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A b s t r a c t .  An extension of process algebra for modelling processes with 
backtracking is introduced. This extension is semantically based on processes 
that transform data because, in our view, backtracking is the undoing of the 
effects caused by a process in some initial data-state if this process fails. 
The data-states are given by a data environment, which is a structure that 
also defines in which data-states guards hold, and how (atomic) actions ei- 
ther transform these states or block and prevent subsequent processes from 
being executed. State operators are used to relate process terms to a given 
data environment. 
Backtracking is axiomatised in a few phases. First guarded commands (con- 
ditionals) and a standard ~ype of guards, expressing the enabledness of ac- 
tions, are added to basic process algebra (process algebra without operators 
for parallelism) by involving a Boolean algebra. Then the set of actions is 
partitioned in order to distinguish between different types of behaviour of 
actions in the scope of a (binary) operator for backtracking. Also functions 
on actions are defined that change the ' type '  of an action. Next an axiom sys- 
tem for modelling processes with backtracking is presented, and it is proved 
that backtracking is associative, provided that some semantic constraints are 
satisfied. Finally a method for recursively specifying processes is defined and 
an example of a recursively defined process with backtracking is provided. 
An operational semantics is defined relative to the Boolean algebra, describ- 
ing transitions between process terms labelled with 'guarded actions'. The 
operational semantics is studied modulo strong bisimulation equivalence. 
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1 I n t r o d u c t i o n  

In this paper we introduce an operator for modelling backtracking in process algebra. 
We regard backtracking as the undoing of data-state transformations caused by a 
process, if this process blocks. In our view backtracking is based on (atomic) actions 
that transform data-states in a deterministic way. The interaction of processes with 
data-states is independently defined in a data environment .  

We work in the setting of BPA (Basic Process Algebra, a basic fragment from 
ACP [BK84, BW90]) with guarded commands or conditionals, i.e., i f -  t h e n  - fi 
constructs (see e.g. [Dij76, BB91, GP90b]). We assume that actions are subject to 
enabledness in an implicit way, i.e., for any action a: 

a = enabled(a) :--~ a 

where :--+ denotes the guarded command operator. The alternative, i.e., assuming 
that actions are uniformly enabled, would shift our interest from simple actions as 
the most basic processes considered, to 'atomic processes' of the form 

r :-~ a. 

This is because backtracking is only at stake if no subsequent action is enabled. 
We claim that the choice for implicit enabledness of actions simplifies notation and 
specifications considerably. 
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In our approach, backtracking is modelled by a distinct operator ~-, and the 
undoing of actions is modelled by syntactical insertion of 'undo actions' in the al- 
ternative to be executed upon failure. Roughly, the idea can be illustrated by the 
following equation: 

(a . 6) ~- b = a . undo(a) ,  b 

where the �9 represents sequential composition, a and b are actions, a is invertible 
and uniformly enabled, and 6 is the standard process that  blocks. 

The operator ~- is axiomatised in such a way that  it can be eliminated from 
closed terms in favour of the + (choice), the .  (sequential composition) and guarded 
commands. The following consequences are typical for our set-up: 

1. We need restrictions and additional structure on actions. For example, an action 
that  is regarded as the inverse of some other action cannot be invertible itself. 

2. The ~- is only associative (and hence suitable for elegant reasoning) if inverse 
actions are uniformly enabled. 

Because backtracking is a phenomenon that  semantically speaking is quite in- 
volved, an algebraic characterisation of it may be worthwhile: the restriction to an 
algebraic setting enforces one to express the properties of backtracking in a relatively 
simple way: the triggering of backtracking and 'undo actions' are described on the 
syntactic level. The interaction of processes with data-states is described by state 
operators. These relate a separate semantic level, described by a 'da ta  environment', 
to our process language. State operators are defined in [BB88] and extended to the 
setting with guarded commands in [BB91]. 

Backtracking as a useful concept in programming practice is probably most com- 
monly known from PROLOa [Bra86, CM87]. This research has been initiated by a 
study of the current implementation of backtracking in the specification language 
P•OTOCOLD (see [Jon91]), which is an executable fragment of the wide spectrum 
language COLD [F J92]. Both languages are developed at Philips Research Laborato- 
ries. In PROTOCOLD, a choice operator is implemented in such a way that  backtrack- 
ing over failing alternatives occurs. PttOTOCOLD has in common with PROLOG that  
backtracking is based on the undoing of bindings of logical variables, contrary to our 
~transformation-based' point of view. For previous work concerning the semantics of 
PROTOCOr.D, see e.g. [Klu91]. For more recent work see [VW93]. 

