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Abstract

We investigate the notion of an execution architecture in the setting of the program algebra PGA, and distinguish two sorts
of these: analytic architectures, designed for the purpose of explanation and provided with a process-algebraic, compositional
semantics, and synthetic architectures, focusing on how a program may be a physical part of an execution architecture. Then we
discuss in detail the Turing machine, a well-known example of an analytic architecture. The logical core of the halting problem—
the inability to forecast termination behavior of programs—leads us to a few approaches and examples on related issues: forecasters
and rational agents. In particular, we consider architectures suitable to run a Newcomb Paradox system and the Prisoner’s Dilemma.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The program algebra PGA introduced in [8] aims at the clarification of the concept of a program at the simplest
possible level. In this paper we will use PGA as a vehicle to study fundamentals of the execution of programs. Having
available a rigid definition of what a program is, the subject of how programs may be used raises compelling questions.
This paper focuses on the notion of an execution architecture. This notion is more general than that of a machine and
admits many different forms of interaction between a program and its context.

First, we consider programs modelled independently of any execution environment by means of threads. In this
view, it is unavoidable to contemplate computable threads as a general semantic category. It turns out that computable
instruction streams can describe all computable threads. Using finite programs only (regular instruction streams), an
execution architecture with the well-known Turing machine tape as a state machine, i.e., an interacting data structure,
is sufficiently powerful to denote all computable threads as well.

Then, an attempt is made to cover the most important phenomena regarding program execution in a context. Two
kinds of execution architectures are defined: analytic architectures (AnArchs) and synthetic architectures (SynArchs).
An AnArch serves to model how a program may be executed in a context by making explicit its interaction with other
system components, in particular the so-called reactors. A reactor is a generalization of a state machine: it may also
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have interaction with other parties than the control. A SynArch focuses on how a program may be a physical part of a
context. The AnArch is useful for explanation, while a SynArch may play a role during construction. It is shown that
all SynArchs admit a specification in a process algebra with abstraction and recursion operators.

In the remainder of the paper some special analytic execution architectures are discussed. First, we consider the
Turing machine and introduce an enhanced version of the Turing machine tape (TMT) in the form of a state machine
ETMT. Finite control is phrased in terms of programs executed in an analytical architecture providing only the ETMT.
In this setting the halting problem takes the form of the nonexistence of certain programs, which is demonstrated in
full detail.

Ignoring the (E)TMT, the halting problem reduces to its logical core: the inability to forecast termination behavior
of programs that may use the results of forecasting. It is shown how an analytic architecture can be used to give a
sound definition of a forecasting reactor, and it is demonstrated that a correct forecaster needs to escape from the two
classical truth values. This brings the halting problem close to some logical paradoxes, in particular the Liar Paradox.

A rational agent is a reactor that has the objective to achieve certain goals by giving appropriate replies for specific
requests. It is shown that in some cases also a rational agent needs to use more truth values than true and false.
Combining rational agents and forecasting reactors provides a remarkable setting, in which the famous Newcomb
Paradox [17] can be modelled. This paradox seems to prove that the very concept of a forecaster reliably forecasting
a rational agent is utterly problematic. Nevertheless this is done all the time in stock market transactions, gaming
technology and so on. Using the analytic architectures and some, perhaps exotic process algebra involving the constant
0 (see [3]), a formalization of one reactor forecasting another reactor is given. The Newcomb Paradox now shows
up as follows: given a fixed execution architecture (viewed as a geometric structure with several components), its
process semantics determines what a rational agent reactor should best reply in order to achieve a specific objective.
The normal process semantics predicts one reply as being rational, whereas the semantics specifically tailored to
forecasting predicts a different reply. But the normal semantics is so robust that it seems to take into account the
possibility that one reactor predicts the behavior of another reactor just as well. The novelty of our approach is a
precise formalization of the conditions required to run both executions of the Newcomb Paradox system. As a last and
related example, we discuss the well-known Prisoner’s Dilemma [18].

In the setting of program algebra one can consider execution architectures that take security matters into account,
and establish an analysis in similar style. Based on the undecidability of virus detection as described by Cohen [15],
a first result is recorded in [14].

The further content of this paper is divided into five parts: in Section 2 we formally introduce threads and state ma-
chines. In Section 3 we introduce the program algebra PGA. Then, in Section 4 we introduce execution architectures.
In Section 5, we study the Turing machine as an example of an analytic architecture. Finally, in Section 6, we focus
on forecasting reactors and rational agents in the setting of (analytic) execution architectures.

2. Threads and state machines

The behavior of programs under execution is modelled by threads. In this section we introduce thread algebra.
Then we introduce state machines, devices that can be used by a thread in order to increase expressiveness.

2.1. Thread algebra

Basic thread algebra, or BTA for short, is intended for the description of sequential program behavior (see [9];
in [8] BTA is introduced as basic polarized process algebra). Based on a finite set A of actions it has the following
constants and operators:

• the termination constant S,
• the deadlock or inaction constant D,
• for each a ∈ A, a binary postconditional composition operator _ � a � _.

We use action prefixing a ◦ P as an abbreviation for P � a � P and take ◦ to bind strongest. Furthermore, for n ∈ N

we define an ◦ P by a0 ◦ P = P and an+1 ◦ P = a ◦ (an ◦ P).
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The operational intuition behind thread algebra is that each action represents a command which is to be processed
by the execution environment of a thread. More specifically, an action is taken as a command for a service offered
by the environment. The processing of a command may involve a change of state of this environment. At completion
of the processing of the command, the service concerned produces a reply value true or false to the thread under
execution. The thread P � a � Q will then proceed as P if the processing of a yielded the reply true indicating
successful processing, and it will proceed as Q if the processing of a yielded the reply false.

BTA can be equipped with a partial order and an approximation operator.

(1) � is the partial ordering on BTA generated by the clauses
(a) for all P ∈ BTA, D � P , and
(b) for all P1,P2,Q1,Q2 ∈ BTA, a ∈ A,

P1 � Q1 & P2 � Q2 ⇒ P1 � a � P2 � Q1 � a � Q2.

(2) π : N × BTA → BTA is the approximation operator determined by the equations
(a) for all P ∈ BTA, π(0,P ) = D,
(b) for all n ∈ N, π(n + 1,S) = S, π(n + 1,D) = D, and
(c) for all P,Q ∈ BTA, n ∈ N,

π(n + 1,P � a � Q) = π(n,P ) � a � π(n,Q).

We further write πn(P ) instead of π(n,P ).

The operator π finitely approximates every thread in BTA. That is, for all P ∈ BTA,

∃n ∈ N π0(P ) � π1(P ) � · · · � πn(P ) = πn+1(P ) = · · · = P.

Threads can be finite or infinite. Following the metric theory of [2] as the basis of processes in [7], BTA has a
completion BTA∞ which comprises also infinite threads. Standard properties of the completion technique yield that
we may take BTA∞ as the cpo consisting of all so-called projective sequences. That is,

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & πn(Pn+1) = Pn)}
with

(Pn)n∈N � (Qn)n∈N ⇔ ∀n ∈ N Pn � Qn

and

(Pn)n∈N = (Qn)n∈N ⇔ ∀n ∈ N Pn = Qn.

(For a detailed account of this construction see [4].)
Let I = {1, . . . , n} for some n > 0. A finite linear recursive specification over BTA is a set of equations

Xi = ti (X)

for i ∈ I with X = X1, . . . ,Xn and all ti (X) of the form S, D, or Xil � ai � Xir for il , ir ∈ I and ai ∈ A. In BTA∞,
finite linear recursive specifications represent continuous operators having as unique fixed points regular threads, i.e.,
threads which can only reach finitely many states.

Example 1. Let n > 0. The regular thread an ◦ D is the fixed point for X1 in the specification

{Xi = a ◦ Xi+1 | i = 1, . . . , n} ∪ {Xn+1 = D}.
The regular thread an ◦ S is the fixed point for X1 in

{Xi = a ◦ Xi+1 | i = 1, . . . , n} ∪ {Xn+1 = S}.
Both these threads are finite.

