '(=$).
We give the following proof system for £, reflecting that the theory of

£ just is a labeled version of so called normal prepositional modal logic.
1. The axioms and rule MP (Modus Ponens) for prepositional logic dis-

played in Table 5;
2. The axiom (da($ -* *)) -+ (QQ$ -» Da*) ("modal distribution");

$3. The rule ("generalization").
Qa$

Moreover, this proof system also is equivalent with the restriction of the
(complete) proof system for PDL to the syntax of £. Soundness follows
immediately by inspection of the axioms and rules. Completeness can be
inferred from the completeness result on PDL. The semantical setting of
PDL is however not entirely the same as the one provided by signal inserted
frames. Whereas in a PDL-frame F the transitions are defined as in our
case (roughly speaking), the interpretation of propositions in F is given
by a function Val : Wat —> 2'FI (that extends to compound propositions as
expected). So a PDL-frame just is a certain signal inserted frame but not
vice versa because we allow partial interpretation of propositions. Com-
pleteness follows by contraposition in the standard way: starting from an
wnderivable formula $ one can construct a finite (PDL-)frame that satis-
fies -1$ (the states of which correspond to conjunctions of subformulas of
-|$). Hence $ is not universally valid. Moreover, universal validity in £ is
decidable (given $, it is sufficient to select a finite class of frames: those
with a number of states exponential in $. See further Harel 1984).

One can define extended modalities dp with P a process in the following

60 / J.A. BERGSTRA AND A. PONSE

way:
d f̂ t
'

D x . $ ^ 0,0(x.y)

'

Furthermore, introducing infinite conjunctions (with their obvious inter-
pretation), and A+ as the set of finite products over A, one can define:

The left conjunct in the definition of the O-operation can be left out. The
reason for including it is that — as remarked in Groote and van Vlijmen
1995 — once we accept the silent step T as a, label, reflexivity becomes an
irrelevant notion. Note that the last two modalities are not definable in
£; adding these (or countable conjunctions instead) gives the modal logic
of Hennessy and Milner referred to above, except for the presence of con-
ditionals in our language. Furthermore, observe that a partial correctness
assertion {4>}P{ip} is satisfied in F (or in state s of F) iff F \= (j> — > OPip
(F, s \= 4> — * QpV'i respectively).

In order to establish a connection with process algebra, we let the guards
in guarded commands range over £. The extra clause necessary for defining
reachability is:

So, for example F (= s - — — > s' states that
holds in s and in all states reachable from s,
ere is a path F (= s — > s', i.e. P has a tr

An interesting question concerns the equality
• there is a path F (= s — > s', i.e. P has a trace from s to s' in F.

(1) $:-» (i • y) = ($:-»!)($:-> J,).
This equality certainly is not valid in the world of signal inserted frames.
A simple frame refuting (p :— > a)(p :— > 6) with p an atomic proposition and
a an action, is:

— """*--n tt -""-̂ -i b r*p nj — > -ip 1 — > 2
or, more formally, (0 -^-» 1) © (1 -̂ -» 2) ® p^*D ® ->p *"1. It is easily

FRAME-BASED PROCESS LOGICS / 61

seen that Va,s' € \F\ (F £ s (p ^a)(p ~~b) > 5')- On the other hand we find
F|=0 p ^ (a f e) > 2 .

Now the following much weaker version of (1) is universally valid:
D<f> :-» (z • y) = (D$:-> x)(D$:— > j/).

This can be seen as follows: given a signal inserted frame F and s £ |F|,
define

|F,s| =f {s} U {s1 | 3P (F \= s -^ 5')}.
Observe that \F,s\ is closed under reachability: 5' € \F,s\ => |F, s'| C
|F, s\. If F t= a n $ ~ < (P Q) . s', then F |= s -^ 5' and $ holds in all of
|F, s|, so in particular in those states connecting — > and -^->. Conversely,
if F

Now use |_p)f | c \F,s\.
This observation illustrates a phenomenon that is not present in the

specification languages LOTOS (ISO 1987), PSF (Mauw and Veltink 1990,
1993) and /xCRL (Groote and Ponse 1991, 1995), where only the Booleans t
and f occur in conditional programming constructs. (Note that (1) is valid
for those values of $.) In Bergstraet al. 1994, it is argued that backtracking
can be modelled in process algebra using propositions as conditions (going
with a non-trivial modification of bisimulation semantics).

9 Expressivity
Ongoing research led to the following result:
Theorem 9.1. Each pointed, recursively enumerable frame can be ex-
pressed up to weak bisimulation m ACP with abstraction, " and *.

Li

(The process algebra operation " is shortly discussed in the latter part of
Section 1.) Here we do not give a full proof of this result, but remark the
following: stacks can be specified with * and " , and regular processes with
* only (see Bergstra et al. 1994. As to the "frame-part" of this result: a
pointed frame can be transformed into a computable one that is weakly
bisimilar and of which all states have out-degree 2. And such frames can
be expressed in the system mentioned above, which suffices to represent
finite control and stacks, and thereby arbitrary Turing Machines.

References
Apt, K.R. 1981. Ten Years of Hoare's Logic, a Survey, Part I ACM Transactions

on Programming Languages and Systems 3(4):431-483.
Baeten, J.C.M., and J A. Bergstra. 1992. Process Algebra with Signals and Con-

ditions In Programming and Mathematical Methods, Proceedings Summer
School Marktoberdorf 1991, ed. M. Broy, 273-323. Springer- Verlag. NATO
ASI Series F88.