Another aim of this paper is that  our approach leads to a useful operator that  can 
be incorporated in specification languages that  are based on process algebra, such as 
LOTOS [ISO87], PSF [MV90] and #CRL [GP90a, GP91]. In the context of algebraic 
specification and verification practice, our approach may be easily applicable to 
backtracking 'geared' problems, e.g., the well-known Eight Queens Problem. We give 
an example of such an application in Section 5. 

The notion of 'undo actions' can be traced back to ELIi~NS in [Eii92], and such 
actions also occur in the work of KLUSEN~Sl~ [Klu91]. The name try, which we will 
use to denote our (binary) backtrack operator, is due to KLINT. In [Kli82] he defines 
the programming construct <try-expression> to provide '% facility for eliminating 
the side-effects of the evaluation of a failing expression". 

Acknowledgements. We thank Willem Jan Fokkink and Chris Verhoef for useful 
comments. 
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2 BPAgee, BPA with guarded commands and enabledness 

In this section we introduce BPAgc (Basic Process Algebra with guarded commands) 
as the basic framework of our paper. In BPAgc, the enabledness of a process can be 
restricted by the use of a guarded command: r :---* p can only be executed i f r  ~ false 
holds in the Boolean algebra in which the guards are defined. Next we define the 
enabledness of atomic actions by considering Boolean algebras that  contain special 
'enabledness' guards, and by extending BPAgc with one axiom to BPAgce. 

We then define transition systems that  represent the operational characteristics 
of process terms. Over such systems, we define bisimulation semantics for BPAgce 
processes. 

Finally, we introduce the notion of a data environment and the evaluation of 
process terms in such a data environment: processes are considered as interacting 
with a set of data-states. To 'evaluate'  the execution of a process in a certain initial 
data-state, we use the state operator defined by BAETEN and BERGSTRA in [BB88], 
and extended to the setting with guarded commands in [BB91]. 

2.1 S igna tu re  a n d  a x i o m s  o f  BPAgc 

We start off with the core system BPA6 (Basic Process Algebra with 8, see e.g. 
[BW90]). The signature of BPA~ has a set of (atomic) actions as a parameter. Actions 
represent the basic activities that  processes can perform, such as reading input, 
incrementing counters and so forth. Let A be a set of actions with typical elements 
a, b, . . .  For each action a the signature of BPA~, denoted as ,U(BPA6), contains an 
identically named constant a. The special constant 8 (inaction or deadlock) represents 
the process that  cannot perform any activity and prevents subsequent processes from 
being executed. We also have the binary infix operators + (alternative composition) 
and �9 (sequential composition) available. We summarise the signature ~7(BPA~) in 
Table 1. 

constants: 

binary operators : 

a for any atomic action a E A 
6 models inaction or deadlock 
+ alternative composition (sum) 
�9 sequential composition (product) 

Table 1. The signature •(BPA6). 

In term formation, brackets and variables from a set V = {z, y, z , . . . }  are used. 
The function symbol- is generally left out, and brackets are omitted according to the 
convention that  �9 binds stronger than +. The symbol __=_ is used to denote syntactic 
equivalence (modulo associativity) between terms. Finally, letters t, t l , . . ,  range over 
open terms and p , q , r , . . ,  over closed terms. Let ~ denote the set of terms over 
s 
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The axioms presented in Table 2 constitute the axiom system BPA6. These ax- 
ioms describe the basic identities between terms over •(BPA6). The operator  + is 
commutative,  associative and idempotent  (A1 - A3). The opera tor ,  right distributes 
over + and is associative (A4, AS). Note tha t  left distributivity of .  over + is absent. 
Furthermore 5 behaves as the neutral element for + (A6), and absorbs subsequent 
terms (A7). 

(AI) z + y = y + z  
(A2) x+(y+z)=(z+y)+z  
(A3) x + z = 
(A4) (~ + y)z  = ~z  + yz  
(AS) (~y)~ = x(y~) 
(A6) z + 5 = x 

(A7) 5~ = 6 

Table 2. The axioms of BPAs. 

Next we introduce BPAgc,  Basic Process Algebra with guarded commands ([Dij76, 
BB91]). We extend the signature ,U(BPA6) to ,U(BPAgc,]~) in the following way. 
Given a Boolean algebra B with Boolean expressions /3, let 7 ~+ D ~ be defined 
inductively by involving the guarded command construct:  

. :--+.  : / 3 x ' p + ~ T  }+. 