The infinite regular thread a∞ is the fixed point for X1 in the specification {X = a ◦ X} and corresponds to the
projective sequence (Pn)n∈N with P0 = D and Pn+1 = a ◦ Pn.

Observe that e.g. an ◦ D � an ◦ S, an ◦ D � a∞ but an ◦ S 
� a∞.
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For the sake of simplicity, we shall often define regular threads by providing only one or more equations. For
example, we say that P = a ◦ P defines a regular thread with name P (so P = a∞ in this case).

We end this section with the observation that for regular threads P and Q, P � Q is decidable. Because one can
always take the disjoint union of two recursive specifications, it suffices to argue that Pi � Pj in

P1 = t1(P ), . . . ,Pn = tn(P )

is decidable. This follows from the assertion

(1)∀i, j � n πn(Pi) � πn(Pj ) ⇔ Pi � Pj ,

where πl(Pk) is defined by πl(tk(P )), because � is decidable for finite threads. Without loss of generality, assume
n > 1. To prove (1), observe that ⇐ follows by definition of regular threads. For the reverse, choose i, j and assume
that πn(Pi) � πn(Pj ). Suppose Pi 
� Pj , then for some k > n, πk(Pi) 
� πk(Pj ) while πk−1(Pi) � πk−1(Pj ). So there
exists a trace of length k from Pi of the form

Pi
atrue−→ Pi′

bfalse−→ · · ·
that is not a trace of Pj , while by the assumption the first n actions are a trace of Pj . These n actions are connected by
n + 1 states, and because there are only n different states P1, . . . ,Pn, a repetition occurs in this sequence of states. So
the trace witnessing πk(Pi) 
� πk(Pj ) can be made shorter, contradicting k’s minimality and hence the supposition.
Thus Pi � Pj . As a consequence, also P = Q (i.e., P � Q and Q � P ) is decidable for regular threads P and Q.

2.2. State machines

A state machine is a pair 〈Σ,F 〉 consisting of a set Σ of so-called co-actions and a reply function F . This reply
function is a mapping that gives for each finite sequence of co-actions from Σ a reply value true or false. State
machines were introduced in [13].

Example 2. A counter is a state machine C = 〈Σ,F 〉 with Σ = {inc,dec} consisting of the increase and decrease
co-actions and the reply function F which replies true to inc, and false to dec if and only if the counter is zero. The
initial value of C is zero, and the counter has a value in each state. Below, we return to this example.

In order to provide a specific description of the interaction between a thread and a state machine, we will use for
actions the general notation c.a where c is the so-called channel or focus, and a is the co-action. For example, c.inc
is the action which increases a counter via channel c. This interaction is defined with help of the use operator /. For
a state machine S = 〈Σ,F 〉, a finite thread P and a channel c, the defining rules for P/c S (the thread P using the
state machine S via channel c) are:

S/c S = S,

D/c S = D,

(P � c′.a � Q)/c S = (P/c S) � c′.a � (Q/c S) if c′ 
= c,

(P � c.a � Q)/c S = P/c S ′ if a ∈ Σ and F(a) = true,

(P � c.a � Q)/c S = Q/c S ′ if a ∈ Σ and F(a) = false,

(P � c.a � Q)/c S = D if a /∈ Σ,

where S ′ = 〈Σ,F ′〉 with F ′(σ ) = F(aσ) for all co-action sequences σ ∈ Σ+. The use operator is expanded to infinite
threads P by stipulating

P/c S = (
πn(P )/c S

)
n∈N

.

As a consequence, P/c S = D if for any n, πn(P )/c S = D. Finally, repeated applications of the use operator bind to
the left, thus

P/c0 S0/c1 S1 = (P/c0 S0)/c1 S1.

We end this section with an example on the use of a state machine.
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Example 3. Let {a, b, c.inc, c.dec} ⊆ A, where the last two actions refer to the counter C defined in Example 2. We
write C(n) for a counter with value n ∈ N, so C = C(0). By the defining equations for the use operator it follows that
for any thread P ,

(c.inc ◦ P)/c C(0) = P/c C(1),

and ∀n ∈ N, (c.inc ◦ P)/c C(n) = P/c C(n + 1). Furthermore, it easily follows that

(P � c.dec � S)/c C(n) =
{

S if n = 0,

P/c C(n − 1) otherwise.

Now consider the regular thread Q defined by1

Q = (c.inc ◦ Q) � a � R,

R = b ◦ R � c.dec � S.

Then

Q/c C(0) = ((c.inc ◦ Q) � a � R)/c C(0)

= (Q/c C(1)) � a � (R/c C(0),

and for all n ∈ N, Q/c C(n) = (Q/c C(n + 1)) � a � (R/c C(n)). It is not hard to see that Q/c C(0) is an infinite
thread with the property that for all n, a trace of n + 1 a-actions produced by n positive and one negative reply on
a is followed by bn ◦ S. This yields an irregular thread: if Q/c C(0) were regular, it would be a fixed point of some
finite linear recursive specification, say with k equations. But specifying a trace bk ◦ S already requires k + 1 linear
equations X1 = b ◦ X2, . . . ,Xk = b ◦ Xk+1,Xk+1 = S, which contradicts the assumption. So Q/c C(0) is not regular.

3. Programs and program algebra

In this section we introduce the program algebra PGA (see [8]) and discuss its relation with thread algebra. Further-
more, we show that each computable thread can be expressed by either a computable sequence of PGA-instructions,
or by a regular sequence of PGA-instructions that uses a Turing machine tape as a state machine.

3.1. PGA, basics of program algebra

Given a thread algebra with actions in A, we now consider the actions as so-called basic instructions. The syntax
of PGA has the following primitive instructions as constants:

Basic instruction a ∈ A. It is assumed that upon the execution of a basic instruction, the (executing) environment
provides an answer true or false. However, in the case of a basic instruction, this answer is not used for
program control. After execution of a basic instruction, the next instruction (if any) will be executed; if there
is no next instruction, inaction will occur.

Positive/negative test instruction ±a for a ∈ A. A positive test instruction +a executes like the basic instruction a.
Upon false, the program skips its next instruction and continues with the instruction thereafter; upon true
the program executes its next instruction. For a negative test instruction −a, this is reversed: upon true,
the program skips its next instruction and continues with the instruction thereafter; upon false the program
executes its next instruction. If there is no subsequent instruction to be executed, inaction occurs.

Termination instruction !. This instruction prescribes successful termination.
Jump instruction #k (k ∈ N). This instruction prescribes execution of the program to jump k instructions forward;

if there is no such instruction, inaction occurs. In the special case that k = 0, this prescribes a jump to the
instruction itself and inaction occurs, in the case that k = 1 this jump acts as a skip and the next instruction
is executed. In the case that the prescribed instruction is not available, inaction occurs.

1 Note that a linear recursive specification of Q requires (at least) five equations.
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Table 1
Axioms for PGA’s instruction sequence congruence

(X;Y );Z = X; (Y ;Z) (PGA1) Xω; Y = Xω (PGA3)

(Xn)ω = Xω for n > 0 (PGA2) (X;Y )ω = X; (Y ;X)ω (PGA4)

Table 2
Equations for thread extraction on PGA

|!| = S |!;X| = S |#k| = D

|a| = a ◦ D |a;X| = a ◦ |X| |#0;X| = D

|+a| = a ◦ D |+a;X| = |X| � a � |#2;X| |#1;X| = |X|
|−a| = a ◦ D |−a;X| = |#2;X| � a � |X| |#k + 2;u| = D

|#k + 2;u;X| = |#k + 1;X|

PGA-terms are composed by means of concatenation, notation _;_, and repetition, notation (_)ω . Instruction
sequence congruence for PGA-terms is axiomatized by the axioms PGA1-4 in Table 1. Here PGA2 is an axiom-
scheme: for each n > 0, (Xn)ω = Xω, where X1 = X and Xk+1 = X;Xk . A closed PGA-term is often called a
PGA-program.

