
Process Algebra with Backtracking
J.A. Bergstra

Utrecht University, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

E-mail: j anb~fwi, uva. n l

A. Ponse

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

F-mail: alban@fwi, urn. nl

J.J. van Wamel

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

E-mail: vanw~wi, uva. nl

A b s t r a c t . An extension of process algebra for modelling processes with
backtracking is introduced. This extension is semantically based on processes
that transform data because, in our view, backtracking is the undoing of the
effects caused by a process in some initial data-state if this process fails.
The data-states are given by a data environment, which is a structure that
also defines in which data-states guards hold, and how (atomic) actions ei-
ther transform these states or block and prevent subsequent processes from
being executed. State operators are used to relate process terms to a given
data environment.
Backtracking is axiomatised in a few phases. First guarded commands (con-
ditionals) and a standard ~ype of guards, expressing the enabledness of ac-
tions, are added to basic process algebra (process algebra without operators
for parallelism) by involving a Boolean algebra. Then the set of actions is
partitioned in order to distinguish between different types of behaviour of
actions in the scope of a (binary) operator for backtracking. Also functions
on actions are defined that change the ' type ' of an action. Next an axiom sys-
tem for modelling processes with backtracking is presented, and it is proved
that backtracking is associative, provided that some semantic constraints are
satisfied. Finally a method for recursively specifying processes is defined and
an example of a recursively defined process with backtracking is provided.
An operational semantics is defined relative to the Boolean algebra, describ-
ing transitions between process terms labelled with 'guarded actions'. The
operational semantics is studied modulo strong bisimulation equivalence.

Key words & Phrases: process algebra, guarded commands, backtracking.
1987 CR Categories: F.1.2, F.2.2, F.3.2, 1.2.8.

47

C o n t e n t s

1 Introduct ion

2 BPAsc, , BP.A with guarded commands and enabledness
2.1 Signature and axioms of BPAgc
2.2 BPAgce, BPAgc with enabledness
2.3 Transition systems and bisimulation semantics
2.4 State operators and data environments

3 Requirements on backtracking
3.1 Relational semantics for BPAgce
3.2 Classification of actions
3.3 Four requirements

4 BPA(~-), Basic Process Algebra with backtracking
4.1 Signature and axioms of BPA(4-)
4.2 Properties of the + operator
4.3 Bisimulation and relational semantics

5 Recursively defined processes and an example
5.1 Specifying processes by recursive equations
5.2 An example of a process with backtracking

6 Concluding remarks

1 I n t r o d u c t i o n

In this paper we introduce an operator for modelling backtracking in process algebra.
We regard backtracking as the undoing of data-state transformations caused by a
process, if this process blocks. In our view backtracking is based on (atomic) actions
that transform data-states in a deterministic way. The interaction of processes with
data-states is independently defined in a data environment .

We work in the setting of BPA (Basic Process Algebra, a basic fragment from
ACP [BK84, BW90]) with guarded commands or conditionals, i.e., i f - t h e n - fi
constructs (see e.g. [Dij76, BB91, GP90b]). We assume that actions are subject to
enabledness in an implicit way, i.e., for any action a:

a = enabled(a) :--~ a

where :--+ denotes the guarded command operator. The alternative, i.e., assuming
that actions are uniformly enabled, would shift our interest from simple actions as
the most basic processes considered, to 'atomic processes' of the form

r :-~ a.

This is because backtracking is only at stake if no subsequent action is enabled.
We claim that the choice for implicit enabledness of actions simplifies notation and
specifications considerably.

48

In our approach, backtracking is modelled by a distinct operator ~-, and the
undoing of actions is modelled by syntactical insertion of 'undo actions' in the al-
ternative to be executed upon failure. Roughly, the idea can be illustrated by the
following equation:

(a . 6) ~- b = a . undo(a) , b

where the �9 represents sequential composition, a and b are actions, a is invertible
and uniformly enabled, and 6 is the standard process that blocks.

The operator ~- is axiomatised in such a way that it can be eliminated from
closed terms in favour of the + (choice), the . (sequential composition) and guarded
commands. The following consequences are typical for our set-up:

1. We need restrictions and additional structure on actions. For example, an action
that is regarded as the inverse of some other action cannot be invertible itself.

2. The ~- is only associative (and hence suitable for elegant reasoning) if inverse
actions are uniformly enabled.

Because backtracking is a phenomenon that semantically speaking is quite in-
volved, an algebraic characterisation of it may be worthwhile: the restriction to an
algebraic setting enforces one to express the properties of backtracking in a relatively
simple way: the triggering of backtracking and 'undo actions' are described on the
syntactic level. The interaction of processes with data-states is described by state
operators. These relate a separate semantic level, described by a 'da ta environment',
to our process language. State operators are defined in [BB88] and extended to the
setting with guarded commands in [BB91].

Backtracking as a useful concept in programming practice is probably most com-
monly known from PROLOa [Bra86, CM87]. This research has been initiated by a
study of the current implementation of backtracking in the specification language
P•OTOCOLD (see [Jon91]), which is an executable fragment of the wide spectrum
language COLD [F J92]. Both languages are developed at Philips Research Laborato-
ries. In PROTOCOLD, a choice operator is implemented in such a way that backtrack-
ing over failing alternatives occurs. PttOTOCOLD has in common with PROLOG that
backtracking is based on the undoing of bindings of logical variables, contrary to our
~transformation-based' point of view. For previous work concerning the semantics of
PROTOCOr.D, see e.g. [Klu91]. For more recent work see [VW93].

Another aim of this paper is that our approach leads to a useful operator that can
be incorporated in specification languages that are based on process algebra, such as
LOTOS [ISO87], PSF [MV90] and #CRL [GP90a, GP91]. In the context of algebraic
specification and verification practice, our approach may be easily applicable to
backtracking 'geared' problems, e.g., the well-known Eight Queens Problem. We give
an example of such an application in Section 5.

The notion of 'undo actions' can be traced back to ELIi~NS in [Eii92], and such
actions also occur in the work of KLUSEN~Sl~ [Klu91]. The name try, which we will
use to denote our (binary) backtrack operator, is due to KLINT. In [Kli82] he defines
the programming construct <try-expression> to provide '% facility for eliminating
the side-effects of the evaluation of a failing expression".

Acknowledgements. We thank Willem Jan Fokkink and Chris Verhoef for useful
comments.

49

2 BPAgee, BPA with guarded commands and enabledness

In this section we introduce BPAgc (Basic Process Algebra with guarded commands)
as the basic framework of our paper. In BPAgc, the enabledness of a process can be
restricted by the use of a guarded command: r :---* p can only be executed i f r ~ false
holds in the Boolean algebra in which the guards are defined. Next we define the
enabledness of atomic actions by considering Boolean algebras that contain special
'enabledness' guards, and by extending BPAgc with one axiom to BPAgce.

We then define transition systems that represent the operational characteristics
of process terms. Over such systems, we define bisimulation semantics for BPAgce
processes.

Finally, we introduce the notion of a data environment and the evaluation of
process terms in such a data environment: processes are considered as interacting
with a set of data-states. To 'evaluate' the execution of a process in a certain initial
data-state, we use the state operator defined by BAETEN and BERGSTRA in [BB88],
and extended to the setting with guarded commands in [BB91].

2.1 S igna tu re a n d a x i o m s o f BPAgc

We start off with the core system BPA6 (Basic Process Algebra with 8, see e.g.
[BW90]). The signature of BPA~ has a set of (atomic) actions as a parameter. Actions
represent the basic activities that processes can perform, such as reading input,
incrementing counters and so forth. Let A be a set of actions with typical elements
a, b, . . . For each action a the signature of BPA~, denoted as ,U(BPA6), contains an
identically named constant a. The special constant 8 (inaction or deadlock) represents
the process that cannot perform any activity and prevents subsequent processes from
being executed. We also have the binary infix operators + (alternative composition)
and �9 (sequential composition) available. We summarise the signature ~7(BPA~) in
Table 1.

constants:

binary operators :

a for any atomic action a E A
6 models inaction or deadlock
+ alternative composition (sum)
�9 sequential composition (product)

Table 1. The signature •(BPA6).

In term formation, brackets and variables from a set V = {z, y, z , . . . } are used.
The function symbol- is generally left out, and brackets are omitted according to the
convention that �9 binds stronger than +. The symbol __=_ is used to denote syntactic
equivalence (modulo associativity) between terms. Finally, letters t, t l , . . , range over
open terms and p , q , r , . . , over closed terms. Let ~ denote the set of terms over
s

50

The axioms presented in Table 2 constitute the axiom system BPA6. These ax-
ioms describe the basic identities between terms over •(BPA6). The operator + is
commutative, associative and idempotent (A1 - A3). The opera tor , right distributes
over + and is associative (A4, AS). Note tha t left distributivity of . over + is absent.
Furthermore 5 behaves as the neutral element for + (A6), and absorbs subsequent
terms (A7).

(AI) z + y = y + z
(A2) x+(y+z)=(z+y)+z
(A3) x + z =
(A4) (~ + y)z = ~z + yz
(AS) (~y)~ = x(y~)
(A6) z + 5 = x

(A7) 5~ = 6

Table 2. The axioms of BPAs.

Next we introduce BPAgc, Basic Process Algebra with guarded commands ([Dij76,
BB91]). We extend the signature ,U(BPA6) to ,U(BPAgc,]~) in the following way.
Given a Boolean algebra B with Boolean expressions /3, let 7 ~+ D ~ be defined
inductively by involving the guarded command construct:

. :--+. : / 3 x ' p + ~ T }+.

So . :--+ . relates the Boolean expressions/3 defined over • and the set :P of process
terms. An expression r : ~ p is to be read as i f r t h e n p. The r in this expression
is often referred to as a guard [Dij76, GP90b]. To avoid confusion with the operators
+ and �9 from ,U(BPAs), we use V, A and -~ as Boolean operator symbols. Moreover
we use < and the constants t r u e and false in their usual meaning. For instance,
r < r r r 1 6 2 = r and r < r r r 1 6 2 = r

(c c l)
(c c 2)
(c c 3)
(c c 4)
(c c 5)
(ccB)

t rue :-~ �9 ---- z
false :--* z = 6

r (~ + v) = r ~ + r v
(r 1 6 2 :--, �9 = r ~ + r : ~
(r A r :-~ �9 = r : - , (r :-~ ~)

(r :-~ ~)y = r :-~ {~y)

Table S. The axioms for guarded commands, where r r E/3.

The system BPAgc consists of the axioms A1 - A7 of BPA~, and the axioms
GC1 - GC6, presented in Table 3, which define the guarded commands. The binding

5]

power of : 4 is defined less than �9 and stronger than +. The axioms GC1 and GC2
relate the guards t rue and false to process terms. The axiom GC3 states that +
does not change the evaluation of a guard r It does not matter whether the choice is
exercised before or after the evaluation of r The axiom GC4 describes the relation
between V and +, and GC5 that between A and the guarded command construct
:-~. The last axiom GC6 defines the relation between �9 and :--*. Furthermore, all
Boolean identities in B transfer to guarded commands, e.g., r : ~ z = r :--* z if
r = r holds in B.

The following definition of basic terms over ~(BPAgc, ~) and the Representation
Lemma (2.1.2) imply that we can prove statements about closed process terms over
BPAgc by structural induction, and that we have to distinguish 5 cases in such
proofs.

Def in i t ion 2.1.1. We inductively define basic terms over E(BPAgcl B) by the fol-
lowing BNF grammar, where a E A, r E B:

p:= lalp+pl -plr p.

[]

Note that basic terms may be provably equal, for instance BPAgc ~- false :-~ a = 6.

Lemma 2.1.2 (Representation). Each closed te~m p over ~(BPAgc, B) can be proved
equal to a basic term.

Proo f . Follows easily by structural induction from the axioms of BPAgc and the
definition of basic terms. []

2.2 BPAgce, BPAgc wi th enabledness

Given a set A of actions, we will only consider a special type of Boolean algebras,
namely those that contain expressions

enabled (a) for all a E A

because 'enabledness of actions' is a crucial notion in things to come (we come back
to this point in Section 6). So enabled is regarded as a predicate over A. Write ~(A)
for a Boolean algebra ~ satisfying this condition.

For a suitable axiomatisation of backtracking in the setting of BPAgc, it turns
out that the domain of the enabled predicate must be extended to the set P of
process terms.

Def in i t ion 2.2.1. The predicate enabled : :P -* /~ axiomatised in Table 4 defines
whether or not a process can perform an initial action. D

52

(Enl)
(En2)
(En3)
(En4)

enabled(6) = false
enabled(a. ~) = e~abled(a)

e~abled(~ + y) = enabled(z) V en~bled(yj
enabled(r : ~ z) = r A enabled(~)

Table 4. The axioms for the predicate enabled, where a 6 A, r 6 B.