So . :--+ . relates the Boolean expressions/3 defined over • and the set :P of process 
terms. An expression r : ~  p is to be read as i f  r t h e n  p. The r in this expression 
is often referred to as a guard [Dij76, GP90b]. To avoid confusion with the operators 
+ and �9 from ,U(BPAs), we use V, A and -~ as Boolean operator  symbols. Moreover 
we use < and the constants t r u e  and false in their usual meaning. For instance, 
r < r r r 1 6 2  = r  and r < r r r 1 6 2  = r 

( c c l )  
( c c 2 )  
( c c 3 )  
( c c 4 )  
( c c 5 )  
(ccB)  

t rue  :-~ �9 ---- z 
false :--* z = 6 

r  ( ~ + v ) = r  ~ + r  v 
( r 1 6 2  :--, �9 = r  ~ + r  : ~  
(r A r  :-~ �9 = r : - ,  ( r  :-~ ~) 

(r :-~ ~)y  = r :-~ {~y) 

Table S. The axioms for guarded commands, where r r E/3. 

The system BPAgc consists of the axioms A1 - A7 of BPA~, and the axioms 
GC1 - GC6, presented in Table 3, which define the guarded commands.  The binding 
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power of : 4  is defined less than �9 and stronger than +. The axioms GC1 and GC2 
relate the guards t rue  and false to process terms. The axiom GC3 states that + 
does not change the evaluation of a guard r It does not matter whether the choice is 
exercised before or after the evaluation of r The axiom GC4 describes the relation 
between V and +, and GC5 that between A and the guarded command construct 
:-~. The last axiom GC6 defines the relation between �9 and :--*. Furthermore, all 
Boolean identities in B transfer to guarded commands, e.g., r : ~  z = r :--* z if 
r = r holds in B. 

The following definition of basic terms over ~(BPAgc, ~) and the Representation 
Lemma (2.1.2) imply that we can prove statements about closed process terms over 
BPAgc by structural induction, and that we have to distinguish 5 cases in such 
proofs. 

Def in i t ion  2.1.1. We inductively define basic terms over E(BPAgcl B) by the fol- 
lowing BNF grammar, where a E A, r E B: 

p:= lalp+pl -plr p. 

[] 

Note that basic terms may be provably equal, for instance BPAgc ~- false :-~ a = 6. 

Lemma 2.1.2 (Representation). Each closed te~m p over ~(BPAgc, B) can be proved 
equal to a basic term. 

Proo f .  Follows easily by structural induction from the axioms of BPAgc and the 
definition of basic terms. [] 

2.2 BPAgce, BPAgc wi th  enabledness  

Given a set A of actions, we will only consider a special type of Boolean algebras, 
namely those that contain expressions 

enabled (a) for all a E A 

because 'enabledness of actions' is a crucial notion in things to come (we come back 
to this point in Section 6). So enabled is regarded as a predicate over A. Write ~(A) 
for a Boolean algebra ~ satisfying this condition. 

For a suitable axiomatisation of backtracking in the setting of BPAgc, it turns 
out that  the domain of the enabled predicate must be extended to the set P of 
process terms. 

Def in i t ion  2.2.1. The predicate enabled : :P -* /~ axiomatised in Table 4 defines 
whether or not a process can perform an initial action. D 
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(Enl) 
(En2) 
(En3) 
(En4) 

enabled(6) = false 
enabled(a. ~) = e~abled(a) 

e~abled(~ + y) = enabled(z) V en~bled(yj 
enabled(r : ~  z) = r A enabled(~) 

Table 4. The axioms for the predicate enabled, where a 6 A, r 6 B. 

(Enh) -~enabIed(z) :--* x = 6 

Table 5. The axiom for not enabled processes. 

For non-atomic, closed process terms p, we regard enabled(p) as an abbreviation 
for a Boolean expression over B(A) conform the axioms in Table 4. Note that  these 
axioms are consistent with the axioms of BPAgc. 

A process axiom En5 is needed to make it explicit that  a process that  is not 
enabled equals 6. 

Def in i t ion  2.2.2. The axiom system BPAgce is defined by extending BPAgc with 
the axiom En5 defined in Table 5. [] 

From the axioms of BPAgce the following identity can be derived. 