From the axioms PGA1–4 one easily derives unfolding, i.e.,

Xω = X;Xω.

Furthermore, each PGA-program can be rewritten into an instruction equivalent canonical form, i.e., a closed term of
the form X or X;Yω with X and Y not containing repetition. This also follows from the axioms in Table 1.

We use the abbreviation SPI for Sequence of Primitive Instructions. A SPI is also called a program object, or
sometimes shortly, a program. PGA-programs represent a certain class of SPI’s, called the regular SPI’s. In particular,
each regular SPI can be represented in PGA as a canonical form.

We will often use basic instructions in so-called focus.method notation, i.e., basic instructions of the form

f.m

where f is a focus (channel name) and m a method name. The m here is sometimes called a service-instruction
because it refers to the use of some state machine, and is related with a co-action as defined in Section 2.2. Two
examples of instructions in focus.method notation are c.inc and c.dec, related with the actions controlling a counter
discussed in Example 3. In the next section we will relate all basic and test instructions to the actions of a thread; this
is called thread extraction.

3.2. Thread extraction: from PGA to thread algebra

The thread extraction operator |X| assigns a thread to program object X. Thread extraction is defined by the thirteen
equations in Table 2, where a ∈ A and u is a primitive instruction.

Some examples:

|(#0)ω| = |#0; (#0)ω|
= D,

|−a;b; c| = |#2;b; c| � a � |b; c|
= |#1; c| � a � b ◦ |c|
= |c| � a � b ◦ c ◦ D

= c ◦ D � a � b ◦ c ◦ D.

In some cases, these equations can be applied from left to right without ever generating any behavior, e.g.,

|(#2;a)ω| = |#2;a; (#2;a)ω| = |#1; (#2;a)ω| = |(#2;a)ω| = · · · .
In such cases, the extracted thread is defined as D.
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It is also possible that thread extraction yields an infinite recursion, e.g.,

|aω| = |a;aω| = a ◦ |aω|
(in the previous section we denoted this thread by a∞). If the behavior of X is infinite, it is regular and can be
represented by a (linear) recursive specification, e.g.,

|(a;+b;#3;−b;#4)ω| = P in

P = a ◦ (P � b � Q),

Q = P � b � Q.

It follows easily that any PGA-program defines a regular thread, and conversely, each regular thread can be defined in
PGA: linear equations of the form X = S or X = D can be defined by instructions ! and #0, respectively, and a linear
equation

X = Y � a � Z

can be associated with a triple +a;#k;#l. Connecting these program fragments in a repetition and instantiating the
jump counters k and l with the appropriate values then yields a PGA-program that defines a solution for the first
equation. A typical example:

P1 = P2 � a � P2, (+a;#2;#1;
P2 = P3 � b � P1, �→ +b;#2;#2;
P3 = D. #0)ω.

3.3. Programming computable threads

A thread is computable if it can be represented by an identifier E0 and two computable functions g,f in the
following way (k ∈ N):

Ek =
⎧⎨
⎩

D if g(k) = 0,

S if g(k) = 1,

E〈k+f (k),1〉 � ag(k) � E〈k+f (k),2〉 if g(k) > 1.

Here we use the bijective pairing function 〈_,_〉 defined by 〈n,m〉 = 1
2 ((n + m)2 + 3m + n). So n < 〈n + i,1〉 <

〈n + i,2〉 for all n, i ∈ N.

Theorem 4. PGA’s sequences of primitive instructions (SPI’s) are universal: for each computable thread α there is a
SPI with α as its behavior.

Proof. Let E0 be a computable thread as defined above. Then we define

Ẽk =
⎧⎨
⎩

#0;#0;#0 if g(k) = 0,

!; !; ! if g(k) = 1,

+ag(k);#3(〈k + f (k),1〉 − k − 1) + 2; #3(〈k + f (k),2〉 − k − 1) + 1 if g(k) > 1.

It is easily seen that E0 = |Ẽ0; Ẽ1; . . . | (and that Ek = |Ẽk; Ẽk+1; . . . |). �
Furthermore, PGA’s repeating sequences of instructions—the regular SPI’s—are universal with the aid of a state

machine TMT (Turing machine tape) if we restrict to a finite number of actions:

Theorem 5. For each computable thread α there is a closed PGA-term X such that |X|/tmt TMT = α.

This is a standard result in the setting of Turing machines (see, e.g., [19,20]), given the fact that finite control can
be modelled in PGA.
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4. Execution architectures

In this section we focus on programs in an execution architecture. We will use ACP-based process algebra to model
so-called ‘analytical architectures’. In Appendix A we shortly recall the process algebra used. Finally, we try to clarify
the role of programs as binaries in machines.

4.1. Analytic versus synthetic architectures

We consider the following types of execution architectures:

Analytic Architecture (AnArch): provides a hypothetical decomposition of a system into parts. An AnArch can serve
as an explanation of a setting in a black box context (the system is seen as a blackbox, with the AnArch
describing its internals for the sake of explanation). An AnArch will not be on the pathway to construction.
In Section 4.2 we discuss this type of architecture in detail.

Synthetic Architecture (SynArch): an architecture (description of how a whole is composed from parts) providing
information on the true (or proposed, intended) internal structure of a system. Often a compositional seman-
tic technique is absent. Typically, a program in compiled form (a binary) can be a part of a SynArch. In
Section 4.3 we discuss these architectures.

The proposed execution architecture for PGA is an AnArch consisting of several interacting components. First
there is a component containing an instruction sequence. This component is called the SPI container; it is able to
process one instruction at a time and issue the appropriate action. Next there are reactors. A reactor is a generalized
state machine: it can not only process actions generated by the SPI container and issue replies, but may also engage
in external communications. No attention is paid to the way in which a SPI may in fact be stored or generated. We
visualize an AnArch in the following way:

Here α represents a SPI of which the basic instructions are in focus.method notation for foci/channels f0, . . . , fn,
thus of the form fi.a (see Section 3.1). These channels play a reserved role and are supposed not to be composed
with other parts of the AnArch or any extension of it. As in the case of state machines (see Section 2.2), a reactor is
unaware of the name of the SPI-channel that addresses it. We will not be very specific about the definition of a reactor,
and impose only a few requirements. A first semantics for reactors comprises that of state machines: a reply function
is defined that takes a history of requests as input (a sequence of co-actions) and upon the request via a focused action
produces a reply true or false.

In Section 4.2 we introduce a process based semantics for AnArchs. A process is a mathematical entity in a space
of processes (like a number being an element of a field). The design of the process space depends on the underlying
theory of processes used. We will use ACP-based process algebra ([7]; in Appendix A we shortly recall the process
algebra used), but many other process theories can be used instead.

The purpose of the use of processes is specification. Here, ‘specification’ is used in a fairly limited way: it must be
compared with ‘quantification’ (stating numerical sizes) and ‘qualification’ (expressing objectives, goals, methods and
reasons). Furthermore, specification stands for the specification of behavior. Specification need not be perfect (i.e., it
may provide an approximation of a system rather than a perfect view, be it at some level of abstraction). Specification
has no a priori place in some artifact construction life cycle, just as quantification or qualification.

A process expression, e.g. r1(a)(s2(true) · r1(b) + s3(false) · δ) provides a text that represents a process (that is, a
specification of behavior). In a similar way, a program expression

f1.a; (+f2.b;#4,−f3.c)
ω

represents a SPI. However, there is a crucial difference: suppose process expression P denotes a specification of a
system Sys, say P = Sys, or at least, P is a reasonable approximation of Sys. Now it is not plausible to expect that
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P (in any form) constitutes a part in any SynArch for Sys. On the other hand, if Sys is a system executing some
program p, then it is plausible that a SynArch of Sys contains, perhaps in a transformed (compiled) form, p as a part.