(Enh) -~enabIed(z) :--* x = 6

Table 5. The axiom for not enabled processes.

For non-atomic, closed process terms p, we regard enabled(p) as an abbreviation
for a Boolean expression over B(A) conform the axioms in Table 4. Note that these
axioms are consistent with the axioms of BPAgc.

A process axiom En5 is needed to make it explicit that a process that is not
enabled equals 6.

Def in i t ion 2.2.2. The axiom system BPAgce is defined by extending BPAgc with
the axiom En5 defined in Table 5. []

From the axioms of BPAgce the following identity can be derived.

L e m m a 2.2.3. A n y process term z over the signature Z(BPAgce, B(A)) is implic-
itly preceded by a test on enabledness:

BPAgce ~" z = enabled(z) : ~ z .

Proof.
z = t r u e :-~ x

= enabled(z) V ~ e n a b l e d (~) : - ~
= e n a b t e d (~) : - ~ �9 + ~ e n a b I e d (z) : - ~ z
= enabled (z) :--~ z + 6

= enabled(z):--* z .

[]

2.3 T r a n s i t i o n s y s t e m s a n d b i s i m u l a t i o n s e m a n t i c s

In process algebra closed process terms are often related to labelled transi t ion sys-
tems, which provide an operational semantics in the style of PLOTKIN [Plo81].

Def in i t ion 2.3.1. A labelled transition sys tem .A is a tuple (S.4, L~4, ;.4, sA) ,
where

53

- S~t is a set of states,
- LA is a set of labels,
- ~A is a transition relation,
- sA 6 S A is the initial state.

13

We consider the closed terms over Z(BPAgce, B(A)) as the set of states S~t; the
transition system related to a process term p has initial state p. Contrary to the
traditional approach in process algebra, we label transitions with expressions

~ :----r a,

with r r false in B(A) and a 6 A. This idea is based on BAETEN and BERGSTRA
[BB91]. We consider ----*.4 as containing transitions

�9 - : - ~ . c_ S ~ x L.~ x S.~,

and for modelling (successful} termination, special transitions of the form

, ~/_c S~ x L~

(pronounce %/as "tick"). The rules in Table 6, where in the labels 4 :-4 a the r range
over B(A) and the a over A, determine the transition relation - - + 4 that contains
exactly all derivable transitions from the closed terms over S(BPAgce, B(A)).

The idea is that for a 6 A, a transition p r p, expresses that by executing a,
the process p can evolve into p' if r r false holds in B(A). In this case p' represents

the process that remains to be executed. The transition p r ~/expresses that
the process p can terminate successfully after executing a if r ~ false holds in
B(A). The state 6 expresses that no further activity is possible. Note that a and
enabled(a) :---+ a always have the same transitions.

E x a m p l e 2.3.2. Consider the following partially depicted transition system related
to the process term r :-4 a + ~ : ~ b. r : 4 a + c- a, where the initial state is marked
with a little arrow:

q-~ :-4 b'r :---~ a + c.a

e n a b l e d ~ ~ ~ ' J "~.~nabled(e):~c
e=bt~d(b) /, ~ :~'~-......

r ~ e,~abted(a):--, a

54

a E A enabled(a):-.a if enabled(a) ~ false
a ~ /

+
~:.-4a) X r ~t X

z + y z + V ' ~/

Y r yt Y 4:--.a X/

z + y ~:'-'a ~ y ' z + y r

z . y .y z . y ~y

X r xt X r V/
" '* ~bAr z ' i f C A r # false

r : 4 z r : 4 z ~^~:-~a v/
if r A r # false

Table 6. Transition rules for 2~(BPAgce,~(A)), where a E A, ~b E]~(A).

The (implicit) information about the Boolean algebra ~(A) present in this transition
system tells us tha t apparently

enabled(a) A r # false, enabled(b) A ~ # false,
enabled(c) r false, enabled(a) A r = false.

End example.

Consider the following (partially depicted) transit ion systems ofa.b+a.true :--* b
and a . b:

enabled(a)b :~~b

enabled(b) :

. b + a - t r u e : 4 b

a b l e d (a) : - * a

t r u e :--+ b

abled(b) A t rue : 4 b

i a .b

enabled(a) :.-, a

b

enabled(b) :---, b

, /

Observe tha t the transition system for a. b+ a . t r u e :--* b is shaped as two transition

55

sys tems for a.b. With respect to operational behaviour it does not ma t t e r whether the
s u m m a n d a . b or the summand a . t r u e :--* b is executed. Therefore we would like to
consider bo th transi t ion systems as equivalent. This can be achieved by identifying
bisimilar process te rms (see [ParSl]). We adap t bisimilarity to the set t ing with
"guarded labels" following the ideas of [BB91].

D e f i n i t i o n 2.3.3. A binary relation R C_ S(BPAgce,]~(A)) x ~7(BPAgce,~(A)) is
a bisimulation iff R satisfies for all p, q E 27(BPAgce, ~(A)) with pRq:

1. Whenever p r pl for some label r :--* a and p~, there are r162 and
ql,---,qk, satisfying for i = 1, ..., k

- q ~ qi,

- peRqi ,
- r _< r V ... V Ck holds in ~(A).

2. Conversely, whenever q r ql for some label r :--~ a and ql, there are r r
and Pl, . . . ,P5 satisfying for i -- 1, ...,l

- - P ~ P l ,

-- p iRq ~,
- r < r V ... V Cz holds in ~(A).

3. I f p r ~/for some label r :--* a, there are r ..., r satisfying for i = 1, ..., m
- q ~ ' : - ~ , ~/,

- r < r v ... v r holds in ~(A).

4. Finally, if q ~ : - . a ~ / fo r some label r :-~ a, there are r . . . ,r satisfying for
i = 1, ..., n

- p ~ ~/,
- r -< r V ... V Cn holds in]~(A).

We call p and q bisimilar, notat ion

p ~ - q ,

iff there is a bisimulation containing the pair (p, q). []

As a consequence of the way bisimulation relates the guards in the labels, the
typical guarded command axiom

a x + a y = a x + a y + a (r 1 6 2 (a e A)

defined in [GP90b] does not respect our notion of bisimilarity.

L e m m a 2 .3 .4 (Congruence) . The relation ~_ between closed terms over
Z(BPAgce , B(A)) is a congruence with respect to the operators of s]~(A)).

P r o o f . See Appendix. []

Moreover, it is not hard to prove tha t BPAgce is a sound axiom system with respect
to bisimulation equivalence.

56

T h e o r e m 2.3.5 (Soundness) . Let p ,q be closed terms over ,U(BPAgce,~(A)). y

BPAgce ~- p = q then p -~ q.

P r o o f . The relation _~ between the closed terms over the signature ~U(BPAgce, B(A))
is a congruence and hence respects the inference rules for equality. We have to show
tha t all axioms are valid. As an example we prove this for GC6.

Assume that r 6 B and p, q are closed process terms over ~U(BPAgce, ~(A)). We

have to show (r p)q r (pq). We define the relation n as follows:

R %f Xd u (((r p)q, r (pq)))

where Id is the identity relation on /7(BPAgce ,~(A)) . It follows easily tha t R is a
bisimulation, because any outgoing transition from (r : ~ p)q has a corresponding
transit ion from r :--+ (pq) to a state tha t is syntactically the same and vice versa.
Hence (r :--+ p) q a r : ~ (pq). []

2.4 State o p e r a t o r s a n d d a t a e n v i r o n m e n t s

We can consider processes as interacting with a set of data-states. This view can be
formalised with help of the state operator defined in [BB88], and extended to the
setting with guarded commands in [BB91]. The idea is as follows: assume a set S
of data-states with typical elements s, s ~, Then)~(p) represents the process p in
initial data-state s. The execution of actions may affect a specific data-state, so we
have equations of the form

A~(az) = a % , (x) .

Here a ~ is the action tha t occurs as the result of executing a in data-state s, and s ~
is the data-state that results when executing a in s. The a ' and s ~ generally depend
on a and s, and are defined by the functions

action : A x S --+ A tA {6},
effect : A x S ~ S.

In order to relate guards with the data-states in S, a third ingredient is needed
for the definition of state operators: a function

eval: ~(A) • S -* B(A)

tha t satisfies the axioms given in Table 7. The eval function must respect the
action function in the following sense: we require tha t the enabledness of an ac-
tion aetion(a,s) is equal to the enabledness of a, evaluated in s. This is cap-
tured by the axiom E3. Observe that for some uniformly enabled action a (i.e.,
enabled(a) = t rue) , it follows from E3 and E1 tha t action(a,s) is also uniformly
enabled for all s 6 S. Similarly, the function action must rename uniformly disabled
actions into uniformly disabled actions or 6 (recall tha t enabled (/f) = false).

State operators are defined by the axioms in Table 8. Note tha t with SOG4 it
follows that)~,(6) = ~ (f a l s e :--+ ~) -- false :-~ A~(x) --- ~f. Moreover, it follows
immediately tha t state operators can be eliminated from closed terms (cf. Lemma
2.1.2).

57

(El) evaI(true, s) = t r u e
(E2) evat(false,,) = false
(E3) eval(enabled(a),s) = enabled(action(a,s))
(m) ewz(r v r ~) = ev~l(r ~) v ewl(r ~)
(Eh) ewt (r ^ r = e~al(r ^ e ~ Z (r
(F,6) e~,at('-,r ,) = --,e,,,~l(r ~)

Table 7. The axioms for the evaluation function eval, where s E S, r r E ft.

(soc l)
(soc2)
(soc3)
(soc4)

~,(a) = aetio,~(a, s)
~ . (a ,) = action(a, ~).)'.SS.o,(-,,)('O

;,,(:~ + y) =),,(:~) + ,X,(y)
~,.(r :--. ~) = e , ,az(r :--.) , . (~)

Table 8. The axioms for state operators, where a E A, s E S, r E I3.

Given A and ~(A), we summarise the se t t ing with s ta te opera to rs in the following

definition.

D e f i n i t i o n 2.4.1 . A data environment S over a set A of act ions and a Boolean
a lgebra]~(A) is a tuple (S, action, effect, eval), where

- S is a non-empty set of da ta - s ta tes ,
- a c t i o n : A x S ~ A U { 6 } ,
- e f f e c t : A •
- eval: ~ (A) x S ~ B(A) , satisfying the axioms in Table 7.

Given any signature 2~ occurr ing in this p a p e r and some d a t a environment S,
we write

for the s ignature obt/~ined by adding all s t a te opera to r s A, to •. []

We give the t rans i t ion rules over ~7(BPAgce, B(A)) ~'s for s t a t e opera tors in Table
9. W i t h o u t proof we s ta te t ha t the Soundness Theorem 2.3.5 can be extended to
the set t ing with s ta te opera tors . In L e m m a 4.3.1 we prove a congruence result for a
more general set t ing with s ta te opera tors .

T h e o r e m 2 .4 .2 (Soundness) . Let S be given and p ,q be closed terms over the sig-
nature ~(BPAgce,]~(A)) ~'s. It holds that

BPAgce + E l - 6 + S O G 1 - 4 I- p = q ==~ p _~ q.

In order to reason abou t the possible d a t a - s t a t e t rans format ions t ha t a process
may induce in a certain d a t a environment , we define a p red ica te t h a t expresses local
enabledness (we regard predica tes as funct ions wi th codomain { t r u e , fa l se}) .

58

X r XI

e.al(,,.):-.aaion(o.), ,/

if e al(r ^ enabled(,O,,) # false

if eval(r A enabled(a), s) # false

Table 9. Transition rules for state operators, where a E A, s E S, r E B.

D e f i n i t i o n 2.4.3.

is defined by

Let S = (S, action, effect, eval) be given. The predicate

enabled(a, s) C A x S

enabled(a, s) def= { falsetrUe ifotherwise.eVal(enabled(a), s) # false

Likewise, enabled(p, s) abbreviates eval(enabled(p), s) (cf. Table 4). []

Furthermore, we define the traces of a process in a specific da ta environment.

D e f i n i t i o n 2.4.4. Let cr E A* denote a string over A, and A the empty string.
Given a data environment • = (S, action, effect, eval), we extend the function effect
to A*:

effect: A* x S -* S, where effect(A,s) de_~f S, and effeet(ag, s) def effect(or, effect(a,s)).