L e m m a  2.2.3. A n y  process term z over the signature Z(BPAgce, B(A)) is implic- 
itly preceded by a test on enabledness: 

BPAgce ~" z = enabled(z)  : ~  z .  

Proof. 
z = t r u e  :-~ x 

= enabled(z )  V ~ e n a b l e d ( ~ ) : - ~  
= e n a b t e d ( ~ ) : - ~  �9 + ~ e n a b I e d ( z ) : - ~  z 
= enabled (z)  :--~ z + 6 

= enabled(z):--* z .  

[] 

2.3 T r a n s i t i o n  s y s t e m s  a n d  b i s i m u l a t i o n  s e m a n t i c s  

In process algebra closed process terms are often related to labelled transi t ion sys- 
tems,  which provide an operational semantics in the style of PLOTKIN [Plo81]. 

Def in i t ion  2.3.1. A labelled transition sys tem .A is a tuple (S.4, L~4, ;.4, sA) ,  
where 
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- S~t is a set of states, 
- LA is a set of labels, 
- ~A is a transition relation, 
- sA  6 S A  is the initial state. 

13 

We consider the closed terms over Z(BPAgce, B(A)) as the set of states S~t; the 
transition system related to a process term p has initial state p. Contrary to the 
traditional approach in process algebra, we label transitions with expressions 

~ :----r a, 

with r r false in B(A) and a 6 A. This idea is based on BAETEN and BERGSTRA 
[BB91]. We consider ----*.4 as containing transitions 

�9 - : - ~ .  c_ S ~  x L.~ x S.~, 

and for modelling (successful} termination,  special transitions of the form 

, ~/_c S~ x L~ 

(pronounce %/as "tick"). The rules in Table 6, where in the labels 4 :-4 a the r range 
over B(A) and the a over A, determine the transition relation - - + 4  that contains 
exactly all derivable transitions from the closed terms over S(BPAgce, B(A)). 

The idea is that for a 6 A, a transition p r p, expresses that by executing a, 
the process p can evolve into p' if r r false holds in B(A). In this case p' represents 

the process that remains to be executed. The transition p r ~/expresses that 
the process p can terminate successfully after executing a if r ~ false holds in 
B(A). The state 6 expresses that no further activity is possible. Note that a and 
enabled(a) :---+ a always have the same transitions. 

E x a m p l e  2.3.2. Consider the following partially depicted transition system related 
to the process term r :-4 a + ~ : ~  b. r : 4  a + c- a, where the initial state is marked 
with a little arrow: 

q-~ :-4 b'r :---~ a + c.a 

e n a b l e d ~ ~  ~ ' J  "~.~nabled(e):~c 
e=bt~d(b) /, ~ :~'~-...... 

r ~ e,~abted(a):--, a 
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a E A enabled(a):-.a if enabled(a) ~ false 
a ~ /  

+ 
~:.-4a ) X r ~t X 

z + y  z + V  ' ~/ 

Y r yt Y 4:--.a X/ 

z + y ~:'-'a ~ y '  z + y r  

z . y  .y z . y  ~y 

X r xt X r V/ 
" '* ~bAr z '  i f C A r  # false 

r : 4  z r : 4  z ~^~:-~a v/ 
if r A r # false 

Table 6. Transition rules for 2~(BPAgce,~(A)), where a E A, ~b E ]~(A). 

The (implicit) information about the Boolean algebra ~(A)  present in this transition 
system tells us tha t  apparently 

enabled(a) A r # false, enabled(b) A ~ # false,  
enabled(c) r false, enabled(a) A r = false. 

End example. 

Consider the following (partially depicted) transit ion systems ofa.b+a.true :--* b 
and a .  b: 

enabled( a)b :~~b 

enabled(b) : 

. b + a -  t r u e  : 4  b 

a b l e d ( a )  : - *  a 

t r u e  :--+ b 

abled(b) A t rue  : 4  b 

i a .b  

enabled(a) :.-, a 

b 

enabled(b) :---, b 

, /  

Observe tha t  the transition system for a. b+  a . t r u e  :--* b is shaped as two transition 
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sys tems for a.b. With  respect  to operational behaviour it does not ma t t e r  whether  the 
s u m m a n d  a .  b or the summand  a .  t r u e  :--* b is executed. Therefore  we would like to 
consider bo th  transi t ion systems as equivalent. This can be achieved by identifying 
bisimilar process te rms (see [ParSl]). We adap t  bisimilarity to the set t ing with 
"guarded labels" following the ideas of [BB91]. 