Process expressions occur as parts of systems that analyze or simulate other systems. The following AnArch is
perfectly acceptable:

Sys contains process expression P and behaves as P , thus Sys is a P -simulator. As a SynArch this makes little
sense. Moreover, simulation is only one of many objectives supported by processes. Calculation and verification is
another and probably more important one.

4.2. Compositional process specification for analytic architectures

We introduce an ACP-based process semantics for AnArchs over action alphabet

A = {f.a | f ∈ F, a ∈ B}
where F is a set of channels and B a set of co-actions. For this process semantics we will employ communication
between send actions sf (a) and receive actions rf (a):

rf (a)|sf (a) = cf (a) for a ∈ B ∪ {true, false}.
Furthermore, we use an action t to model the difference between thread termination and deadlock. So we assume that
our set of process algebra actions includes

{
t, rf (a), sf (a), cf (a) | f ∈ F, a ∈ B ∪ {true, false}}.

We use the notation �P � for process semantics of a thread P extracted from a SPI container:

�S� = t,

�D�= t∗δ,
�P � f.a � Q�= sf (a)(rf (true)�P �+ rf (false)�Q�).

Here x∗y is defined by x∗y = x(x∗y)+y (see [5] or Appendix A). Taking δ for y and using the ACP-axiom x +δ = x,
it follows that t∗δ behaves as t∞, i.e., an infinite sequence of t -actions.

We write �R� for the process algebraic semantics of a reactor R. We require that �R� uses the following actions for
communication with a SPI container:

rserv(a), sserv(true), sserv(false).

Furthermore, we require that any reactor R has the property that rserv(a) and sserv(b) (b ∈ {true, false}) occur in
alternating order in each trace of �R�. When connected to a SPI container via channel f , the renaming operator
ρserv �→f (which renames the channel name serv to f ) will be applied to �R�.

Definition 6. Given a PGA-program X and reactors R0, . . . ,Rn, a concrete analytical architecture, notation cpgaEA,
is defined by

cpgaEA[X | f0:R0, f1:R1, .., fn:Rn] = ∂H (�|X|� ‖ ρserv �→f0(�R0�) ‖ ρserv �→f1(�R1�) ‖ .. ‖ ρserv �→fn(�Rn�))

with encapsulation set H = {ri(a), si(a) | a ∈ B ∪ {true, false}, i = f0, f1, . . . , fn}.
An (abstract) analytical architecture pgaEA is defined by

pgaEA[X | f0:R0, f1:R1, .., fn:Rn] = τI (cpgaEA[X | f0:R0, f1:R1, . . . , fn:Rn])
with abstraction set I = {t, ci(a) | a ∈ B ∪ {true, false}, i = f0, f1, . . . , fn}.
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If the value of n is known or immaterial, we often write (c)pgaEA[X | fi :Ri].
Notice that in common process semantics, τ ∗δ = τδ (cf. [12]). We observe that cpgaEA[X | f0:R0, f1:R1, . . . ,

fn:Rn] and its pgaEA-variant are computable if |X| and all Rj are.
A reactor R is a state machine if �R� has only actions rserv(a), sserv(true) and sserv(false), i.e., no external events,

only update of its memory state and computation of Boolean output. The results in [13] imply the following theorem.

Theorem 7. Let R = R0,R1, . . . ,Rk,Rk+1, . . . ,Rn with Rk+1, . . . ,Rn state machines. Furthermore, let

α = |X|/fk+1Rk+1 . . . /fnRn.

Then for H = {ri(a), si(a) | a ∈ B ∪ {true, false}, i = f0, f1, . . . , fk} and I = {t, ci(a) | a ∈ B ∪ {true, false}, i =
f0, f1, . . . , fk},

pgaEA[X | fi :Ri] = τI (∂H (�α� ‖ ρserv �→f0(�R0�) ‖ ρserv �→f1(�R1�) ‖ .. ‖ ρserv �→fk
(�Rk�))).

4.3. Synthetic architectures for binaries

In this section we try to clarify the role of programs in machines. A binary is just a finite {0,1}-sequence (i.e., a
binary file) with an end-of-file marker eof. Consider the following SynArch:

This SynArch displays a machine Mac containing a binary file bf. It has a special port named loader used to enter
bf in Mac bitwise.

Assuming that Mac is a classical piece of computing machinery, the process �Mac(bf)� specifying the behavior of
bf in Mac will be a computable process. With ε denoting the empty bit-sequence, �Mac� can be specified in process
algebra as follows:

�Mac�= Mloading(ε),

Mloading(w) = rloader(0) · Mloading(w0)

+ rloader(1) · Mloading(w1)

+ rloader(eof) · �Mac(w)�.

It is reasonable to expect that �Mac(bf)� depends uniformly on bf (in the sense of computability theory, see e.g.,
[20]). Then, also �Mac� itself is a computable process, implying the following result.

Theorem 8. The process �Mac� can be denoted modulo branching bisimulation equivalence in ACP extended with
abstraction, binary Kleene star and pushdown operator, and this can be done using finitely many actions.

This follows from a general expressiveness result, proven in detail in [11, Theorem 4.2.5].

Note 1. Let bf= bf0bf1...bfneof. For appropriate encapsulation set H and abstraction set I , we find

τ · �Mac(bf)�= τI ◦ ∂H (L(bf) ‖ �Mac�)
where L(bf) = sloader(bf0) · · · sloader(bfn) · sloader(eof).

Let pga2bin4m be a mapping from PGA to bit sequences (pga to bin4m, where bin4m abbreviates “binaries
for machine”). Then pga2bin4m is a code generator mapping if the following holds for all X ∈ PGA:

pgaEA[X | fi :Ri] = �Mac(pga2bin4m(X))�.

That is: the analytic architecture pgaEA with its set of reactors explains (i.e., corresponds to) the synthetic architecture
Mac. In practice one is happy if this works for all X with pga2bin4m(X) having a size of less than k Mb (for some
k). In this setting, the following jargon is useful:
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(1) Middle code or intermediate code: a PGA-program as above.
(2) A machine (program) producing pga2bin4m(X) from X is a code generator or compiler back end for Mac.
(3) The concept of a machine code can not be defined here: clearly, some bf are more useful than other bf’s. But

there is no obvious criterion regarding �Mac(bf)� to select the binaries for Mac from arbitrary bit sequences.
(4) A higher program notation, say PGLZ, can be understood if a behavior preserving mapping

pglz2pga

to PGA is known (such a mapping is called a projection) and a pgaEA such that

pgaEA[pglz2pga(X) | fi :Ri]
corresponds to the intended meaning of program X. A compiler is a system (or a program for a system) that
allows to compute pglz2pga (or an optimized version of it that produces semantically equivalent behavior).

For a PGLZ-program X we then find

pgaEA[pglz2pga(X) | fi :Ri] = �Mac(pga2bin4m(pglz2pga(X)))�,

and it is common practice to call pga2bin4m(pglz2pga(X)) a program. This is one of the possible justifications
for the qualification of a binary that is part of a SynArch as a program. We fix the nature of this qualification as
follows:

Code generator mapping criterion: a binary bf is a program if it is in the range of a code generator mapping (in a
setting that explains the behavior of Mac(bf) via an AnArch).

The qualification of bf as a program by this criterion seems to be at odds with the basis of PGA because PGA starts
from the assumption that a program is a sequence of instructions (see [8]). However, if pga2bin4m is computable,
it has a semi-computable inverse, say

bin4m2pga

and bf qualifies as a program because bin4m2pga(bf) does. Of course, it is immaterial that bin4m2pga is taken
to be an inverse of pga2bin4m. What matters is: for all bf (or as many as one cares),

�Mac(bf)� = pgaEA[bin4m2pga(bf) | fi :Ri]( = �Mac(pga2bin4m(bin4m2pga(bf)))�
)
.

Thus, the code generator mapping criterion is consistent with the PGA-criterion for being a program.