We define the relation (~,s), as follows:

Z (~,s), Z

X d,b:---~a Xt

z (a,~), x'
eval(r s) -7s false, _x r ~/

if enabled (a, s) = t rue . z (~'*),, x/
eval(r s) # false,

if enabled (a, s) = t r u e .

a: Ca,s), xl a: I (=,egeetCa,s)) , a~ n :g Ca,s), •l :gl (=,effect(a,s)) , ~ /

(aa,s) x"
z , z (a~,*), x/

An element (or, s) E A* x S is called a trace o f a p r o c e s s p i f f e i t h e r p (='*),, q

or p (=") , ~/. The set str(p, s) is defined as the set of all strings or, such tha t (c,, s)
is a trace of p. O

59

3 Requirements on backtracking

We regard backtracking as a technique for undoing data-state transformations. To
support this intuition, we first study it in the setting of a fixed data environment
over 2Y(BPAgce, B(A)). Later, in Section 4, we will follow a reverse approach and
define backtracking on an abstract, algebraic level. In order to reason about the
data-state transformations a process can perform, we define a relational semantics.
Then we partition the set of atomic actions and define some requirements on an
operator that models backtracking.

3.1 Re la t iona l semant ics for BPAgce

A very first intuition of backtracking is that it can undo data-state transformations; if
a processp cannot terminate successfully, then backtracking must offer the possibility
of undoing the effect of p in its initial data-state. After this the option of executing
p again must be discarded. Note that backtracking rather contains the undoing of
data-state transformations than of actions. For this reason, it may be useful to give
a semantic account of backtracking in terms of I /O relations on data-states. Such a
semantic approach is relational: it relates initial data-states to final ones resulting
from successful termination. Relational semantics is a central issue in, for instance,
Floyd-Hoare logic ([Bak80]). First we give the relational semantics for BPAgce in
some data environment.

Def in i t ion 3.1.1. Let A, B(A) and ,.q = (S, action, effect, eval} be given. We define
the relational semantics for BPAgce

[.]: 2Y(SPAgce,]~(A)) --+ (S --+ 2 s)

as follows (a E A):

- [~](s) %~ 0,
_ def ({effect(a,s)} if enabled(a, s) = t r u e M(s)

-- ~ 0 otherwise,
- ~ + q](s) d=ef [p](s) U [q](s),

- [p. ql(s) a_~f {s,l 3s".s" e [pl(s) A s' e [ql(s")},

- [r :---* p](s) d,f__ { o[pl(s)otherwise.if evaI(r s) ~ false

[]

So ~p](s) contains the data-states that can result after successful termination of p
in an initial data-state s.

L e m m a 3.1.2 (Soundness). Provable equality in BPAgce preserves the relational
semantics, i.e., if closed terms p, q over ,U(BPAgce,]~(A)) are provably equal, then
the relational semantics of p is equal to the relational semantics of q in any data
environment (S, action, effect, eval> :

BPAgce~-p=q ~ VsES.[p](s)--[q](s).

6O

P r o o f . All axioms of BPAgce are valid in the relational semantics, and the congru-
ence properties of "=" preserve the relational semantics. []

3.2 C las s i f i ca t ion of actions

In order to reason about the operational behaviour of atomic actions in the scope
of an operator for backtracking, we classify atomic actions. We start off by distin-
guishing between actions tha t cause data-state transformations and actions tha t do
not.

Definit ion 3.2.1. Let a E A and S = (S, action, effect, eval) be given. An action a
is called (operationally) inert iff

Vs e S . (enabled(a,s) = t r u e ==~ effect(a,s) = s).

/

What is usually referred to in the literature as inert actions, forms a subset of
the operationally inert actions defined above (see e.g. [BB91, BW90]). We will not
make this distinction and just call any operationally inert action inert.

Because inert actions cause no data-state transformations, backtracking over
inert actions must be avoided. If a process preceded by an inert action a cannot
terminate, there is no effect of a tha t has to be undone. In order to distinguish
between inert and non-inert actions, we define a predicate Inert over A that is
exactly satisfied by the inert actions of A.

We further classify the actions for which Inert does not hold. Invertibility of
such actions is at stake if a process cannot execute its subsequent part, so when it is
deadlocked. Let a E A. If there is an action b E A such tha t any possible data-state
transformation caused by a can be undone by b, we call a semantically invertible.
More formally:

a is semantically invertible ~=~ 3b e AVs e S.([a](s) # O ~ [a.b](s) = {s)).

The action b is an inverse action of a in this case.
We give an algorithm to partit ion {a e A [-~Inert(a)} into three subsets tha t

satisfy mutually exclusive predicates:

- A predicate Invertible, which expresses tha t a semantically invertible action is
' formally' invertible,

- A predicate Pass, which expresses tha t an action is t ransparent w.r.t, backtrack-
ing,

- A predicate Commit, which expresses tha t an action refutes any backtrack pos-
sibility.

We assume tha t init!ally none of {a e A [-~Inert(a)} satisfies one of these predicates.
The algorithm runs on a set Source tha t initially equals {a e A [-~Inert(a)}. In
Section 4 some design decisions, implicit in the algorithm, are motivated.

6]

whi l e Source is not empty
do choose an action a in Source and remove a from Source,

i f a is semantically invertibte,
t h e n

e i t h e r define Commit(a),
or define Invertible(a) and select a b in Source t3 {c e A] Pass(c)} tha t

is an inverse action of a.
If b E Source, define Pass(b) and remove b from Source,

else define Commit(a).

o d
fi

The Invertible predicate holds for those actions in {a ~ A [-~Inert(a)} tha t are
considered invertible on the syntactic level. Note tha t the way we select formally
inverse actions suggests a deterministic notion of invertibility: we require tha t a
single action, say b, is a uniform inverse of an invertible action a (i.e. for any initial
data-state) . So we require tha t if [a](s) = {s'}, then b can always be performed in
the data-s ta te s ~ to undo the effect of a in the initial data-state s. We also have tha t
different invertible actions can have the same inverse, and tha t an inverse action
cannot be invertible itself.

The Pass predicate holds for actions that , if backtracking happens, actually undo
data-s ta te t ransformations caused by invertible actions. We now extend the class of
actions for which Pass holds because once an action is executed in a certain data-
state in the scope of a backtrack operator, it must not be executed again. There is
no reason to repeat its data-state t ransformation plus its 'undoing ' more than once
(if nested backtracking occurs). To avoid repeated backtracking over a single action
a, we make a duplicate flag(a) and extend the set of actions with a copy:

(flag(a) I a e A ^ Znvertible(a)}.

We further reason about the 'extended ' set of atomic actions A flag, where

Astag de=f A U {flag(a) l a e A A Invertible(a)},

and define Pass(flag(a)). Consequently, the domains of the predicates are extended
from A t o A flag.

If an action a is not formally invertible and must not be passed in the scope of
an operator for backtracking, Commit(a) holds, and backtracking over any process
ap is impossible once a is executed.

Having classified the non-inert actions we return to the inert actions. Inert ac-
tions cause no data-s ta te transformations, and therefore we do not regard them as
invertible. We have the freedom, however, to classify inert actions as actions that ,
in the context of backtracking, either behave as Pass actions or as Commit actions.

We define variants of the above predicates by involving the evaluation of the
enabled predicate.

i~ertible(a, s) do=~ enabled(a, s) ^ I~vertible(a),
pass(a, s) a~ enabl,d (a, s) ^ Pass(a),
commit(a,s) ae_.f enabled(a,s) A Commit(a).

62

Note that adding the predicate enabled (a, s) = false defines a partition on Aylag • S.
We finally extend the pass and commit predicates to strings over A flag. Let a

denote a finite string over Aytag, and X the empty string.

pass(X, s) def = false,

pass(aa, s) d~j pass(a, s) V pass(g, effect(a, s)),
commit(X, s) def = f a l s e ,

commit(aa, s) de_t commit(a, s) V commit(a, effect(a, s)).

3.3 Four r e q u i r e m e n t s

Now we can characterise the crucial property of whether a process can give rise to
backtracking by a predicate fail:

fail(z, s) de=f 3a e str(z, s)3z'.
(z (~"'),, z' A -~enabled(z', effect(g, s)) A -~commit(a, s)).

So fail(x,s) holds if the process z can transform a data-state s according to a
string a that is not committed in s, and gets stuck. If enabled(x,s) = false then
clearly fail(~, s) holds, because commit does not hold for the empty string X. As a
consequence, fail(6, s) holds by definition.

Having defined the predicate fail, we can formulate four requirements on an
operator that models backtracking. We use the symbol

+

(pronounce try) for this operator. These requirements are formulated in terms of the
relational semantics [.] for Z(BPAgce,]~(Altag)) and the above predicates.

At this stage we define "~p + q]" only informally. The idea is that if p contains
no pass actions, then ~p + q] can be interpreted as follows: if backtracking is not
triggered the relational semantics of [p + q] in s is equivalent to the the relational
semantics ofp in s, otherwise it is equivalent to the union of the relational semantics
of p and q in s (see the Requirements I and II). I f p does contain pass actions, we
only partially define ~p gr q] (see the Requirements I I I and IV). Let a G AItag.

R e q I. va ~ str(z, s) . ~pass(a, s) ^-~fail(x, s) ==> Ix § v](s) = [zl(s) ,
R e q I I . Va E str(x,s).~pass(a,s) /\ fail(z,s) ~ [= g - y] (s) = i z i (s) U [y l (s) ,
R e q I I I . pass(a,s) ~ [a ~- y](s) = [a](s),
R e q IV. pass(a,s) ~ [(a. z)~-y](s) = [z ~-yl(effect(a,s)).

Observe that Requirement II implies that

-enabled(z,s) ==~ ix + y] (s) = [Yl(S)-

For reasons of simplicity, the Requirements I and I I are a bit more restrictive
than necessary. The premisse Va E str(z, s).-,pass(a, s) could be replaced by a form
in which only strings with non-inert pass actions are considered: the formal inverses
and the flag actions.

63

The Requirements III and IV express the transparency of actions for which pass
holds w.r.t, backtracking. These requirements also express the simple behaviour of
inert pass actions in the scope of the backtracking operator §

The requirements above only partially express the semantic properties of our
backtracking operator as a result of the clause Wr e s~r(z, s) . "~pass(~, s) in the
Requirements I and II. We give an example to illustrate the complications that
occur when a process contains a mixture of actions for which pass holds and actions
for which pass does not hold. Let z = (a + b). 6 with pass(a, s) and invertible(b, s).
This process satisfies none of the requirements, while the desired relational semantics
is obvious:

[(a + b). ~ § y](s) = [ylCeZect (a, s)) U IylCs).

The difficulty of formulating requirements for this general type of processe s is that
every non-inert pass action in the left argument of § that is part of a not successfully
terminating string, influences the initial state of the right argument of §

In the sequel § will be defined in an algebraic way. Indeed it will turn out that
this operator satisfies all the requirements (see Theorem 4.3.4).

4 BPA(§ Basic Process Algebra with backtracking

In this section we formalise the notions introduced in the previous section. However,
we reverse our approach and start off from a partitioned set of actions, instead of
a data environment. We define criteria for 'admissible' Boolean algebras and data
environments: these must respect the definitions of Section 3.2.

Next the binary operator § for backtracking is axiomatised. For this operator
some fundamental properties are proved, the most important of which is associa-
tivity. This important property only holds if the Boolean algebra that defines the
guards satisfies some special constraints.

4.1 S igna tu re and ax ioms o f BPA(§

The starting point for the axiomatisation of backtracking is formed by the signature
~U(BPAgce, •(A)) (see Section 2). We continue by extending E(BPAgce,B(A)) to a
setting with Aftag and the predicates defined in Section 3.2. The approach in that
section was based on a specific data environment in order to provide some intuition
for the partitioning of A and the extension to Afzag. We now take a reverse approach,
and assume that we have given a set of actions Afz~g, partitioned by mutually
exclusive predicates Invertible, Pass and Commit. We have also a predicate Inert
that is a subset of Pass U Commit. Instead of starting from the data environment
based notions 'inertness', 'semantic invertibility' and 'inverse actions', we take a
more abstract point of departure and define criteria on Boolean algebras and data
environments that preserve the meaning of these notions.

The class of non-inert actions for which Pass holds is divided in formal inverses
and flag actions (see Section 3.2). These two special types of atomic actions are
studied more closely now, in order to define a setting in which backtracking can be
axiomatised.

64

Recall tha t flag(a) was introduced to indicate tha t the atomic action a, where
Invertible (a) holds, has been executed in the scope of a backtracking operator and
has induced an inverse action. We defined Pass(flag(a)). We regard flag actions as
the result of an application of a function Flag to elements from the set of actions
{a E A [Invertible (a)}. In order to make Flag a total function, its domain is extended
to Aftag. Below, the formal definition of the Flag function is given.

D e f i n i t i o n 4 .1 .1 . The function Flag : Aflag "-'* Afzag U {5} is defined by

dof f flag(a) if Xnvert~ble(a) holds Flag (a)
=], 5 otherwise.