D e f i n i t i o n  2.3.3.  A binary relation R C_ S(BPAgce,]~(A))  x ~7(BPAgce,~(A)) is 
a bisimulation iff R satisfies for all p, q E 27(BPAgce, ~(A))  with pRq: 

1. Whenever  p r pl for some label r :--* a and p~, there are r162  and 
ql,---,qk, satisfying for i = 1, ..., k 

- q ~ qi, 

- peRqi , 
- r _< r V ... V Ck holds in ~(A).  

2. Conversely, whenever q r ql for some label r :--~ a and ql, there are r r 
and Pl, . . . ,P5 satisfying for i -- 1, ...,l 

- -  P ~ P l ,  

-- p iRq ~, 
- r < r V ... V Cz holds in ~(A).  

3. I f p  r ~/for  some label r :--* a, there are r ..., r  satisfying for i = 1, ..., m 
- q ~ ' : - ~ ,  ~/, 

- r < r v ... v r holds in ~(A).  

4. Finally, if q ~ : - . a  ~ / fo r  some label r :-~ a, there are r . . . ,r satisfying for 
i = 1, ..., n 

- p  ~ ~/, 
- r -< r V ... V Cn holds in ]~(A). 

We call p and q bisimilar, notat ion 

p ~ - q ,  

iff there is a bisimulation containing the pair (p, q). [] 

As a consequence of the way bisimulation relates the guards in the labels, the 
typical  guarded command  axiom 

a x + a y = a x + a y + a ( r 1 6 2  ( a e A )  

defined in [GP90b] does not respect  our notion of bisimilarity. 

L e m m a  2 .3 .4  (Congruence) .  The relation ~_ between closed terms over 
Z(BPAgce ,  B(A)) is a congruence with respect to the operators of  s  ]~(A)). 

P r o o f .  See Appendix.  [] 

Moreover,  it is not  hard to prove tha t  BPAgce is a sound axiom system with respect  
to bisimulation equivalence. 
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T h e o r e m  2.3.5 (Soundness) .  Let p ,q be closed terms over ,U(BPAgce,~(A)).  y 

BPAgce ~- p = q then p -~ q. 

P r o o f .  The relation _~ between the closed terms over the signature ~U(BPAgce, B(A)) 
is a congruence and hence respects the inference rules for equality. We have to show 
tha t  all axioms are valid. As an example we prove this for GC6. 

Assume that  r 6 B and p, q are closed process terms over ~U(BPAgce, ~(A)).  We 

have to show (r p)q r (pq). We define the relation n as follows: 

R %f Xd u (((r p)q, r (pq))) 

where Id is the identity relation on /7(BPAgce ,~(A)) .  It  follows easily tha t  R is a 
bisimulation, because any outgoing transition from (r : ~  p)q has a corresponding 
transit ion from r :--+ (pq) to a state tha t  is syntactically the same and vice versa. 
Hence (r :--+ p ) q a r  : ~  (pq). [] 

2.4 State  o p e r a t o r s  a n d  d a t a  e n v i r o n m e n t s  

We can consider processes as interacting with a set of data-states. This view can be 
formalised with help of the state operator defined in [BB88], and extended to the 
setting with guarded commands in [BB91]. The idea is as follows: assume a set S 
of data-states with typical elements s, s ~, .... Then )~(p) represents the process p in 
initial data-state s. The execution of actions may affect a specific data-state,  so we 
have equations of the form 

A~(az) = a % , ( x ) .  

Here a ~ is the action tha t  occurs as the result of executing a in data-state  s, and s ~ 
is the data-state  that  results when executing a in s. The a '  and s ~ generally depend 
on a and s, and are defined by the functions 

action : A x S --+ A tA {6}, 
effect : A x S ~ S. 

In order to relate guards with the data-states in S, a third ingredient is needed 
for the definition of state operators: a function 

eval: ~(A) • S -* B(A) 

tha t  satisfies the axioms given in Table 7. The eval function must respect the 
action function in the following sense: we require tha t  the enabledness of an ac- 
tion aetion(a,s) is equal to the enabledness of a, evaluated in s. This is cap- 
tured by the axiom E3. Observe that  for some uniformly enabled action a (i.e., 
enabled(a) = t rue) ,  it follows from E3 and E1 tha t  action(a,s) is also uniformly 
enabled for all s 6 S. Similarly, the function action must rename uniformly disabled 
actions into uniformly disabled actions or 6 (recall tha t  enabled (/f) = false).  