Note 2. 1. Having a far more detailed SynArch at hand with bf as a part, one may find other justifications for
qualifying bf as a program. However, we failed to develop such a story with any form of acceptable generality.

2. The projection bin4m2pga may be called a disassembler-projection (ignoring the complexity of loading).
Then, if the qualification of bf as a program in Mac(bf) is justified by means of the code generator mapping criterion,
a disassembler-projection semantics of bf is (implicitly) known/given.

3. The justification of the qualification of bf as a part of the SynArch Mac(bf) is an argument of a certain form:
qualification on the basis of a most plausible history. If we see an object when it is a corpse, of course we see it if it
was a living individual of some species that subsequently died. How else could the object have come into existence?
If we see bf in Mac where bf = pga2bin4m(X), that must be related to bf’s history. How else would it have
originated? I.e., bf is just another form or phase of X, like a corpse being another phase of a living body.

4. The middle code exists at the instruction sequence level in PGA. It is at the same time target code for projection
semantics. Given a SynArch Mac(. . .), its binaries are also called object code.

5. An analytic architecture for Turing machines

In this section we consider an enhanced version of the Turing machine tape and a PGA-based language for pro-
gramming it. We prove the unsolvability of the halting problem, and show that this problem becomes decidable if we
restrict our language sufficiently.
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5.1. The Turing machine

The original reference to the Turing machine is [21]. A Turing machine M consists of a finite control and a tape,
often visualized in the following style:

where b stands for “blank” (i.e., a blank square), and a head that can be used for reading and writing on that tape,
depicted as �. Usually, the tape has a left end, and extends indefinitely to the right. The head can never fall off the tape
(at the left side). The control is such that it distinguishes a halting state, after which control is terminated and the tape
can be inspected for possible output. In a non-halting state, control prescribes some action to be undertaken and the
next control state. Actions are either read or write a symbol in the square (where write means: replace the symbol that
was already there, and write a blank means: erase), or move the head one tape square to the left (if possible) or right.

The Church–Turing thesis is the following principle (formulation taken from [19, p. 246]):

The Turing machine that halts on all inputs is a precise formal notion that corresponds to the naive notion of an
“algorithm”.

Finally, the halting problem HP is the question whether or not a Turing machine M halts on input string w.

5.2. Enhanced Turing machine tape

A Turing machine tape is seen as a state machine TMT. We consider an enhanced type of Turing machine tape over
alphabet {0,1, ; } called ETMT to allow for more powerful programming. A state of the ETMT is for example

where the b stands for blank, the semi-colon serves as a separator, and the � is the head. The left b represents an
indefinite number of blanks to the left,2 and the rightmost b signifies that the tape indefinitely extends to the right.

The empty tape (containing only blanks), thus

is denoted by ETMT(b̂ b) or simply by ETMT. The configuration of ETMT that contains sequence σ = σ1 . . . σn with
the head at the left blank, i.e.,

is denoted by ETMT(b̂σ b). In this ETMT-notation, the two occurring b’s will be referred to as the left blank and the
right blank, respectively.

We consider the following service-instructions for controlling the ETMT, where a bit sequence on the tape is a
sequence of 0 or 1 occurrences of maximal length (so at both ends neighboring either a semicolon or a blank).

test:0 write:0 mv:left mv:begin
test:1 write:1 mv:right dup
test:semicolon write:semicolon
test:b write:b

These instructions have the following effect:

test:0 (or 1, semicolon, b) checks whether the head points to a 0 (or the other symbol indicated) and returns true if
this is the case, and false otherwise.

2 This does not increase the computational power of a Turing machine (see e.g., [19]).
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write:0 (or 1, semicolon) writes the mentioned symbol at head position and returns true.
write:b writes a blank at head position if to the left or the right of the head there is a blank already and returns true,

otherwise nothing changes and false is returned.
mv:left fails if the head points at a blank and to the left there is a blank as well, in this case it returns false and nothing

happens; otherwise the head moves one square to the left and returns true.
mv:right works similar.
mv:begin places the head at the left blank if it is not already there, and returns true.
dup duplicates the leftmost bit sequence if any exists, and puts the result next to it, separated by a semicolon.

Furthermore, the head moves to the left blank. Returns true if actual duplication has taken place, and false
otherwise. Some examples:

ETMT(b; ; b̂)
dup−→ ETMT(b̂; ;b) (returns false),

ETMT(b; ;0 b̂)
dup−→ ETMT(b̂; ;0;0 b) (returns true),

ETMT(b 01;10̂1;b)
dup−→ ETMT(b̂ 01;01;101;b) (returns true).

5.3. Programming the Turing machine

For programming the Turing machine we shall use the programming language PGLC [8], a language based on PGA.
The only construct (operator) in PGLC is concatenation. Instead of the repetition operator (_)ω of PGA, PGLC con-
tains backwards jumps \#k for any k ∈ N. For example, +a;#0; \#2 is a PGLC-program that behaves as (+a;#0)ω.
Furthermore, termination is modelled implicitly in PGLC: a program terminates after a jump outside the program,
or after the last instruction has been executed and that instruction was no jump into the program; the termination
instruction ! is not present in PGLC.

Let p be some PGLC-program. We write |p|pglc for the thread defined by p. Thread extraction is defined using a
projection function pglc2pga from PGLC-programs to PGA-terms:

pglc2pga(u1; . . . ;uk) = (ψ1(u1); . . . ;ψk(uk); !; !)ω,

with the auxiliary operators ψj defined by

ψj (#l) =
{

#l if j + l � k

! otherwise,

ψj (\#l) =
⎧⎨
⎩

#k + 2 − l if 0 < l < j

#0 if l = 0

! otherwise,
ψj (u) = u otherwise,

and |p|pglc = |pglc2pga(p)|.
For example, |+a;#2; \#2;+b|pglc = |(+a;#2;#4;+b; !; !)ω| = P with

P = b ◦ S � a � P.

As basic instructions for PGLC we use the service-instructions defined for the ETMT in the previous section
prefixed with the focus etmt. An example of a basic instruction is

etmt.test:0.

We consider execution of Turing machine programs in an AnArch using ETMT as a state machine. To enhance
readability, we use an AnArch that takes as its first argument a PGLC-program (instead of a sequence of primitive
PGA-instructions), notation

pglcEA[p | etmt:ETMT].
This AnArch is defined with help of the projection function pglc2pga:

pglcEA[p | etmt:ETMT] = pgaEA[pglc2pga(p) | etmt:ETMT].
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An example:

pglcEA[etmt.dup; etmt.mv:right | etmt:ETMT(b 01; 1̂01;b)]
↓ τ

pglcEA[etmt.mv:right | etmt:ETMT(b̂ 01;01;101;b)]
↓ τ√

with ETMT’s configuration: ETMT(b 0̂1;01;101;b).

Here each of the τ -steps (
τ→) comes from two (abstracted) communications triggered by the current program-fragment

and the ETMT, and the symbol
√

represents termination.

5.4. The Halting Problem

The Halting Problem (HP) can in this setting be modelled as follows: a PGLC-program p halts on the ETMT with
initial configuration b̂w b (w a bit sequence), notation (p,w) ∈ HP, if

pglcEA[p | etmt:ETMT(b̂w b)] = τ,

as opposed to τ ∗δ (= τδ). After halting the tape can be inspected to obtain an output.
A program in PGLC is an ASCII character sequence (see, e.g., [1]), and therefore a sequence of bits. As an example,

the character a has 97 as its decimal code, which is as a byte (sequence of 8 bits) 01100001, and the character “;” has
59 as its decimal code, which is as a byte 00111011. Given a PGLC-program p, we write p for its representation as a
bit sequence.