[]

For an action a E {b E A I Invertible(b)} its formal inverse is writ ten as undo(a).
From the partit ioning algorithm it can be seen that an action b # a can exist with
undo(b) = undo(a). We defined Pass(undo(a)). The undo actions are now regarded
as the result of the application of a function Undo to elements from the set of actions
{a e A] Invertible(a)}. The domain of the Undo function is extended to Aftag as
follows:

D e f i n i t i o n 4 .1 .2 . The function Undo : Afzag "* AIlag U {5}' is defined by

Undo(a) aef= { ~ndo(a) ifotherwise.Invertible(a) holds

[]

We have the following identities, which state tha t double application of the func-
tions Flag and Undo yields 5. I terated application is not allowed because both func-
tions are not defined on 5.

C o r o l l a r y 4 .1 .3 . Let a E Afag.

Invertible(a) ~ (Flag(Flag(a)) = 5) A (UndoC Undo(a)) = 5) A
(Undo(Flag(a)) = 5) ^ (Flag(Undo(a)) = 5)

P r o o f . Follows easily from the Definitions 4.1.1 and 4.1.2. []

Having defined the functions Flag and Undo, we extend ,U(BPAgce,~(A)) to a
setting with AItag. First the Boolean algebra needed for backtracking is defined.

D e f i n i t i o n 4.1.4. Given a partitioned set of actions Aylag, a Boolean algebra
~(Afz~g) is defined as containing expressions

- {enabled(a)] for all a E Ailag },
- {Inert(a), Invertible(a), Pass(a), Commit(a) la ~ AStag},

and satisfying

65

- - Inert(a) = f t r u e if Inert(a) holds in the part i t ion
false otherwise,

and similarly for the predicates Invertible, Pass and Commit,
- enabled (flag(a))-- enabled(a)whenever Invertible (a) holds.

[]

Closed terms over E(BPAgce, ~(Allag)) are now evaluated in a data environment
t-~flag �9

D e f i n i t i o n 4.1.5. A data environment ~flag o v e r a part i t ioned set of actions Aylag
and a Boolean algebra ~(Afzo~) is a tuple (S, action, effect, eval), where

- S is a non-empty set of data-states,
- act ion:Aflag x S - ~ A l l a g U {~},
- effect : Allag x S --* S, satisfying

v s e s . effect(f lag(a), s) = e/~eet(a, s),
Invertible(a) = t r u e ==~ Vs e S . effect(undo(a), effect(a,s)) = s,

Inert(a) -- t r u e ~ Vs e S . (enabled(a,s) = t r u e =~ effect(a,s) = s),

- eval : ~(Afzag) x S ---* ~(Afz~g), satisfying the axioms in Table 7 and whenever
Invertible (a) = t r u e , also satisfying

eval(enabled (a), s) <_ eval(enabled (undo(a)), effect(a, s)).

[]

It seems straightforward to require action(flag(a), s) = action(a,s) whenever
Invertible (a) = t rue . We do not, however, because it may be desirable to keep the
distinction between flag(a) and a after evaluation of the process in which they occur
with the state operator.

In the previous section a data-state dependent predicate was defined in some data
environment 3 tha t described the actual s tatus of an action in a certain data-state:
invertible(a, s), which holds if a is enabled in s (i.e. eval(enabled(a), s) r false) , and
a is an invertible action. In a similar way pass(a, s) and commit(a, s) were de~ned.
These semantic predicates have their counterparts in a Boolean algebra 1~(Afzag).

D e f i n i t i o n 4.1.6. Given]~(Aftag), we define the following abbreviations for all
a E A f l a g :

invertible (a) = e~abled (a) ^ Invertible (a),
pass(a) = enabled(a) A Pass(a),

�9 c o m m i t (a) = enabled(a) ^ C o m m i t (a) .

[]

66

From the definition of the partition of Allag it follows that also these predicates are
mutual ly exclusive. From the above information we can derive a simple result:

enabled (a) = revertible (a) V pass (a) V commit (a).

Now we add the binary backtracking operator + (introduced in Section 3), and
the functions Flag and Undo to the signature Z(BPAgee ,$(Aymg)) . The signature
thus obtained, Z(BPAgce, Flag, Undo, +, B(AImg)), will further be abbreviated as

~7(BPA(+)).

Let P denote the set of process terms over ~7(BPA(q-)), and B the set of Boolean
expressions over B(Ayza~). Consequently, we extend the domain of the enabled pred-
icate to terms over 17(BPA(+)).

The axioms for the q- operator are listed in Table I0. The binding power of q- is
taken to be less than �9 and stronger than :-+. The axiom system BPAgce, extended
with the 5 axioms for the q- operator will be referred to as BPA(q-). Observe that
this way of axiomatising the + operator is in accordance with the basic term scheme
of Definition 2.1.1.

(Bal) ~ ~- z =
(Ba2) a ~- z =
(Ba3) a . z + y =

(Ba4) (~ + y) + ~ =

(B~5) (r :-~ ~) + y =

X

i=~ertibl~(a) :-~ Frog(a). (= + V=do(a). y) +
pa,~(a) :-4 a. (= + y) +
commi~(a) :-+ a. x +
~e~abled(a) :-+
e~abl~d(~) :-~ �9 + ~ + ~=ablr :-~ y + z +

r z + y + - , r y

Table 10. The axioms of BPA(q-) for backtracking, where a 6 Almg, r E B.

Axiom Ba l expresses that 6 in the left argument of the q- opera tor leads to
the choice of the right argument. The axiom Ba2 states tha t backtracking over a
single action as the left argument of the + operator does not occur: the occurrence
of a single action a leads either to successful termination or to the choice of the
right argument, depending on the enabledness of a. The summand enabled(a) :~ a
equals a according to Lemma 2.2.3. The guards in Ba3, which are mutual ly exclusive,
represent the actual test on the atomic actions under the + operator. In this axiom
the core of the backtracking mechanism is best visible: if an action a is invertible,
then a is removed from the scope of + after applying the function Flag to a, and the
formal inverse of a is inserted with the function Undo, prefixing the right argument
of the + operator. Note that certain restrictions on the set of actions A)la9 may
lead to the cancellation of summands in the right hand side of Ba3. Axiom Ba4
defines how the choice operator + distributes over § and axiom Ba5 defines how
the guarded command construct :--* is removed from the scope of + .

67

The Booleans representing the partitioning predicates Inert, Invertible, Pass and
Commit have the useful property of any Boolean r E { t rue , false}:

r :-+ z . y = r : - , z . (r : ~ y).

As a consequence, we can replace Flag(a) by flag(a) in axiom Ba3 as soon as it is
known that Invertible (a) = t rue . Likewise we can replace Undo(a) by undo(a).

The following theorem states that the ~- operator can be eliminated from closed
27(BPA(q-)) terms. Consequently, properties of ,U(BPA(q-)) terms can be proved
by induction on the structure of basic terms over 27(BPAgce,B(A1ta,)) (see the
Representation Lemma 2.1.2).

T h e o r e m 4.1.7 (Elimination);

1. I / p is a closed term over Z(BPA(+)) , then there is a basic term ff over the
signature 2~(BPAgce, B(Altaa)) such that

BPA(~-) I- p = / i

~. BPA(~-) is a conservative extension of BPAgce, i.e., for all closed terms p and
q over Z(BPAgce,~(A/ta ,)) we have

BPA(~-) F- p = q r BPAgce b p = q.

P r o o f . See Appendix.

4.2 P r o p e r t i e s of t he § o p e r a t o r

In this section some properties of the ~- operator are proved. The Enabledness The-
orem 4.2.2 shows that enabled(z ~-y) is equivalent to enabled(z + y). After this, we
will show that associativity does not hold in general for the ~- operator: an extra
constraint on B(Apaa) must be satisfied to have associativity.

We start off by giving some identities which demonstrate the interaction of ~-
and the guarded command : ~ in various ways. These identities are used for further
results.

L e m m a 4.2.1.

1. r :--, (r :--+ z) + y = r : - , z+y,

(r :--* z + r :--* y) + z = r ^ enabled(z) : 4 z + z +
r A enabled(y) : ~ y + z +
(~r v -~enabled(z)) ^ (~ r V -enabIea(y)) :-+ z,

3. = + y = enabled(=) :--. z + y + -~enabled(=) : ~ y,

4. (r162162162

P r o o f . See Appendix. []

68

The following theorem states that enabled (z § y) is equivalent to enabled (z + y)
whenever x represents a closed term. A result which from a semantic point of view
is not very surprising.

T h e o r e m 4.2.2 (Enabledness). I f p is a closed term over ~U(BPA(§ then the fol-
lowing holds:

enabled (p + y) = enabled (p) V enabled (y).

Pr oo f . See Appendix. []

In order to obtain an associative operator for backtracking, a restriction on the
Boolean algebra ~(Altag) is needed. We illustrate this with an example.

E x a m p l e 4.2.3. Let a, b, c e A flag, and Invertible (a) = enabled (undo (b)) = t rue ,
then

1. (a . undo(b). 6 § § c =
enabled(a) :-~ flag(a), undo(b). (~ndo(a). c + -enabled(~nao(a)):-~ c) +

~enabled(a) :~ c,

2. a . u,~do(b) . 6 r (6 + c) =
enabled (a) :--..> flag(a), undo(b), undo(a) . c +

~enabled(a) :--* c

(see the Appendix for a proof). It is easy to see that the two process terms above
are not equal. Consequently, associativity cannot hold in general for the § operator.
E n d e x a m p l e .

We can obtain associativity for q- by only regarding Boolean algebras in which
the actions undo(a) are uniformly enabled (as suggested by the example above).

Def in i t ion 4.2.4. Let a E Ayzag. A restricted Boolean algebra ~(Alzag)- is a
Boolean algebra ~(A/tag) that satisfies the constraint

Invertible(a) = enabled(~ndo(a)).

We write 22(BPA(§ for a signature ~U(BPA(§ defined over a Boolean algebra
~(Afzag)- . []

L e m m a 4.2.5. Let a E A/lag and Invertible(a) = t rue . In a restricted Boolean
algebra]~(A/tag) - the following identity holds:

pass(undo(a)) = t rue .

P roo f . By definition. []

69

T h e o r e m 4.2.6 (Associativity). I f p is a closed term over ,U(BPA(§ then back-
tracking is associative:

(p § y) § z = p § (Y § Z).

Proo f . See Appendix. []

We give an example that shows why we defined flag actions, and consequently had
to extend the set of atomic actions from A to Allan , in order to obtain associativity
of § For this purpose, we can assume that Flag(a) = a for a E A, and use axiom
Ba3 in its current form. If Invertible (a) = t rue, then the following identity can be
derived.

(a . 5 § 5) § b = a . undo(a) , undo(a) , b + ~enabled(a) :---* b,

which is in general not equal to

a . 5 § (5 § b) = a . undo(a) , b + ~enabled(a) :-~ b.

Another design decision was to define Pass(undo(a)) for all invertible actions
a. The reason for this is again the associativity of § it can neither be allowed to
define Commit(undo(a)) nor to define InvertibIe (undo(a)). We illustrate the inap-
titude of the second alternative with an example. Suppose we have Invertible (a) =
Invertible(undo(a)) = true, and f lag(undo(a)) denoting the flagged duplicate of
undo(a) and undo(undo(a)) denoting the inverse of undo(a). Then we can derive

(a . 5 § 2 4 7 =

enabled(a) :.-o f lag(a) , f lag(undo(a)) , undo(undo(a)) , b + ~enabled(a) :--.~ b,

which can in general not be equal to

a . 5 § (5 § b) = enabled(a) :---* f lag(a) , undo(a) , b + -~enabled(a) :--* b.

4.3 B i s imula t ion and re la t ional semant ics

First we give the transition rules for ~U(BPA(§ x's by combining those of Tables 6
and 9 with the ones given in Table 11.

L e m m a 4.3.1 (Congruence). Let S be given. The relation ~_ between closed terms
over the signature Z(BPA(§ ~,s is a congruence with respect to the operator §

Proo f . See Appendix for a sketch. []

We have the following result:

T h e o r e m 4.3.2 (Soundness) . Let a data environment S be given, and let p ,q be
closed terms over ~(BPA(§ x,s. It holds that

B P A (§ ~ p_~q .

70

a e A enabled(a):~a if enabled(a) # false
a , ~ /

a e A if enabled(a) # false A Invertible(a) = t r u e
flag(a) enabled(a):--a V

+
Y ~:--,b~ yl

z +y ~:--~b> y,
if r A enabled(z) = false

r)

Y ~/ if r A enabled(z) = false
z + y r V/

z 4- y ~:--.b x' 4- undo (a). y
if Invertible(b) = t r u e

X X r ~t
if Pass(b) = t rue r) a:'

z + y ~:--.b z ' + y z ~ - y
if Commit(b) = t r u e

Tab le 11. Additional transition rules for BPA(~-), where b E Afz~ o, r E B.