State operators are defined by the axioms in Table 8. Note tha t  with SOG4 it 
follows that  )~,(6) = ~ ( f a l s e  :--+ ~) -- false :-~ A~(x) --- ~f. Moreover, it follows 
immediately tha t  state operators can be eliminated from closed terms (cf. Lemma 
2.1.2). 
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(El)  evaI(true, s) = t r u e  
(E2) evat(false,,) = false 
(E3) eval(enabled(a),s) = enabled(action(a,s)) 
(m) ewz(r v r ~) = ev~l(r ~) v ewl(r ~) 
(Eh) ewt ( r  ^ r = e~al(r  ^ e ~ Z ( r  
(F,6) e~,at('-,r , )  = --,e,,,~l(r ~) 

Table  7. The axioms for the evaluation function eval, where s E S, r r E ft. 

( soc l )  
(soc2) 
(soc3) 
(soc4) 

~,(a) = aetio,~(a, s) 
~ . (a , )  = action(a, ~). )'.SS.o,(-,,)('O 

;,,(:~ + y) = ),,(:~) + ,X,(y) 
~,.(r  :--. ~) = e , ,az(r  :--. ) , . (~ )  

Table  8. The axioms for state operators, where a E A, s E S, r E I3. 

Given A and ~(A),  we summarise  the  se t t ing  with  s ta te  opera to rs  in the  following 

definition. 

D e f i n i t i o n  2.4.1 .  A data environment S over a set A of act ions and a Boolean 
a lgebra  ]~(A) is a tuple  (S, action, effect, eval), where 

- S is a non-empty  set of da ta - s ta tes ,  
- a c t i o n : A x S ~ A U { 6 } ,  
- e f f e c t : A •  
- eval: ~ (A)  x S ~ B(A) ,  satisfying the  axioms in Table 7. 

Given any signature 2~ occurr ing in this  p a p e r  and  some d a t a  environment  S,  
we write 

for the  s ignature  obt/~ined by adding  all s t a te  opera to r s  A, to •. [] 

We give the  t rans i t ion  rules over ~7(BPAgce, B(A))  ~'s for s t a t e  opera tors  in Table 
9. W i t h o u t  proof  we s ta te  t ha t  the  Soundness Theorem 2.3.5 can be extended to 
the  set t ing with s ta te  opera tors .  In L e m m a  4.3.1 we prove a congruence result  for a 
more general  set t ing with s ta te  opera tors .  

T h e o r e m  2 .4 .2  (Soundness) .  Let S be given and p ,q  be closed terms over the sig- 
nature ~(BPAgce, ]~(A))  ~'s. It  holds that 

BPAgce + E l - 6  + S O G 1 - 4  I- p = q ==~ p _~ q. 

In order to reason abou t  the  possible d a t a - s t a t e  t rans format ions  t ha t  a process 
may  induce in a certain d a t a  environment ,  we define a p red ica te  t h a t  expresses local 
enabledness (we regard predica tes  as funct ions wi th  codomain  { t r u e ,  fa l se}) .  
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X r XI 

e.al(,,.):-.aaion(o.), ,/ 

if e al(r ^ enabled(,O,,) # false 

if eval(r A enabled(a), s) # false 

Table 9. Transition rules for state operators, where a E A, s E S, r E B. 

D e f i n i t i o n  2.4.3.  

is defined by 

Let  S = (S, action, effect, eval) be given. The predicate 

enabled(a, s) C A x S 

enabled(a, s) def= { falsetrUe ifotherwise.eVal(enabled(a), s) # false 

Likewise, enabled(p, s) abbreviates eval(enabled(p), s) (cf. Table 4). [] 

Furthermore,  we define the traces of a process in a specific da ta  environment.  

D e f i n i t i o n  2.4.4.  Let  cr E A* denote a string over A, and A the empty  string. 
Given a data  environment • = (S, action, effect, eval), we extend the function effect 
to A*: 

effect: A* x S -* S, where effect(A,s) de_~f S, and effeet(ag, s) def effect(or, effect(a,s)). 