Definition 9. Program q ∈ PGLC solves the question whether (p,w) ∈ HP if:

pglcEA[q | etmt:ETMT(b̂p;w b)]
always halts, and after halting, the tape configuration is of the form

ETMT(b̂ 0σ b) if pglcEA[p | etmt:ETMT(b̂w b)] halts, thus (p,w) ∈ HP,

ETMT(b̂ 1ρ b) if pglcEA[p | etmt:ETMT(b̂w b)] halts not, i.e. (p,w) /∈ HP,

for some string σ or ρ.

Theorem 10. The halting problem is unsolvable by means of any program in PGLC.

Proof. Suppose the contrary, i.e., a program q ∈ PGLC exists that solves HP. Consider the following program:

s = etmt.dup;q; r
with r the program that tests whether a 0 or a 1 is at the leftmost non-blank square, after which respectively deadlock
or termination follows:

r = etmt.mv:right;−etmt.test:1;#0; etmt.mv:begin.

Assume without loss of generality that the program q satisfies the following properties:

• it does not end with a test instruction (note that |p|pglc = |p;#1|pglc),
• each forward jump in q does not exceed the number of subsequent instructions with more than 1,
• each backward jump in q does not exceed the number of preceding instructions.

As a consequence, execution of the program q; r continues after q has been executed with the first instruction of r .
We show that both assumptions (s, s) ∈ HP and (s, s) /∈ HP lead to a contradiction. Hence, s cannot exist, and thus

q cannot exist.
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pglcEA[r | etmt:ETMT(b̂ 0σ b)]
=

pglcEA[etmt.mv:right;−etmt.test:1;#0; etmt.mv:begin | etmt:ETMT(b̂ 0σ b)]
↓ τ (etmt.mv:right)

pglcEA[−etmt.test:1;#0; etmt.mv:begin | etmt:ETMT(b 0̂σ b)]
↓ τ (−etmt.test:1)

pglcEA[#0; etmt.mv:begin | etmt:ETMT(b 0̂σ b)].

Fig. 1. Last part of the behavior in the case that (s, s) ∈ HP in the proof of Theorem 10.

pglcEA[s | etmt:ETMT(b̂ s b)]
↓ τ (etmt.dup)

pglcEA[q; r | etmt:ETMT(b̂ s; s b)]
↓ τ (by program q)

pglcEA[r | etmt:ETMT(b̂ 1ρ b)]
=

pglcEA[etmt.mv:right;−etmt.test:1;#0; etmt.mv:begin | etmt:ETMT(b̂ 1ρ b)]
↓ τ (etmt.mv:right)

pglcEA[−etmt.test:1;#0; etmt.mv:begin | etmt:ETMT(b 1̂ρ b)]
↓ τ (−etmt.test:1)

pglcEA[etmt.mv:begin | etmt:ETMT(b 1̂ρ b)]
↓ τ (etmt.mv:begin)

√
with ETMT’s configuration: ETMT(b̂ 1ρ b).

Fig. 2. The case that (s, s) /∈ HP in the proof of Theorem 10.

Assume that (s, s) ∈ HP. Then

pglcEA[s | etmt:ETMT(b̂ s b)]
↓ τ (etmt.dup)

pglcEA[q; r | etmt:ETMT(b̂ s; s b)]
↓ τ (by program q)

pglcEA[r | etmt:ETMT(b̂ 0σ b)]
for some string σ . The remaining behavior is displayed in Fig. 1, and results in pglcEA[#0; etmt.mv:begin | etmt:
ETMT(b 0̂σ b)]. This last AnArch clearly represents deadlock because of the first instruction #0, and therefore (s, s) /∈
HP. Contradiction.

Assume that (s, s) /∈ HP. The behavior of pglcEA[s | etmt:ETMT(b̂ s b)] is displayed in Fig. 2. This behavior ends
with termination, thus (s, s) ∈ HP. Contradiction.

So our supposition was definitely wrong and there is no program q ∈ PGLC that solves the halting problem. �
It is an easy but boring task to program mv:begin and dup in terms of the other instructions, thus obtaining a

stronger proof. As a theorem, the above one (Theorem 10) suffices. From that point of view there is nothing special
about the (E)TMT or any of its versions. What we see is that:
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(1) For a close relative of the TMT an impossibility result is obtained.
(2) Increasing the instruction set of the ETMT to a ‘super’ ETMT does not help. The proof goes exactly the same.

Computability of these instructions is immaterial. What matters is that the halting problem (HP) is posed about
all programs over the instruction set that may be used to program its solution.

(3) The Church–Turing thesis is not used because the result is phrased about PGLC programs, and not about ‘al-
gorithms’ or ‘computable methods’. Nevertheless, if it is considered convincing that an effective method can be
performed by a certain Turing machine, then it is also obvious that it can be programmed in PGLC:
• finite control can be modelled in the program;
• additional instructions only strengthen the expressive power.

This situation changes if we restrict the set of basic instructions. In the proof above we used etmt.dup, etmt.test:1,
etmt.mv:right and etmt.mv:begin. Let the language PGLC− contain these as the only basic instructions. Note that
etmt.dup is the only PGLC−-instruction that writes on the tape.

Theorem 11. For the language PGLC−, the halting problem is decidable.

Proof. We show that halting can be decided for any program and initial tape configuration (the latter not necessarily
a sequence of bits and the head pointing at the left blank).

So, let pglcEA[p | etmt:ETMT(b̂σ b)] be given with p ∈ PGLC− and σ some string. If the tape contains no
sequence of bits, each occurrence of etmt.dup in p can be replaced by etmt.mv:begin and the tape remains a fixed and
finite structure (in the case that etmt.dup is used as a test instruction, the sign of etmt.mv:begin should be reversed).
Execution now either yields a cyclic pattern, or stops at #0, or after the last instruction or a terminating jump. As there
are finitely many combinations of current instruction and head position, halting is decidable.

In the other case the tape contains a sequence of bits. We write ETMT(σ, k) if the head points to the kth position
of the sequence σ , and to the nearest blank if k is out of range. Transform p to a canonical form in PGA using the
projection pglc2pga and the axioms in Table 1. If this canonical form contains no repetition we are done, otherwise
we obtained a PGA-program U ;V ω with U and V containing no repetition. Halting on U is decidable: either one of
the decisive instructions ! or #0 is to be executed. In the other case, execution enters the repeating part V ω. So, we
further consider pgaEA[Wω | etmt:ETMT(ρ, k)] for some cyclic permutation W of V and tape configuration ρ with
the head at position k. Now, either etmt.dup occurs at a reachable position in Wω (i.e., occurs in |Wω|), or not. This
is decidable. In the last case, the tape remains a fixed and finite structure, and iterating W yields a regular behavior,
so halting is decidable. In the other case, the number of etmt.mv:right-instructions in W , say n, limits the number of
positions that the head can shift to the right. Consider pgaEA[Wn;Wω | etmt:ETMT(ρ′, k′)]. Either halting can be
decided on Wn, or the repeating part is entered, say Xω (X a cyclic permutation of W ). We may replace all etmt.dup-
instructions in Xω by etmt.mv:begin because these duplications concern an unreachable part at the right end of the
tape. So, this case is reduced to the previous one, and halting is again decidable. �

Our objective is to position Turing’s impossibility result regarding the assessment of halting properties of program
execution as a result about programs rather than machines. The mere requirement that programs of a certain form
can decide the halting behavior of all programs of that form leads to a contradiction. This contradiction can be found
in the case of programs for a Turing machine tape (TMT). The argument is significantly simplified if an extended
command set for a Turing machine tape is used (ETMT). But then the program notation may be reduced to those
features (instructions) actually playing a role in the argument and the impossibility result remains but now in a setting
where the underlying halting problem is in fact decidable.

Note 3. In the case of the language PGLC−, one should take care in what way a program q solves the halting problem
(cf. Definition 9). A leftmost 0 or 1 on the tape upon q’s termination is not appropriate because apart from etmt.dup,
the language contains no write-instructions. For PGLC−, a possible criterion is the head position after termination
of q:

pglcEA[q | etmt:ETMT(b̂p;w b)]
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always terminates, and the head is at the left blank if (p,w) ∈ HP and at the rightmost blank otherwise. This is
consistent because in PGLC− there is no means to remove bits from the tape and the initial configuration contains
two non-empty bit sequences, so left and right blank can always be distinguished. As in the proof of Theorem 10, this
yields the impossibility result for the question whether (s, s) ∈ HP for s = etmt.dup;q;+etmt.mv:right;#0.