P r o o f . I t is easy to check tha t all new axioms of BPA(~-) are valid. By the Congru-
ence Lemma 4.3.1 the soundness of B P A (+) follows immediate ly . []

In order to prove tha t the Requirements I - IV, formula ted in Section 3, are
satisfied by the relat ional semantics of 4-, we formally define the re la t ional semantics
for closed te rms over E (B P A (§

D e f i n i t i o n 4 .3 .3 . Let p, q denote closed te rms over ~ (BPA(4-)) , and a d a t a envi-
ronment S be given. Then

v , e s . b + q](,) [d (,) ,

71

where r is a closed term over ~(BPAgce,~(As, zag)) such tha t B P A (+) b p + q = r .
[]

By the Elimination Theorem 4.1.7 the expression [p 4- q](s) is well-defined: ac-
cording to this theorem the 4- operator can be eliminated from closed s
expressions. Moreover, because BPA(§ is a conservative extension of BPAgce, we
find that if BPA(4-) ~- p 4- q = r and BPA(4-) b p 4- q -- r ' , then BPAgce ~- r = r ' .
Using Lemma 3.1.2 we find that Vs e S . [rl(s) = [r '] (s) .

T h e o r e m 4.8.4 (Requirements). Requirements I - I V are satisfied by the relational
semantics of 4-.

P r o o f . See Appendix. []

5 R e c u r s i v e l y d e f i n e d p r o c e s s e s a n d a n e x a m p l e

In this section Basic Process Algebra with backtracking is extended with recursion.
Furthermore, an example is given of a recursive specification over ~(BPA(4-)) , as
well as its evaluation with state operators.

5.1 S p e c i f y i n g p r o c e s s e s b y r e c u r s i v e e q u a t i o n s

We introduce processes defined by possibly recursive equations. We do not consider
state operators as a means to specify processes in this way.

D e f i n i t i o n 5.1.1. A recursive specification E = {~: = t~ [~ E VB} over the signa-
ture ~ (B P A (§ is a set of equations where VE is a possibly infinite set of indexed
variables and t~ a term over ~(BPA(4-)) such tha t the variables in t~ are also in
V/v. []

A solution of a recursive specification E = {z = t~]z E V~v} is an interpretation
of the variables in VE as processes, such tha t the equations of E are satisfied. For
instance, the recursive specification {z = z} has any process as a solution for z, and
{z = az} has the infinite process "a ~' ' as a solution for z. The following syntactical
restriction on reeursive specifications turns out to enforce unique solutions (modulo
bisimilarity).

D e f i n i t i o n 5.1.2. Let t be a term over the signature 2~(BPA(+)), and E = {z =
t , [~ e Vs} a recursive specification over 2~(BPA(4-)).

- An occurrence of a variable z in t is guarded iff t has a subterm of the form a. M
with a E Afzag, and this z occurs in M.

- The specification E is syntactically guarded iff all occurrences of variables in the
terms tz are guarded.

- The specification E is guarded iff there is a syntactically guarded specification
E ' = {z = t ~_ [z e VE} over ,U(BPA(4-)) such tha t BPA(4-) b t~ = t~ for all t~.

72 []

Now the signature ~U(BPA(q-))rtEc, containing representations of recursively de-
fined processes, is defined as follows.

Def in i t ion 5.1.3. The signature S(BPA(q-))R~c is obtained by extending the sig-
nature Z(BPA(4-)) in the following way: for each guarded specification E = {z =
t= I x 6 VE} over Z(BPA(~-)) a set of constants {<z [E>] z e VE} is added, where
the construct <z [E> denotes the z-component of a solution of E. r3

Some more notations: let E = {z = t~]z 6 Vm) be a guarded specification over
~U(BPA(~-)), and t some term over ~(BPA(§ Then < t] E > denotes the term
in which each occurrence of a variable x 6 VE in t is replaced by <x [E > , e.g., the
expression <aaz [{x = az}> denotes the term aa<z [{z = az}>.

For the constants of the form < x [E > there are two axioms in Table 12. In
these axioms the letter E ranges over guarded specifications. The axiom REC states
that the constant < z] E > (z e VE) is a solution for the x-component of E, so it
expresses that each guarded recursive system has at least one solution for each of
its (bound) variables. The conditional rule RSP (Recursive Specification Principle)
expresses that E has at most one solution for each of its variables: whenever one
can find processes p~ (z E Vm) satisfying the equations of E, notation E(p'~), then
p~ = <z [E>.

(REC) < z [E > = < t ~] E > i f z = t ~ E E

E - ~
(RsP) if �9 e v E

p~ = <z]E>

Table 12. Axioms for guarded recursive specifications.

Finally, a convenient notation is to abbreviate < z [E > for z E VE by X once
E is fixed, and to represent E only by its REC instances. The following example
shows all notations concerning recursively specified processes, and illustrates the use
of REC and RSP.

E x a m p l e 5.1.4. Consider the guarded recursive specifications E -- {~ = az} and
E' = {y = ayb} over Z(BPA(~-)). So by the convention just introduced, we write
X -= a X and Y = aYb. With REC and RSP one can prove

BPA(~-) + REC + RSP ~- X = Y

in the following way. First note that X b = aXb by REC, so E (X b) is derivable.
Application of RSP yields

Xb = X. (1)

73

R~c (1)
Moreover, Xb = aXb = aXbb, and hence E'(Xb) is derivable. A second applica-
tion of RSP yields Xb = Y. Combining this with (1) gives the desired result. E n d
e x a m p l e .

The general transition rule by which processes defined by guarded recursive spec-
ifications are associated with transitions systems is given in Table 13. The specifi-
cation E = {z = t , [x 6 Vz} denotes a guarded recursive specification over the
signature ~7(BPA(+)).

<x [E> r x'
if z = G E E

Table 13. Transition rule for guarded recursive specifications, where a 6 A frog, r 6 B.

The algebraic manipulation of process terms over ,U(BPA(+))REo may require
the axiom SB, Standard Backtracking, stating that backtracking is associative. The
reader should keep in mind that this axiom is sound in a signature with a restricted
Boolean algebra B(AImg)- , but that associativity does not hold in general. Without
proof we state that the Enabledness Theorem 4.2.2 is derivable for process terms
over Z(BPA(§

(SB) (x+y)+z=x+(y+z)

Table 14. The axiom for Standard Backtracking.

5.2 A n e x a m p l e of a p roces s w i t h backtrack ing

In this section we evaluate in ~7(BPAgce, B(Aflag))REC a recursive specification over
IT(BPA(+))REc in a given data environment ,S/~9 in a specific initial data-state.
By virtue of the Elimination Theorem 4.1.7 we can apply any state operator to
closed terms over Z(BPA(+))REc. By the definition of guardedness, also recursive
specifications over ,U(BPA(+))REc can be evaluated.

Our example shows in an easy way that many of the previously defined notions
can be combined to analyse a small problem, borrowed from the chess game.

E x a m p l e 5.2.1. A well-known problem from the chess game that can be solved
with backtracking is the 8 Queens Problem (see e.g. [Bra86]). The problem can be
formulated as follows: "Put 8 queens on a chessboard such that none of the queens
attacks another". In order to illustrate the backtracking mechanism of BPA(+)ttEC,

74

we reduce this problem to a much simpler one that is in essence analogue. Our
simplified version of this problem is "Put 3 rooks on a 3 • 3 'chessboard' such that
none of the rooks attacks another". We start off by defining the set of atomic actions
A and the Boolean algebra B(A). We use the sort Nat for representing the natural
numbers. On Nat we have the functions +, - and an equality function eq.

As a set A of atomic actions for the 3 Rooks Problem we choose

A de___f {puti,putbacki, write, write(k1, k2, k3), ready I i E {1, 2, 3}, ki e Nat} ,

where puti and putbacki put Rook i on another position, write is evaluated as
write(k~,k2, k3) writing the current data-state (the positions of the three rooks)
to some external device, and ready indicates that the process has terminated.

The Boolean algebra B(A) we use for the 3 Rooks Problem contains, next to
expressions enabled(a) with a 6 A, expressions

eq(nl,n2),

where nl ,n2 represent natural numbers.
Let i 6 {1,2,3} and ni, ki, k~ 6 Nat. For solving the 3 Rooks Problem we take

the following data environment S = (S, action, effect, eval):

- S d,j { (k l , kg., k3) [k,, k2, kz E Nat}.
- The action function is defined as the identity function on A, except for

action(write, (kl, k2, k3)) de__f write(k1, k2, k3).

- The effect function is defined with the help of a predicate attack. The substitution
of k~ for ki in (kl,kg.,k3) is denoted by (kl,k2,k3)[k~/ki].

attack(ni,(kl,k2,k3)) de___f V ~i ---- k S. in Nat,
l <_s. <i

effeet(p t. (ki, do =

(kl, k2, ka)[(kr + 1)/k~] if "~attack((k, + 1),, (kl, k2, k3)) in Nat
effect(p t. + otherwise,

effect (putbacki, (kl , k2, k3)) de_f

(kl,k2, ka) if kl = 0 in Nat
(kl , k2, k3)[(kl - 1)/ki] if kl ~ 0 in Nat and

-~attack((kl - 1)i, (kl, k2, k3)) in Nat
effeet(p=tbaek , (kl, k3)[(kl - otherwise.

The actions write, write(k1, k2, k3) and ready are inert, and uniformly enabled.

75

- The eval function is given by

eval (enabled (puti), (kx , k2, ks))

t r u e if 3hi �9 ki < ni _< 3 and
~attack (k,, (kl , k2, ks)) and
-~attack(ni, (ka, k2, kS)) in Nat

fa lse otherwise,

eval(enablcd(putbacki), (kl, k2, ks)) d=ef true,

eval(eq(na,n2), (kl, k2, ks)) def ~ true if nl = n2 in Nat
= ~ fa lse otherwise.

Wi thout proof we state tha t putbacki is an inverse action o fpu t l so we par t i t ion A
by defining Invertible (puti), Pass(putbackl) and Pass(write). We fur thermore define
Pass(write(k1, k2, ks)) and Pass(ready), though we also could have classified these
actions as Commit. For the part i t ioned set of actions we then have

A flag = {puti, undo(puti),flag(puti), write, write(k1, k2, k3), ready
I i e {1, 2, 3}, ki e Nat},

where
undo(putl) aef putbackl.

The definition of an extended da ta environment ,.q/~ag is simple: extend the func-
t ion action to Allag with the identity on flag actions (note t ha t the requirements in
Definition 4.1.5 are satisfied). Let i E Nat. The process tha t generates solutions of
the 3 Rooks Problem is specified by

E de_f { Bi = eq(i, 1):--* (put1. B2 + -,enabled(put1):--~ ready) +
eq(i, 2) :--* put2 �9 B 3 q- B1 +
eq(i, 3) :--* put3 " write. 5 + put~. �9 Bs }.

The process Bi always tries to put Rook i on a next position on column i, such tha t
it does not a t tack any rook on a column j < i. I f this is not possible then if i > 1
it tries to put the rook on column i - 1 on a next position.. As soon as the rook on
column 1 cannot be put on a next position, the process te rminates . I f Rook 3 is put
on a new position a write action follows, after which a 5 (triggering backtracking) is
met .

Finally we prove tha t E specifies a process tha t can generate all possible solutions
of the 3 Rooks Problem. We demonst ra te this by evaluating ~(0,0,0)(B1), which is
the process tha t s tar ts by put t ing Rook 1 on our chessboard, where all rooks are on
a row (0, 0, 0) (say, not on the chessboard).

The evaluation of B1 in da ta-s ta te (0, 0, 0) yields a ~ (BPA6) process t ha t per-
forms write(ka, k% ks) actions for all possible solutions of the 3 Rooks Prob lem as
follows (see the Appendix for a proof):

)~(o,o,o) (B1) = put1"
1 ag(put).

l ag(vut3) " w r i t e (i , 2, 3). ndo(put).

(put3) . writ (1, 3, 2) . ndo).
undo(put2).

undo(put2).
~(a,0,0)(B1)

76

~(1,0,0)(B1) = purl"

~ag(p~t~) �9 ~rite(2,1, 3). ~do(p~t3).
~ag(p~ts).

~g(p~t~) �9 ~rite(2, 3,1). ~ndo(p~t~)-
undo(puts).

undo(puts).
~(s,0,0)(B1)

k(2,0,0) (B1) = put1"
~ag(p~t2).