We define the relation (~,s), as follows: 

Z (~,s), Z 

X d,b:---~a Xt 

z (a,~), x' 
eval(r s) -7s false,  _x r ~/ 

if enabled (a, s) = t rue .  z (~'*),, x/ 
eval(r s) # false,  

if enabled (a, s) = t r u e .  

a: Ca,s), xl  a: I (=,egeetCa,s)) ,  a~ n :g Ca,s), •l :gl (=,effect(a,s)) ,  ~ /  

(aa,s) x"  
z , z (a~,*), x/ 

An element (or, s) E A* x S is called a trace o f a p r o c e s s p i f f e i t h e r p  (='*),, q 

or p (=") ,  ~/. The  set str(p, s) is defined as the set of all strings or, such tha t  (c,, s) 
is a trace of p. O 
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3 Requirements on backtracking 

We regard backtracking as a technique for undoing data-state transformations. To 
support this intuition, we first study it in the setting of a fixed data environment 
over 2Y(BPAgce, B(A)). Later, in Section 4, we will follow a reverse approach and 
define backtracking on an abstract, algebraic level. In order to reason about the 
data-state transformations a process can perform, we define a relational semantics. 
Then we partition the set of atomic actions and define some requirements on an 
operator that models backtracking. 

3.1 Re la t iona l  semant ics  for  BPAgce 

A very first intuition of backtracking is that it can undo data-state transformations; if 
a processp cannot terminate successfully, then backtracking must offer the possibility 
of undoing the effect of p in its initial data-state. After this the option of executing 
p again must be discarded. Note that backtracking rather contains the undoing of 
data-state transformations than of actions. For this reason, it may be useful to give 
a semantic account of backtracking in terms of I /O relations on data-states. Such a 
semantic approach is relational: it relates initial data-states to final ones resulting 
from successful termination. Relational semantics is a central issue in, for instance, 
Floyd-Hoare logic ([Bak80]). First we give the relational semantics for BPAgce in 
some data environment. 

Def in i t ion  3.1.1. Let A, B(A) and ,.q = (S, action, effect, eval} be given. We define 
the relational semantics for BPAgce 

[.]: 2Y(SPAgce,]~(A)) --+ (S --+ 2 s) 

as follows (a E A): 

- [~](s)  %~ 0, 
_ def ( {effect(a,s)} if enabled(a, s ) =  t r u e  M(s) 

-- ~ 0 otherwise, 
- ~ + q](s) d=ef [p](s) U [q](s),  

- [p. ql(s) a_~f {s,l 3s".s" e [pl(s) A s' e [ql(s")}, 

- [r :---* p](s) d,f__ { o[pl(s)otherwise.if evaI(r s) ~ false 

[] 

So ~p](s) contains the data-states that can result after successful termination of p 
in an initial data-state s. 

L e m m a  3.1.2 (Soundness). Provable equality in BPAgce preserves the relational 
semantics, i.e., if closed terms p, q over ,U(BPAgce,]~(A)) are provably equal, then 
the relational semantics of p is equal to the relational semantics of q in any data 
environment (S, action, effect, eval> : 

BPAgce~-p=q ~ VsES.[p](s)--[q](s). 
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P r o o f .  All axioms of BPAgce are valid in the relational semantics, and the congru- 
ence properties of "="  preserve the relational semantics. [] 

3.2 C las s i f i ca t ion  of  actions 

In order to reason about  the operational behaviour of atomic actions in the scope 
of an operator for backtracking, we classify atomic actions. We start  off by distin- 
guishing between actions tha t  cause data-state transformations and actions tha t  do 
not. 

Definit ion 3.2.1.  Let a E A and S = (S, action, effect, eval) be given. An action a 
is called (operationally) inert iff 

Vs e S .  (enabled(a,s) = t r u e  ==~ effect(a,s) = s). 

/ 

What  is usually referred to in the literature as inert actions, forms a subset of 
the operationally inert actions defined above (see e.g. [BB91, BW90]). We will not 
make this distinction and just call any operationally inert action inert. 

Because inert actions cause no data-state transformations, backtracking over 
inert actions must be avoided. If  a process preceded by an inert action a cannot 
terminate,  there is no effect of a tha t  has to be undone. In order to distinguish 
between inert and non-inert actions, we define a predicate Inert over A that  is 
exactly satisfied by the inert actions of A. 

We further classify the actions for which Inert does not hold. Invertibility of 
such actions is at stake if a process cannot execute its subsequent part, so when it is 
deadlocked. Let a E A. If  there is an action b E A such tha t  any possible data-state 
transformation caused by a can be undone by b, we call a semantically invertible. 
More formally: 

a is semantically invertible ~=~ 3b e AVs e S.([a](s) # O ~ [a.b](s) = {s)). 