62 / J.A. BERGSTRA AND A. PONSE

Baeten, J.C.M., and J.A. Bergstra. 1994. Process Algebra with Prepositional
Signals. Logic Group Preprint Series 123. Utrecht: GIF, State University of
Utrecht.

Baeten, J.C.M., J.A. Bergstra, and J.W. Klop. 1987. On the consistency of
Koomen's fair abstraction rule. Theoretical Computer Science 51(1/2):129-
176.

Baeten, J.C.M., and W.P. Weijland. 1990. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press.

Bergstra, J.A., I. Bethke, and A. Ponse. 1994. Process algebra with iteration
and nesting. Computer Journal 37(4):243-258.

Bergstra, J.A., and J.W. Klop. 1984. Process algebra for synchronous communi-
cation. Information and Computation 60(1/3): 109-137.

Bergstra, J.A., and J.W. Klop. 1985. Algebra of communicating processes with
abstraction. Theoretical Computer Science 37(1):77-121.

Bergstra, J.A., and A. Ponse. 1994. Frame algebra with synchronous commu-
nication. In Working Papers of the International Workshop on Information
Systems - Correctness and Reusability IS-CORE'94, ed. R.J. Wieringa and
R.B. Feenstra. Free University, Amsterdam. To appear.

Bergstra, J.A., A. Ponse, and J.J. van Wamel. 1994. Process Algebra with Back-
tracking. In Proceedings of the REX Symposium "A Decade of Concurrency:
Reflections and Perspectives", ed. J.W. de Bakker, W.P. de Roever, and
G. Rozenberg, Lecture Notes in Computer Science, Vol. 803, 46-91. Springer-
Verlag.

Bull, R.A., and K. Segerberg. 1984. Basic Modal Logic. In Handbook of Philo-
sophical Logic, Vol. II, ed. D. Gabbay and F. Guenthner. 1-88. Reidel.

Cook, S.A., and B.C. Oppen. 1975. An Assertion Language for Data Struc-
tures. In Conference Record of the 2nd ACM Symposium on Principles of
Programming Languages, 160-166.

Dijkstra, E.W. 1976. A Discipline of Programming. Englewood Cliffs: Prentice-
Hall International.

Groote, J.F., and A. Ponse. 1991. //CRL: A Base for Analysing Processes with
Data. In Proceedings 3r Workshop on Concurrency and Compositionality,
Goslar, GMD-Studien Nr. 191, ed. E. Best and G. Rozenberg, 125-130. Uni-
versitat Hildesheim, May.

Groote, J.F., and A. Ponse. 1994. Process Algebra with Guards. Combining
Hoare Logic and Process Algebra. Formal Aspects of Computing 6:115-164.
An extended abstract appeared in Proceedings CONCUR 91, Amsterdam, ed.
J.C.M. Baeten and J.F. Groote, Lecture Notes in Computer Science, Vol. 527,
235-249. Springer-Verlag, 1991.

Groote, J.F., and A. Ponse. 1995. The Syntax and semantics of /J-CRL. In
Algebra of Communicating Processes, Utrecht 1994, ed. A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, 26-62. Workshops in Computing. Springer-Verlag.

Groote, J.F., and S.F.M. van Vlijmen. 1995. A modal logic for ji-CRL. This
issue.

FRAME-BASED PROCESS LOGICS / 63

Harel, D. 1984 Dynamic Logic. In Handbook of Philosophical Logic, Vol. II, ed.
D. Gabbay and F. Guenthner. 497-604. Reidel.

Hennessy, M., and R. Milner. 1985. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM 32(1):137-161.

Hoare, C.A.R., I.J. Hayes, He Jifeng, C C. Morgan, A.W. Roscoe, J.W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. 1987. Laws of Programming.
Communications of the ACM 30(8):672-686.

ISO. 1987. Information processing systems - open systems interconnection -
LOTOS - a formal description technique based on the temporal ordering of
observational behaviour ISO/TC97/SC21/N DIS8807

Kleene, S.C. 1956. Representation of events in nerve nets and finite automata.
In Automata Studies, 3-41. Princeton University Press.

Mauw, S., and G.J. Veltink. 1990. A process specification formalism Fundamenta
Informaticae XIII:85-139.

Mauw, S , and G.J Veltink (ed.). 1993. Algebraic Specification of Communication
Protocols. Cambridge Tracts in Theoretical Computer Science 36. Cambridge
University Press.

Milner, R. 1984. A complete inference system for a class of regular behaviours.
Journal of Computer and System Sciences 28:439-466.

Milner, R. 1989. Communication and Concurrency Englewood Cliffs1 Prentice-
Hall International.

Ponse, A. 1991. Process Expressions and Hoare's Logic Information and Com-
putation 95(2):192-217.

Vaandrager, F.W. 1993. Expressiveness Results for Process Algebras. In Pro-
ceedings REX Workshop on Semantics: Foundations and Applications, Beek-
bergen, The Netherlands, June 1992, ed J W. de Bakker, W.P. de Roever,
and G. Rozenberg, Lecture Notes in Computer Science, Vol. 666, 609-638.
Springer-Verlag.