[tag(p~t~).
~ag(p~t~) . ~rite(~, Z, 1). ~do(p~t~).

undo(put:).
undo(put2).

ready.

The inverse actions used here for the specification of the 3 Rooks Problem are
uniformly enabled. Consequently, the Boolean algebra B(Aizag) is a restricted alge-
bra ~(AIzag)-. However, for a proof of the evaluation above this is not necessary,
because we do not use associativity of the ~- operator. The 3 Rooks Problem can
also be solved using a finite domain {0,1, 2, 3) instead of Nat. In this case, the def-
inition of a data environment for specifying this problem needs some adaptations.
E n d example .

The 8 Queens Problem can be specified and evaluated analogously by changing S
into a tuple of 8 natural numbers instead of 3, and by changing the attack predicate,
such that attacks on the diagonals of the chessboard are included. The specification
E requires only small adaptations.

Moreover we mention here that many variants of the 3 Rooks Problem are con-
eeivable. For instance, only small changes in the definition of the data environment
~q make it possible to specify this problem with only one put and one putback ac-
tion. Also non-determlnistic choices between the rooks to be put can be specified,
such that evaluation leads to various correct solutions in the form of traces with the
desired write actions.

6 C o n c l u d i n g r e m a r k s

The operator q- for modelling backtracking over a given data environment was ax-
iomatised. For this purpose, we defined the axiom system BPAgce as a core system,
containing an explicit notion of enabledness.

Observe that the special case

enabled (a) = t r u e for all a E Ayzag

simplifies some parts of the theory considerably. Notably, the ~- becomes associative
for any Boolean algebra ~(Aftag) . We remark that this case is equivalent to a setting

77

without explicit enabledness: backtracking can only be triggered by guards or & (and
not by atomic actions anymore).

A closer s tudy of what backtracking implies led us to the conclusion tha t the
introduction of only the predicate enabled on the atomic actions is not sufficient
for an axiomatisation of a backtracking operator. Some additional information on
the nature of atomic actions is needed in order to decide how to deal with an ac-
tion that is subject to backtracking. When every action gets the same t rea tment in
the scope of a backtracking operator, the notion of backtracking becomes diffuse.
For instance, if repeated backtracking on a single action is allowed, the mechanism
becomes inefficient, and moreover a binary and associative backtracking opera tor
seems impossible to axiomatise.

In order to motivate some of the design decisions we had to make for obtaining
associativity of q-, some examples were given. A basic design decision, which we
made in Section 3, was to choose for a deterministic notion of invertibility: if an
action a is invertible, then undo(a) can undo any possible effect s ' of a in some
initial data-state s. So according to this notion we already know in data-s ta te s tha t
undo(a) exists in s' and tha t it is enabled in s'.

A totally different, more general backtracking mechanism can be obtained by
a different, non-deterministic, notion of invertibility. We can for instance, given an
action a, also select a unique inverse action, say b, but not require enabledness of
b in every possible effect of a (this implies a notion "possible invertibility" instead
of semantic invertibility). In the case of backtracking, a test after execution of a is
then needed to verify whether b is enabled or not, next to an invertibility test on a.
Some s tudy after this option led us to the conjecture tha t backtracking, using a non-
deterministic notion of invertibility, is essentially different from backtracking with a
deterministic notion of invertibility, and tha t it would be much more complicated to
axiomatise an associative backtracking operator.

However, in the approach we took, also strong measures had to be taken in order
to obtain associativity of q- within the setting of BPA(q-). We had to require uniform
enabledness of inverse actions. This led us to defining a restricted Boolean algebra

The signature ~(BPAgce, ~(A)) as introduced in Section 3 can easily be extended
with parallel operators, suitable for the description of concurrent, communicat ing
processes, and the same holds for ,~(BPA(q-)). The axiom system ACP (Algebra
of Communicat ing Processes, see e.g. [BW90]), forms a suitable basis for such ex-
tensions. Care has to be taken, however, with the communications defined between
atomic actions: if two actions a and b communicate to some resulting action c, then
it can be derived tha t c must exactly be enabled if both a and b are (provided tha t
the interaction between the guarded command :--* and the communication merge I
is axiomatised by (r : 4 ~) I (r :--* Y) = r A r : 4 (x] y)). In other words, the
Boolean algebra]~(A) must be compatible with the communicat ion function 7 by
satisfying enabled(c) = enabled(a) A enabled(b) whenever "y(a, b) -- c (a, b, c e A).

The empty process a (skip, axiomatised by e. z = z - e = x), is compatible with
BPAgce but not with BPA(q-): from the axiom E- x = �9 it follows tha t enabled(c) =
t r u e must hold, and it is also evident tha t eq-z = e. Now assume tha t invertible(a) =
t r u e for some a. Then we can derive a = aq- x = a.eq- x ----- flag (a). (e q- undo (a). z) =
flag(a), contradicting the use and meaning of flag actions.

78

It is beyond the scope of this paper to make a detailed comparison of the back-
tracking mechanism of the language PROLOO with that of BPA(+). We only mention
one interesting similarity: in both formalisms there is the possibility to specify pro-
grams that refute any possibility of backtracking after a given program part (trace)
has been executed. In PROLOC the cut predicate can be used to block the way back,
and in BPA(+) any uniformly enabled commit action can be used for this. An impor-
tant difference, however, is that backtracking in a PROLOO program has a 'global'
character; it is not restricted to the scope of a specific operator, such as in BPA(+),
but it covers a whole program.

References

[BB88]

[BB91]

[BK84]

[BV931

[BW90]

[Bak80]

[Bra86]

[CM87]
[DijV6]

[Eli921
[FJ92]

[GP90a]

[aP90b]

[GP91]

[Hoa85]

[iso871

[Jon91]

J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete pro-
cess algebra. Information and Computation, 78(3):205-245, 1988.
J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and condi-
tions. In M. Broy, editor, Programming and Mathematical Methods, Proceedings
Summer School Marktoberdorf 1991, NATO ASI Series F88, pages 273-323.
Sprlnger-Verlag, 1991.
J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60(I/3):I09-137, 1984.
J.C.M. Baeten and C. Verhoef. A congruence theorem for structured opera-
tional semantics with predicates. Report CSN 93/05, Eindhoven University of
Technology, 1993.
J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in The-
oretical Computer Science 18. Cambridge University Press, 1990.
J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall
International, 1980.
I. Bratko. PR OL 0 G programming for artificial intelligence. International Com-
puter Science Series, Addison-Wesley Publishing Company, 1986.
W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1987.
E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, En-
glewood Cliff, 1976.
A. Eli~ns. DLF - A language for Distributed Logic Programming. Wiley, 1992.
L.M.G. Feijs and H.B.M. Jonkers. Formal Specification and Design. Cambridge
University Press, 1992.
J.F. Groote and A. Ponse. The syntax and semantics of #CRLI Report CS-
R9076, CWI, Amsterdam, 1990.
J.F. Oroote and A. Ponse. Process algebra with guards. Report CS-R9069,
CWI, Amsterdam, 1990. To appear in Formal Aspects of Computing.
J.F. Oroote and A. Ponse. pCRL: A base for analysing processes with data. In
E. Best and O. Rozenberg, editors, Proceedings 3 rd Workshop on Concurrency
and Compositionality, Goslar, GMD-Studien Nr. 191, pages 125-130. Univer-
sits Hildesheim, 1991.
C.A.R. Hoare. Communicating Sequential Processes. Prentice-HaU Interna-
tional, Englewood Cliffs, 1985.
ISO. Information processing systems - open systems interconnection - ZOTOS
- a formal description technique based on the temporal ordering of observational
behaviour ISO/TC97/SC21/N DIS8807, 1987.
H.B.M. Jonkers. Protocold 1.1 User Manual. Technical report RWR-513-hj-
91080-hi, Philips Research Laboratories, 1991.

[Kli82]

[Klu91]

[MV90]

[MilS9]

[Mon89]

[ParS1]

[Plo81]

[vw93]

79

P. Klint. From SPRING to SUMMER. Design, definition and implementation
of programming languages for string manipulation and pattern matching. PhD
thesis, Technische Hogeschool Eindhoven, 1982.
A.S. Klusener. An executable semantics for a subset of COLD. Report CS-
R9145, CW'I, Amsterdam, 1991.
S. Mauw and G.J. Veltink. A process specification formalism. "Fundamenta
Informaticae, XIII:85-139, 1990.
R. Milner. Communication and Concurrency. Prentice-Hall International, En-
glewood Cliffs, 1989.
J.D. Monk, editor. Handbook of Boolean Algebras, Volume I. North-Holland,
1989.
D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5 ~a GI Conference, volume 104 of Lecture Notes in Computer Science,
pages 167-183. Springer-Verlag, 1981.
G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.
S.F.M. van Vlijmen and J.J. van Wamel. A semantic approach to Protocold
using process algebra. Report P9317, University of Amsterdam, 1993.

Appendix

Proof of the Congruence Lemma 2.3.4. This can be proved either in a direct manner,
or by using the main result of BAETEN and VI~HOEF [BV93]. We give a proof
using the second alternative: in [BV93] it is shown that if transition rules satisfy
some syntactical restrictions, the so-called path format, then strong bisimulation is
a congruence. We cannot use this result in a direct way, because our definition of
bisimulation is not standard: we demand evaluation of the guards in labels and,
moreover, the existence of a finite number of 'matching' transitions. However, with
some standard facts about Boolean algebras, we can relate our operational semantics
with one to which the setting of [BV93] applies. As a general reference to Boolean
algebras we mention [Mon89]. We first sketch our proof:

1. Embed ~(A) in a complete, atomic Boolean algebra, say l~(A) +, by some em-
bedding f . Such embeddings exist by STONE's representation theorem.

2. Any Boolean f (r can be represented in ~(A) + as Vier~ ati with atl atomic.

(For 1 it is essential that r is a finite sum or product.)
3. The rules in Table 6 can be adapted to corresponding "B(A)+-transition rules"

enablcd(a):---*a
in the spirit of 1 and 2 above. For example, an axiom a ~/corre-

sponds with axioms a at,:--,a x/ if f(enabled(a)) = Ylez ati.
4. The lt~(A)+-transition rules satisfy the path format (we regard guarded com-

mands unary operators).
5. Two transition systems are bisimilar (in the sense of Definition 2.3.3) iff their

corresponding ~(A) + systems are. Here 'corresponding' means having the same
initial state.

6. For the B(A)+-transition systems, our definition of bisimilarity coincides with
the one following from [BV93] in this case.

80

From 4 - 6 it follows that our definition of bisimularity is a congruence.
Further comments on 3 and 4. We regard transition systems that differ in two

aspects from the ones defined in Section 4.3. First, guarded commands are considered
unary operators: for each r in tI~(A), there is an operator r :--* .. Second, as labels
we use expressions of the form

at :--~ a

where at ranges over the Boolean atoms of ~(A) +. This affects the precise definition
of the labels of the transition systems defined before.

As for the transition rules, the axiom for atomic actions in Table 6 has to be
replaced by

a e A if f(enabIed(a)) = Viez ati
a ati:---*a) V

(note that this may give rise to an infinite number of transitions). The two transition
rules for the guarded commands have to be exchanged by

2 at:---+a) ~! X a~:---*a~ /
if at <__ f (r and if at <_ f (r

aS: --~G x l ~I[:---~(;

The remaining transition rules are the same as those in Table 6, though r now
ranges over the atoms of ~(A) +. These rules indeed satisfy the path format defined
in [BV93].
Further comments on 5 and 6. Call two closed terms p, q over ,U(BPAgce, ~(A))
bisimilar w.r.t. ~(A) +, notation

p --~+q,

if their B(A) + transition systems are strongly bisimilar according to the standard
definition (cf. [BW90]).

L e m m a A.1. For all closed terms p, q over ~U(BPAgce, B(A)) we have that p _~+q
iff p _~ q.

P roof . A binary relation over the closed process terms is a bisimulation according
to Definition 2.3.3 iff it is a bisimulation in the standard sense (regarding II~(A) +
transitions). The following two properties can be used to prove this fact:

1. I f p a t : - ~ p , then for some r in]~(A),p ~:--'~, p' and at < f (r and likewise
for transitions ending in ~/;

2. I f p ~:~a, p' , then p ~*':--'~, p' for f (r = Vir and likewise for v/-
transitions.

Both these properties follow easily by structural induction.
As an example we show "only if ' (the converse statement that a bisimulation

according to Definition 2.3.3 is one for the I~(A) + transitions in the standard sense
can be proved similarly).
Suppose pRq for some bisimulation R in the]~(A) + sense. Observe that the number
of states in a transition system (of either type) connected to the root is finite, so we
may assume that R is finite.