We conclude that as a methodological fact about computer programming, the undecidability of the halting problem
is an impossibility result which is quite independent of the computational power of the machine models to which it
can be applied.

6. Forecasting reactors and rational agents

The halting problem can be investigated without the use of TMTs as a problem regarding the potential capabilities
of a reactor serving as a computation forecasting device. In this section we show that restricting to true and false is
problematic and introduce a third truth-value. Furthermore, we combine forecasters with ‘rational agents’, and provide
a modeling of the Newcomb Paradox. Finally, we model the Prisoner’s Dilemma as an analytic architecture.

6.1. Forecasting reactors

Forecasting is not an obvious concept, the idea that it is to be done by means of a machine even less. We will provide
a ‘clean’ interpretation of forecasting and investigate its fate in the context of execution architectures for PGA. The
use of an AnArch is justified because this story is meant at a conceptual level and is not part of any technical design.

In the previous section it was shown that restricting to true and false is problematic. Therefore we now consider
the case that the evaluation of test instructions may yield not only true or false, but also the value M (meaningless):

|+a;X| =
⎧⎨
⎩

a ◦ |#1;X| if a’s execution returns true,

a ◦ |#2;X| if a’s execution returns false,

a ◦ |#3;X| if a’s execution returns M,

and

|−a;X| =
⎧⎨
⎩

a ◦ |#2;X| if a’s execution returns true,

a ◦ |#1;X| if a’s execution returns false,

a ◦ |#3;X| if a’s execution returns M.

More information on many-valued logics using true, false and M can be found in [6,10].
We will use fcu as the focus pointing to a forecasting unit FCU in the following way: fcu.Q will ask the forecaster

to reply about its opinion regarding the question Q. At this point the precise phrasing of the requirement on the FCU
is essential. In pgaEA[ fcu.Q;X | fcu:FCU, fi :Ri] one expects FCU to reply true if Q is valid as an assertion on
pgaEA[X | fcu:FCU, fi :Ri], notation

pgaEA[X | fcu:FCU, fi :Ri] sat Q.

More precisely, in

pgaEA[+fcu.Q;u;X | fcu:FCU, fi :Ri]
we expect that

• true is returned if pgaEA[u;X | fcu:FCU, fi :Ri] sat Q,
• false is returned if pgaEA[X | fcu:FCU, fi :Ri] /sat Q,
• M is returned otherwise.

Moreover, in case that both true and false could be returned, preference is given to returning true.
Consider Q = halting: when pgaEA[X | fcu:FCU, fi :Ri] sat halting it will hold along all execution traces (irre-

spective of any context) that X halts. Then, if a reactor can engage in external communications, the possibility that it
will must be taken into account. Moreover, we cannot exclude the possibility that a reactor falls into inaction as a result
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of such an external communication. Therefore we assume the absence of reactors apart from FCU, and investigate to
what extent FCU can be made to provide a useful forecast regarding the halting-question.

Theorem 12. A forecasting reactor FCU needs the third truth value M.

Proof. Consider

pgaEA[+fcu.halting;#0; !; ! | fcu:FCU].
If true is replied then pgaEA[#0; !; ! | fcu:FCU] sat halting which is not true; if false is replied then pgaEA[!; !|fcu:FCU]
/sat halting which is also not true. Thus M should be replied, and

pgaEA[+fcu.halting;#0; !; ! | fcu:FCU] τ→ pgaEA[! | fcu:FCU]
(which will halt by the way). �

We notice that the reactor FCU may use whatever inspection of other parts of an AnArch. However, it cannot
correctly forecast the question with either true or false. Nevertheless, a lot is possible, e.g.:

pgaEA[+fcu.halting; !;#0 | fcu:FCU]
generates reply true, and

pgaEA[+fcu.halting;#0;#0 | fcu:FCU]
generates reply false.

Theorem 13. A best possible FCU for halting can be given for PGA with fcu.halting as its only basic instruction.

Proof. Let Xtrue be obtained from X by replacing each occurrence of fcu.halting by fcu.true, the test that always
yields true, and let Xfalse be defined similarly (replacement by fcu.false). Consider

pgaEA[+fcu.halting;u;X | fcu:FCU].

(1) In the case that pgaEA[utrue;Xtrue | fcu:FCU] sat halting, we may define that +fcu.halting returns true, and as a
consequence

pgaEA[+fcu.halting;u;X | fcu:FCU] sat halting.

(2) In the case that pgaEA[Xfalse | fcu:FCU] /sat halting, we may define that +fcu.halting returns false, and as a
consequence

pgaEA[+fcu.halting;u;X | fcu:FCU] /sat halting.

(3) If none of the cases above applies, +fcu.halting generates reply M.

E.g., pgaEA[+fcu.halting;#0; !; ! | fcu:FCU] will return M although it is going to be halting: by returning M it moves
to an instruction from where halting is guaranteed indeed, while replying false would not produce a consistent answer.

It is easy to see that if this definition of replies given by FCU returns M, it cannot be replaced by either true or
false. Hence, FCU is optimal. �

So, a halting forecaster can be built, but it cannot always provide a useful reply. On PGA one can decide whether
a useful reply can be given. Given the fact that all practical computing takes place on finite state machines for which
PGA is of course sufficient, we conclude this:

(1) All practical instances of halting are decidable, given a pgaEA[X | fi :Ri] with all Ri finite state.
(2) Nevertheless, a halting forecaster cannot work in a flawless fashion, although it can be ‘optimal’ (i.e., minimizing

output M).
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If all Ri ’s are finite state machines in pgaEA[X | fi :Ri] sat halting (which is always the case ‘in practice’), we find
that for a particular AnArch fixing the Ri ’s the halting problem will be decidable, especially if the AnArch is tailored
to fit the constraints of some realistic SynArch.

Of course, one can investigate forecasting reactors. Then the question is: what impossibility will one encounter?
The obvious undecidability result critically depends on one of the reactors being infinite state or engaging in external
communications. We return to forecasting reactors in Section 6.3.

6.2. Reactors formalizing rational agents

We consider a ‘rational agent’ RA with focus ra. The rational agent intends to achieve an objective and acts ac-
cordingly. Here is a simple example:

where Out has five states 0,1,2,3,4 and initially is in state 0. There are four instructions s1, . . . , s4 which all succeed
in each state of Out, with si leaving Out in state i for i ∈ {1,2,3,4}.

The PGA-program X is as follows:

X = +ra.get;#3;out.s2 :!;out.s1; !.
The thread |X| can be visualized as follows:

The task of RA is to make the system terminate with a maximal content of Out. RA is aware of the contents of program
X. In this case, it is clear that the reply false is optimal.

For a second example we add a decision agent Dec such that RA cannot know which decision Dec takes. The focus
for Dec is dec. The instruction dec.set asks Dec to take a decision, which it will keep forever, and allows inspection
via dec.get. An inspection not preceded by a dec.set returns M.

The model for Dec in concrete process algebra is:

�Dec� = r(set)(t · �Dectrue�+ t · �Decfalse�),

�Dectrue�= (s(true) · r(get))∗δ,

�Decfalse� = (s(false) · r(get))∗δ.

We consider the following PGA-program X′:

X′ = dec.set;+dec.get;#2;#7;
+ra.get;#3;out.s2; !;out.s1; !;
+ra.get;#3;out.s3; !;out.s4; !
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or as a thread:

Now both replies true, false of RA are not optimal. If RA replies true, this leads to 1 after a positive decision of Dec
(and false would have given 2), while false is not optimal after a negative decision of Dec (giving 3 rather than 4).
Therefore it is plausible to return M, but that yields no maximum either (it leaves Out in state 0).