81

Now assume p ~:-~) f . By proper ty 2 we find atl such tha t p at~:--.~ p~ and
f (r = V i e / a t i . By R being a finite bisimulation, there is afinite number of different

qj~'s with q ~t~:--*~, qi~ and plRqi ~. By proper ty 1, for each such qi~ there is a Boolean

expression e j , with q %.,:-*a qi, and ati < f(r Because f is an embedding, it
follows from f (r = Viez ati < Viez f (r t ha t ~b _< Viez r The remaining three
clauses of Definition 2.3.3 follow in the same way. Hence R is also a bisimulation in
the sense of Definition 2.3.3.

Proof of the Elimination Theorem ~.l .T for BPA(+) .

1. If p - 4 + ~, with q, ~ basic terms over Z(BPAgce,~(Afzag)) , then it can be
proved by induction on the s tructure of q. According to L e m m a 2.1.2, 5 cases
have to be distinguished.
Case 1. ~ -= 6, trivial.
Case 2. ~ -- a, where a E A flag.

a + ~ = enabled(a):--~ a-t--~enabled(a) :--* ~.

The right hand side of this expression is a basic term.
Case 3. ~ - a - q l where a E Aflag. By Lemma2 .1 .2 ql is also a b a s i c term,
smaller than ~. Induction hypothesis: Theorem 4.1.7.1 holds for q~.

a. q' + ~ = in,,ertibZe(a) : ~ Flag(a) . (q' + Undo(a). ~) +
p~ (~ ,) :--. a . (q' + ~) +

commit(a) :---~ a . ql +
-~enabled(a) : 4 ~.

By induction q~ + Undo (a). ~ and q~ + ~ are provably equal to basic terms. Using
L e m m a 2.1.2 we see tha t the right hand side of a . q~ + 7; is equal to a basic t e rm
5.
Case 4. ~ - qa + q2- Both qx and q2 are basic terms, smaller than ~ by L e m m a
2.1.2. Induction hypothesis: Theorem 4.1.7.1 holds for ql and q2.

(ql + q2) + ~ = enabled(q1):-* ql + ~ + enabled(q~) : 4 q2 + ~ +
~enabled(qx) ^ ~enabled(q~) :-~ ~.

By induction qa + r and q2 + r are provably equal to basic terms. According to
L e m m a 2.1.2, the right hand side of (q~ + q2) + r equals a basic term.
Case 5. ~ - r :--* ql. According to L e m m a 2.1.2, q~ is also a basic term, smaller
than q. Induction hypothesis: Theorem 4.1.7.1 holds for q~.

(r : ~ q') + ~ = r :--* q' + ~ + ~r : + ~.

By induction q~+ ~ is provably equal to a basic term. According to L e m m a 2.1.2,
the right hand side of (r : ~ ql) + ~ equals a basic term.
Finally, if p = q ~ r with q and r closed terms over ,~(BPA(+)) , it has to be
proved tha t there is a basic term/3 such tha t p = 15. Induct ion hypothesis:

B P A (+) b q = ~ and r = ~ .

So p = ~ + ~. Using the results above @ + ~ can be represented by a basic t e rm
15 such tha t p = :5. This finishes the proof.

2. Standard.

82

Proof of L e m m a 4 .L1 .

1. r 1 6 2 1 6 2 1 6 2 1 6 2
= r 1 6 2 :---* x + y + r 1 6 2 :---* y

= r

2. (r 1 6 2 enabled(q~ :---~ x) :--+ (r :---* x) + z +
enabled (r :--* y) :-.+ (~b :--~ y) ,4- z +

-`enabled(r :--, ~) ^ -`enabled(r :-~ V) :--,

r ^ enabled(x) :--, (r :--, x) § ~ +
4/A enabled(y) :.--r (~ :.-.-, y) ,d- z +
-,(r ^ enabled(x)) ^ -`(r ^ enabled(y)) :---, z

4.2.j.1 r ^ enabled(z) : ~ x + z +

r A enabled(y) :---+ y + z +
(-1r v -`enabled(x)) ^ (- ,r V -`enabled(v)) :--. ~.

3. z + y = (x + z) + y

= enabled(z):--, x + y + enabled(x):..-.r x + y +
-`enabled(z) ^ -'enabled(x):--, y

= enabled(x) : ~ x + y + - ,enabled(x) : ~ y.

4. (r : 4 z + - , r : ~ y) + z
4.2.1.2

= r A enabled (z) :---+ z + z +
-`r A enabled(y) :-.-* y q- z +

r ^ -`enabled(~,) :-., z + -,r ^ -,enabled(y) :.--, ~ +
-`enabled(~) ^ - ` enab led (y) : -~ ,

~b :--+ (enabled(z) :.--+ z ~ z +
-'enabled(x) V (-'enabled(z) ^ -`enabled(v)) : ~ z) +
-'r : 4 (enabled(v) :--* V + ~ +
-,enabled(y) V (- 'enabled(z)^ - `enabled(y)) :~ ~)

= q5 :---~ (enabled(x) :--, x + z -4- ~enabled(x) :---~ z) +
-`r :--~ (enabled(y) :--* y ~- z + - .enabled(y) :--~ z)

4,2.1.3
= r :--* z + z + - ~ r : ~ y + z .

[]

83

Proof of the Enabledness Theorem ~.2.2. By induct ion on the s t ruc tu re of p. Ac-
cording to the El iminat ion Theorem 4.1.7, we have to dis t inguish five cases. Let q,
ql and q2 be basic te rms over ~(BPAgce , B(Altag)) , and a e Aftag.
Case 1. p = 6, trivial.
Case 2. p = a.

enabled(a § y) = enabled(enabled(a) :~ a + -.enabled(a) :--, y)
= enabled (a) V (-" enabled (a) A enabled (y))
= e=abled(a) V enabled(y).

Case 3. p - a . q.

enabled(a . q § y) = enabled(pa,,(a) :-~ a . (q + y) +
invertible(a) :---* Flag(a). (q § Undo(a). y) +
commit(a) : ~ a . q +
-"enabled(a) : ~ y)

= (invertible (a) A enabled (Flag(a))) V (pass (a) A enabled (a))V
(eommi~(a) A enabled(a)) V (-"enabled(a) ^ enabled(y))

= invertible(a) v p ~ s (a) V commi t (a)v (-"enabled(a) A eNabled(y))
= enabled(a) V enabled(y)
= e=abled(a, q) V enabled(y).

Case 4. p = ql + q2, induction hypothesis: Theorem 4.2.2 holds for ql and q2.

enabled((ql + q~) + y) enabled(enabled(q1) :--, ql § Y +
enabled(q2) :~ ql § Y +

-"enabled(q1) A -"enabled(q2):--* y)

enabled(enabled(q1) >-4 ql + y)V
enabled(enabled(q~) :---~ q2 + y)V
enabled (-" enabled (ql) ^ -" enabled (q~):-~ y)

(enabled(q1) ^ enabled(q1 § y))V
(enabled(q2) A enabled(q2 § y))V
(-"enabled(q1) ^ -"enabled(q~) ^ enabled(y))

Ind.Hyp.
(enabled(q1) A (enabled(q1) V enabled(y)))V
(enabled(q2) A (enabled(q2) V enabled(y)))V
(-" enabled (q~) ^ -" enabled (q~) ^ e~abled (y))

= enabled(ql) V enabled(q~) V
(~(enabled(q~) V enabled(q~)) ^ enabled(y))

= enabled(q1) V enabled(q~) V enabled(y)
= enabled(ql + q2) V enabled(y).

84

Case 5. p - r : 4 q, induction hypothesis: Theorem 4.2.2 holds for q.

enabled((r :~ q) § y) = enabled(r : 4 q § y + -~r : 4 y)
= enabled(r : 4 q § y) Y enabIed(-~r :---, y)
= (r A enabIed(q § y)) V (7 r A enabled(y))

_r,a.~vv. (r A (enabled(q) V enabled(y))) V (--?r A enabled(y))
= (r ^ enabled(q)) V (r ^ enabled(y)) V (--,r ^ enabled(y))
= enabled(r :---* q) V enabled(y).

[]

Proof of Example 4.L3. We prove the two identities of Example 4.2.3 in reversed
order.

a . undo(b) . 6 + (6 + c) = a . undo(b) . 6 + c
= ~enabled(a) : 4 c + enabled(a):4 a . undo(b). 6 § c
= ~enabled(a) : 4 c + enabled(a) : 4 f lag (a) . (undo(b) . ~ + undo(a) �9 c)
= -'~enabled(a):4 c + enabled(a):4 f lag(a), undo(b). (5 § undo(a), c)
= ~enablea(a) : 4 c + enabled(a):4 f lag(a), undo(b), undo(a).~.

The term a. undo(b) �9 6 § 6 occurring in the following identity can be t reated anal-
ogously.

(a . undo(b). 8 § § c

4.2.1.4

(~enabled(a) : 4 5 + enabled(a) : 4 f lag(a), undo(b), undo(a). 5) § c

-~enablea(a) : 4 6 § c + enabled(a) : 4 flag(a), undo(b), undo(a). ,5 § c
-~enabted(a) : 4 e + enabled(a) :--, f lag(a), undo(b). (undo(a). 6 § c)

= ~enabled(a) : 4 c + enabled(a) : 4 flag(a), undo(b).
(enabled(undo(a)) : 4 undo(a) .c +-,enabled(undo(a)) : 4 c)

= ~enabled(a) :4 c + enabled(a):4 flag(a), undo(b).
(undo(a). c + ~enabled(undo(a)) : - , c).

Two lemmas for a proof of the associativity of the + operator. Below, two lemmas
on backtracking in a restricted signature ~U(BPA(+))- are proved. Both are needed
for a proof of the associativity of the § operator.

L e m m a A.2 . In a restricted signature ~U(BPA(§ the following identity holds,
where a E Aila a.

Xn~ertible(a) : ~ Undo(a). (y § ~) = In, ertible(a) : ~ (~:ndo(a). y § ~).

85

P roo f .
By case distinction.
Case 1. Invertible (a) = false, trivial.
Case 2. Xn~tible(a) = tr~e, so Vndo(a) = u~do(a), a~d from Lcmma 4.2.5 we
have pass (undo(a)) = t rue . It follows immediately that

Inve~tible (a) : ~ undo(a). (y , ~) = pace(undo(a)) :-~ u~do(a). (y + ~) + false : - ~ ~ .

From Definition 4.2.4 it follows that

Invertible (undo(a)) A -~enabled (undo (a)) = false,

S O

Xn~t ib le(a) :-~ u.do(a) . (y + ~) = pa~(undo(a)) : ~ undo(a) . (y + z) +
Invertible(undo(a)) A -,enabled(undo(a)):---, z.

By Lemma 4.2.5 we also have

invertible(undo(a)) = false and commit(undo(a)) = false.

From axiom Ba3 it follows then that

Xn~ertible(a) :-~ undo(a). (y + z) = pace (undo(a)) :~
(pace(undo(a)) :-~ undo(a). (y + z) +

~enabl~d(undo(a)) :-~ z)
= Xn,~tible(a) :--, (undo (a) . y + z).

[]

Using the property of predicates r E { t rue , fa lse) we can prove the following lemma.

L e m m a A.3. In a restricted signature ~7(BPA(+))- the following identity holds,
where a E A flag.

a . ~ + (y + ~) = in,,~,~ibl~(a) :--, Flag(a). (~ + (~ndo(a) . y + ~)) +
pass(a) : ~ a . (~ + (y + z)) +
commit(a) :---, a . ~ +
-,enabled(a) :---* y + z.

P r o o f .
By case distinction.
Case 1. Invertible (a) = false, trivial.
Case 2. Invertible(a) = t rue , so Flag(a) = flag(a) and Undo(a) ..~ undo(a).
After application of Ba3 to a . z + (y + z) we find that only the first summand in
not in the desired form yet:

invertibte(a) :-~ f lag(a) . (~ + undo(a) . (y + z)).

Using the definition of invertible and the property of predicates r E {t rue , fa lse)
we insert Invertible (a) in this expression:

invertibZe(a) :-~ flag(a). (~ + (Invertible(a) :-~ u~do(a) �9 (U + z))).

Application of Lemma A.2 and subsequently again the property of predicates r E
{t rue , false) finishes the proof. []

86

Proof of the Assoeiativi ty Theorem 4.2.6. By induct ion on the s tructure of p. Ac-
cording to the El iminat ion Theorem 4.1.7, we have to distinguish five cases. Let q,
ql and q2 be basic terms over ~7(BPAgce, ~(Alzag)) , and a E A l ta 9.
Case 1. p -= 6, trivial.
Case 2. p - a.

(a + y) + z = (enabled(a) :--* a + -~enabled(a) :--* y) + z

~~'=~~ enabled(a):-~ a + ~ + ~enabled(a) :-~ y + z
= enabled(a) : ~ a + -.enabled(a) : ~ y + z

= a + (y + z) .

Case 3. p - a . q, induct ion hypothesis: associativity holds for q.

(a . q + y) + z

4 .2 .1 ,3

(invertible(a) :--* Flag(a). (q + Undo(a). y) +
pass(a) : ~ a . (q q-y) +
commit(a) :-~ a . q + ~enabled(a) :-* y) + z

in~ertible (a) ^ enabled (Flag(a)) : ~
FlagCa) . (q + Undo(a). y) + z +

pass(a) A enabled(a) : 4 (a. (q + y)) + ~ +
commit(a) ^ enabled(a) :-~ a . q + z +
-"enabled(a) A enabled(y) :--* y + z +
-~(pass(a) A enabled (a))A
-~(eommit(a) A e~abled(a))A
~(in~ertibl~(a) A enabled(Flag(a)))A
-+,enabled(a) ^ enabled(y)):--*

in,,ertible(a) : ~ Flag(a). ((q + Undo(a). y) + ~) +
pass(a) :--* a . ((q + y) + z) +
commi t (a) :--~ a . q +
-"enabled(a) ^ enabled(y) :-~ y + ~ +
-(pass(a) v commit (a) V invertibte (a)V
(-,enabled(a) ^ enabled(y))):--,

invertible(a) :-~ Flag(a). ((q + Undo(a). y) + ~) +
pass(a) :--* a . ((q + y) + z) +
commi t (a) :--* a . q +
-,enabled(a) ^ enabled(y) :--, y + ~ +
-,enabled(a) ^ -,enabled(u):~

invertible(a) :-~ nag(a) . ((q + Undo(a). y) + z) +
pass(a) :-~ a. ((q + U) + z) +
commit (a) :--+ a . q +
~enabled(a) :---~ y + z

87

1,~a.=Hyp. invertible(a) : ~ Flag(a). (q 4. (Undo(a) . y + z)) +
pass(a) :--+ a . (q 4- (y 4- z)) +
commit(a) :--* a. q +
-~enabled(a) :--~ y 4- z

A.j ~ . q + (y + ~).

Case 4. p ~. qx + q2, induction hypothesis: associativity holds for ql and q2.

((ql + q2) 4- Y) 4- z = (enabled(q1) :--* ql 4- Y + enabled(q~) :.--~ q2 4- Y +
~enabI~d(q~) ^ ",~nabl~d(q~) :-~ y) +

e~abled(enabled(ql) :-~ q. 4- y) : -~ (enabl,d(q~) : - . q~ 4- V) 4- ~ +
enabled(enabled(q~) :--* q2 4- Y):-'* (enabled(q2):--* q2 4- Y) 4- z +
enabled(~enabled(q~) ^ -.enabled(q~) :-~ y) :-~
(-.~,abl~d(q~) ^ -.enabled(q~) :-~ U) + ~ +
~enabled(e,abl~d(q~) :-~ q~ + y)^
-~enabled(enabled(q2) : ~ q2 4- y)A
-~enabled(-~enabled(ql) A -~enabled(q2) :---* y):---* z

4,2.2 & 4,5.1.1
enabIed(qa) :-+ (qa 4.Y) 4- z +
e,abted(q~) :-+ (q: + y) + ~ +
-~enabled(ql) A -~enabled(q2) A enabled(y) : 4 y 4- z +
-,enabled(q~) ^ -~enabled(q2) m --,enabled(y):--, z

4.2.1.3 enabted(q~) :-~ (ql + Y) + ~ +
enabled(q2) :--* (qg. 4- y) 4- z +
-~enabled(ql) A ~enabled(q2) :---* y 4- z

Ind,Hyp.
enabled (ql) :'--~ ql 4- (y 4- z) +
enabled(q~) :--+ q~ + (y + z) +
-,enabled(q1) A --,enabled(q2) :-4 y 4- z

= (q l + q ~) + (y + ~) .

Case 5. p ~ r :--+ q, induction hypothesis: associativity holds for q .

((r
4.2.1.4

= r 1 6 2

s,,d.~p. r :--, q + (y + z) + -,~ :--, y + z
= (r :-~ q) + (u + ~).

[]

88

Proof of the Congruence Lemma 4.3.1 (sketch). Because a direct proof seems to be
rather complex, application of the congruence result from [BV93] as used in the
proof of Lemma 2.3.4 is attractive here. Referring to the idea and terminology of
that proof and of the paper mentioned above, the following ingredients are needed:

1. The transition rules for the state operators (see Table 9) must have associated
versions in the ~(A) + setting, and the properties 1 and 2 defined in the proof of
Lemma A.1 must be satisfied.

2. For any r E ~(A), the unary predicate

r A enabled(.) = false C /7(BPA(~-)) ~,s.

must be definable in the path format.

For the first ingredient, a function eval + : ~(A) + • S ~]~(A) + with the property

eval+(f(r = f(eval(r for all r e ~(A),s e S

must be assumed (cf. the definition of the function eval in Table 7). The transition
rules for the state operators then become

)ts(X) eval+ (at's):--*acti~ a's) ,)~effect(a,s) (X')

if eval+(at A](enabled(a)),s) # false, and likewise for the case z ' = ~/ and
$effect(~,,)(z') = v/. These rules indeed satisfy the path format defined in [BV93].
Moreover, it is not hard to prove that the transition rules for the ~(A) + format
defined thus far satisfy the properties 1 and 2 referred to above.

As for the second ingredient, let P~t abbreviate the predicate afAr(enabled(.)) =
false. In Table 15 we define for each atom at in ~(A) + the predicate Pat in path
format.

po,(6)
P~t(a) if at A f(euabled(a)) = false
P,,(x + y) if Pat(z) and Pat(y)
pot(~, v) if pot(~)
pot(r :--, ~,) if Po,(,~)
P.t(r :--* z) if at ~ f(r

Table 15. The predicates for "not enabledness under at', where a E A, r E B and at in
~(A) +.

It is evident that r A enabled(x) = false r VielPat,(x) for f (r = Vie l atl-
Now the first rule for the t ry operator becomes

at:---*b y!
v ' Po , (~)

89

and the second rule is adapted likewise with y' _-- ~/. If we change the remaining
rules as in the proof of Lemma 2.3.4, and let r in Table 11 range over the atoms
of ~(A) +, all transition rules for the B(A) + setting are defined in path format. A
subtlety is that according to [BV93], the bisimilarity of p and q thus obtained,
say 'not-enabledness bisimilarity under Boolean atoms' , covers the property that
Pat(p) ~ Pat(q). Regarding the meaning of Pat, this type of bisimilarity is not
really different from our notion of bisimilarity, because this property means that p
has no outgoing transitions (with some abuse of notation: Pt rue(P)) iff q has none.
Just as in the proof of Lemma 2.3.4, the congruence result of [BV93] can be used to
prove the lemma. []

Proof of Theorem 4.3.4. Requirements I I I and IV follow immediately from Ba2 and
Ba3, respectively. Requirements I and I I can be proved simultaneously by induction
on the structure of the first argument of the § operator~ which we may assume to be
a basic term over S(BPhgce, ~(Altag)). We will not give a complete proof because
of its length. Instead we give a proof for one of the induction steps.

Let a E Aftag, p be a basic term over -U(BPAgce, B(Aftag)), and s E Sflag. We
prove that a . p satisfies Requirements I and I I if p does. We assume that Vq E
str(a .p, s).-~pass((r, s) holds. This implies that if enabled(a, s) = t r u e then Vp E
str(p, effect(a, s)).-~pass(p, effect(a, s)) also holds. We distinguish the following cases:
Case 1. Invertible (a) = t rue . With Ba3 we find

b "p § ~](~) = [e~abted(a) :-~ ~ g (a) �9 (p § undo(a). Y)l(~) O
[~e,~abled(a) :- . yl(~)

[p § undo(a), y](effect(a, s)) if enabled(a, s) = t r u e
= [y](s) otherwise.

Case 1.1. enabled(a, s) = false. Then yail(a .p, s) = t r u e , so Requirement I follows
trivially. Furthermore [a .p § y](s) = [y](s), and because [a. p](s) = $ in this case,
we find

[a ' p § = [a-p](~) U M(~) ,
which proves Requirement II.
Case 1.2. enabled(a, s) = t r u e A fail(a, p, s) = t r ue . Now Requirement I follows
trivially and fail(p, effect(a, s)) = t r u e in this case. By induction we have

[p § undo(a), yl(effeet(a, s)) = [pl(effect(a, s)) U [undo(a). yl(effect(a, s)).

We derive

[a.p § y[(s) ~3 [p § undo(a), yl(effect(a, s))
~ d ~ , . [pl(eZeet(a, s)) u In-do(a)- ~](effect(a, ~))

= [a.pl(~) U [y](elyeet(undo(a), effect(a, ~)))
= [a .p l (~) U [yl(s),

which proves Requirement II.
Case 1.3. enabled(a,s) = t r u e A fail(a, p,s) = false. Then Requirement I I fol-
lows trivially, and fail(p, effect(a, s)) = false. By induction we have [p § undo(a).

90

yl(effect(a, s)) = M(effect(a, s)), which equals Ia . p](s) by definition in this case.
This proves Requirement I.
Case 2. Commit(a) = true. With Ba3 we find

{a .p + yl(s) = {enabled(a):~ a. p](s)U {-,enabled(a):---* yI(s)

[p](effect(a, s)) if enabled(a, s) = t rue
= [y](s) otherwise.

Case 2.1. enabled(a, s) = false. As case 1.1.
Case 2.2. enabled(a, s) = t rue . Then fail(a, p, s) = false, so Requirement II follows
trivially. By the expansion of [a.p + y](s) above, Requirement I also follows trivially
in this ease. []

Proof of Example 5.2.1.

'~(o,0,0) (B1) --- put1" *~(1,o,o) (B2)

= p~t~. ~ag (v~t~). ~(~,~,o)(B3 + undo (p~t~). ~)

= putl" flag(put2), flag(put3), write(l , 2, 3).
,~(~,2,a)((6 + undo(put3), put~ . B3) + undo(put~). B1)

= put1. flag(put2), flag(puta), wri te(l , 2, 3).
~(~,2,3) (,ndo(v,~t3). p=t~. B3 + u,~do (p~t ,) . B~)

= put1. flag(put2), flag(puta), write(l , 2, 3). undo(put3).
:~(~,~,o) (p~t~. B~ + undo (p~t~). B~)

= put1. flag(put2), flag(put3), write(l , 2, 3). undo(put3), flag(put2).
~(~,3,o) (B~ + undo (wt~) . undo (wt~) . BI)

put1" flag(put2), flag(put3), write(l , 2, 3). undo(puta) . flag(put2).
1~ag(p~t~) . write(l , 3, 2).
~(1,3,2)((~ ~ undo(pltt3), pitt2. B3) ~ u~do(pTtt2), undo(p~tt2). B1)

v=a . l~ag (p=t2) . 1~ag (p=t3) . write(l , 2, 3). =ndo(p=t~) . t~ag (p=t~).
~ag(put3). write(l, 3, 2). undo(p~t3).
~(~,3,o)(p=t~ " B3 + undo(p~t~) . =ndo(p=t2) . B1)

puta . flag(put2), flag(put3), wri te(l , 2, 3)- undo(put3), flag(put2).
1~ag (p~t3) . wri te(l , 3, 2) . undo(v~t3).
~(1,3,o) (undo (p~t2) . ~ndo (p~t~) . B1)

91

= p~tl . ~ag(p~t~). ~ag(p~t~) �9 w~ite(1, 2, 3). undo(p,,t~)./~ag(p~t~.).
.aag(p~t3). write(l, 3, 2)- u,~do(p~t~) �9 ~ d o (~ t ~) .
~cl ,~,o) (~ d o (p~t~) . B~)

= put1. flag (put2). flag (put3). write (1, 2, 3). undo (put3). flag (put2).
~ag(put~) . w r i t e (l , 3, 2) . undo(put~) . undo(p~t~) . u n d o (~ t ~).
)~(1,o,o)(B1).

Analogously we find

'~(1,0,0) (B1) = put1" flag(put2), flag(put3), write(2, 1, 3). undo(puta).
flag (put2). flag (puta). write (2, 3,1). undo (puta) . undo (puts).
undo (p~t~). ~c~,o,o)(B1)

)~(2,o,o) (B1) = put1. flag(put2), flag(put3) . write(3,1, 2). undo(put3).
~ag(p~t~) . f a g (w t ~) . wr i te (3 , 2 ,1) . undo(p~t3) . undo(w,t~.).
undo (put2). ready

[]