6.3. A Newcomb Paradox system

In this section we consider the following program, a small modification of the last program in the previous section
(all out.si -instructions switched places):

X = dec.set;+dec.get;#2;#7;
+ra.get;#3;out.s4; !;out.s3; !;
+ra.get;#3;out.s2; !;out.s1; !

with behavior

Now, quite independently of Dec’s action, it is plausible that RA replies false as its best reply. This answer is very
robust and covers all possible/conceivable ways for which RA might work.

For the next example we introduce the property of pgaEA’s that a reactor may be a forecaster of another one:

pgaEAforecast:f >g

is as pgaEA but with the additional constraint that the reactor focused by f forecasts the reactor focused by g. I.e., if
f.get returns true (false) then the next g.get will reply true (false) as well.

Consider

pgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out].
If RA chooses to reply true, Dec must have replied true, yielding Out in state 3, and if RA replies false, Dec must have
replied false and the yield is 2.

This is a version of Newcomb’s Paradox, the original form of which has been made famous by Gardner [17, Chap-
ters 13, 14].3 The additional assumption of forecasting reverses the rational answer becoming true instead of false.4

But the argument for false was completely compelling, making use of case-based reasoning regarding uncertainty

3 A short description based on this source: Given two boxes, B1 which contains $1000 and B2 which contains either nothing or a million dollars,
you may pick either B2 or both. However, at some time before the choice is made, an omniscient Being has predicted what your decision will be
and filled B2 with a million dollars if he expects you to take it, or with nothing if he expects you to take both.

4 I.e. (in terms of the previous footnote), pick only box B2 instead of both.
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Table 3
Axioms for Fa>b>c , where a, b, c, e are actions

Fa>b>c(e) = e, Fa>b>c(x + y) = Fa>b>c(x) + Fa>b>c(y),

F ′
a>b>c

(e) =
{

0 if e = b,

e otherwise,
F ′

a>b>c
(x + y) = F ′

a>b>c
(x) + F ′

a>b>c
(y),

Fa>b>c(δ) = δ, Fa>b>c(e · x) =
{

e · F ′
a>b>c

(x) if e = a,

e · Fa>b>c(x) otherwise,

F ′
a>b>c

(δ) = δ, F ′
a>b>c

(e · x) =

⎧⎪⎨
⎪⎩

0 if e = b,

e · x if e = c,

e · F ′
a>b>c

(x) otherwise.

about past events. The Newcomb Paradox then arises from the apparently illegal identification of the two following
execution architectures:

pgaEA[X | dec:Dec, ra:RA,out:Out] and

pgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out].
In particular, the mistaken view that the second architecture somehow refines the first one by merely providing addi-
tional information leads to a contradiction. Thus: adding more information about the component Dec, the plausibility
of RA giving the reply false in order to maximize the contents of Out at program termination is lost.

To formalize forecasting between reactors in process algebra, we use the constant 0 (see [3]):

x + 0 = x,

x · 0 = 0 provided x 
= δ,

0 · x = 0.

We write Fa>b>c(X) for the following modification of process X: from the first a onwards, replace all b’s by 0 until
the first occurrence of c. The operator Fa>b>c is axiomatized in Table 3. The auxiliary operator F ′

a>b>c models the
situation in which the first action a is passed.

Forecasting can be formalized as follows:

cpgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out] =
Fcdec(true)>cra(false)>cdec(true)(

Fcdec(false)>cra(true)>cdec(false)(cpgaEA[X | dec:Dec, ra:RA,out:Out]))
pgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out] =

τI (cpgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out]) for appropriate I.

Some computation shows that indeed

pgaEAforecast:dec>ra[X | dec:Dec, ra:RA,out:Out] = τ(τ · out.s3 + τ · out.s2),

while pgaEA[X | dec:Dec, ra:RA,out:Out] = τ(τ · out.s4 + τ · out.s2) if RA chooses false as its best reply.

6.4. Prisoner’s Dilemma

A close relative of the above examples is the so-called Prisoner’s Dilemma [18], which has become very well-
known in game theory, psychology and economics.

Consider the following situation:
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Each rational agent has its own “out” and intends to maximize its own yield, irrespective of the other yield. We define
the program X by

X = +ra1.get;#2;#9;
+ra2.get;#4;out1.s1;out2.s2; !;out1.s3;out2.s3; !;
+ra2.get;#4;out1.s2;out2.s2; !;out1.s2;out2.s1; !

so |X| can be depicted by

This yields the following scenario’s:

• if RA1 and RA2 both reply true, both yield the value 3,
• if RA1 and RA2 both reply false, each gets the value 2,
• if one replies true and the other false, the reply false gets 2 and the reply true yields 1.

As a consequence, in order to exclude the risk of yielding only 1 a sure strategy is to choose false. But in order to
get 3, both RA’s must trust one another and choose true, at the same time taking the risk to get only 1. Unable to
communicate, the RA’s may both go for certainty and reply false.

Note 4. The idea of forecasting does not apply to this example. Because of the particular way X is programmed, RA1
forecasting RA2, thus

pgaEAforecast:ra1>ra2[X | ra1:RA1, ra2:RA2,out1:Out1,out2:Out2],
excludes the last scenario, and hence denies the dilemma. Applying the reverse forecasting does not have any effect:

pgaEAforecast:ra2>ra1[X | ra1:RA1, ra2:RA2,out1:Out1,out2:Out2]
= pgaEA[X | ra1:RA1, ra2:RA2,out1:Out1,out2:Out2].

Note 5. A common application of the Prisoner’s Dilemma is to assume that the reply true complies with the law and
false opposes the law. If both comply with the law, both have significant advantage. Complying with the law while
others don’t is counterproductive, however.
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Appendix A. ACP-based process algebra

In this appendix we shortly recall some process algebra. For more information and explanation we refer to [16].
The signature of ACP has a constant δ and constants for actions. Furthermore, ACP has binary operators + (alterna-

tive composition), · (sequential composition), ‖ (parallel composition, merge), ‖ (left merge), and | (communication
merge). Finally, there is a unary renaming operator ∂H (encapsulation) for every set H of actions, which renames the
actions in H into δ. We use infix notation for all binary operators, and adopt the binding convention that + binds weak-
est and · binds strongest. We suppress ·, writing xy for x · y. Alternative and sequential composition are associative,
and the first operator is also commutative and idempotent.
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Parallel composition in ACP satisfies the law

x ‖ y = (x‖ y + y‖ x) + x | y,

where ‖ is as ‖ with the restriction that the first action must be one from the left argument, while | has the restriction
that the first action must be a communication. E.g., a‖ x = ax and ax‖ y = a(x ‖ y).

Encapsulation is a special case of renaming. The renaming operator ρf with f :A → A for action set A is defined
by

ρf (a) = f (a) (a ∈ A),

ρf (δ) = δ,

ρf (x + y) = ρf (x) + ρf (y),

ρf (x · y) = ρf (x) · ρf (y).

(In the case of encapsulation, the range of f includes δ.)
Communication in ACP is predefined on the set of actions. For example, a|b = c implies a ‖ b = (ab + ba) + c.

Encapsulation can be used to enforce communication between different parallel components, e.g., ∂{a,b}(a ‖ b) =
(δδ + δδ) + c = c (by the two laws x + δ = x and δx = δ).

Kleene’s binary star is in ACP-based process algebra defined by x∗y = x(x∗y) + y (see [5]). Taking δ for y it
follows that t∗δ behaves as t∞, i.e., an infinite sequence of t -actions. The pushdown operator is defined by x$y =
x(x$y)(x$y) + y (see [12]).

In common process semantics involving abstraction, the law xτ = x holds, and this identity is used in the paper.
Furthermore, fairness implies that τ ∗δ = τδ [5]. Finally, the unary abstraction operator τI with I a set of actions,
renames the actions in I into τ (cf. encapsulation).
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