The action b is an inverse action of a in this case. 
We give an algorithm to partit ion {a e A [ -~Inert(a)} into three subsets tha t  

satisfy mutually exclusive predicates: 

- A predicate Invertible, which expresses tha t  a semantically invertible action is 
' formally'  invertible, 

- A predicate Pass, which expresses tha t  an action is t ransparent  w.r.t, backtrack- 
ing, 

- A predicate Commit, which expresses tha t  an action refutes any backtrack pos- 
sibility. 

We assume tha t  init!ally none of {a e A [ -~Inert(a)} satisfies one of these predicates. 
The algorithm runs on a set Source tha t  initially equals {a e A [ -~Inert(a)}. In 
Section 4 some design decisions, implicit in the algorithm, are motivated. 
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whi l e  Source is not  empty 
do  choose an action a in Source and remove a from Source, 

i f  a is semantically invertibte, 
t h e n  

e i t h e r  define Commit(a), 
or  define Invertible(a) and select a b in Source t3 {c e A] Pass(c)} tha t  

is an inverse action of a. 
If  b E Source, define Pass(b) and remove b from Source, 

else define Commit(a). 

o d  
fi 

The Invertible predicate holds for those actions in {a ~ A [ -~Inert(a)} tha t  are 
considered invertible on the syntactic level. Note tha t  the way we select formally 
inverse actions suggests a deterministic notion of invertibility: we require tha t  a 
single action, say b, is a uniform inverse of an invertible action a (i.e. for any initial 
data-state) .  So we require tha t  if [a](s) = {s'}, then b can always be performed in 
the data-s ta te  s ~ to undo the effect of a in the initial data-state  s. We also have tha t  
different invertible actions can have the same inverse, and tha t  an inverse action 
cannot  be invertible itself. 

The Pass predicate holds for actions that ,  if backtracking happens, actually undo 
data-s ta te  t ransformations caused by invertible actions. We now extend the class of 
actions for which Pass holds because once an action is executed in a certain data- 
state in the scope of a backtrack operator,  it must not be executed again. There is 
no reason to repeat  its data-state  t ransformation plus its 'undoing '  more than once 
(if nested backtracking occurs). To avoid repeated backtracking over a single action 
a, we make a duplicate flag(a) and extend the set of actions with a copy: 

(flag(a) I a e A ^ Znvertible(a)}. 

We further reason about  the 'extended '  set of atomic actions A flag, where 

Astag de=f A U {flag(a) l a e A A Invertible(a)}, 

and define Pass(flag(a)). Consequently, the domains of the predicates are extended 
from A t o  A flag. 

If  an action a is not  formally invertible and must  not be passed in the scope of 
an operator  for backtracking, Commit(a) holds, and backtracking over any process 
ap is impossible once a is executed. 

Having classified the non-inert actions we return to the inert actions. Inert  ac- 
tions cause no data-s ta te  transformations,  and therefore we do not regard them as 
invertible. We have the freedom, however, to classify inert actions as actions that ,  
in the context of backtracking, either behave as Pass actions or as Commit actions. 

We define variants of the above predicates by involving the evaluation of the 
enabled predicate. 

i~ertible(a, s) do=~ enabled(a, s) ^ I~vertible(a), 
pass(a, s) a~ enabl,d (a, s) ^ Pass(a), 
commit(a,s) ae_.f enabled(a,s) A Commit(a). 
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Note that  adding the predicate enabled (a, s) = false defines a partition on Aylag • S. 
We finally extend the pass and commit predicates to strings over A flag. Let a 

denote a finite string over Aytag, and X the empty string. 

pass(X, s) def = false, 

pass(aa, s) d~j pass(a, s) V pass(g, effect(a, s)), 
commit(X, s) def = f a l s e ,  

commit(aa, s) de_t commit(a, s) V commit(a, effect(a, s) ). 

3.3 Four  r e q u i r e m e n t s  

Now we can characterise the crucial property of whether a process can give rise to 
backtracking by a predicate fail: 

fail(z, s) de=f 3a e str(z, s)3z'. 
(z (~"'),, z' A -~enabled(z', effect(g, s)) A -~commit(a, s)). 

So fail(x,s) holds if the process z can transform a data-state s according to a 
string a that  is not committed in s, and gets stuck. If  enabled(x,s) = false then 
clearly fail(~, s) holds, because commit does not hold for the empty string X. As a 
consequence, fail(6, s) holds by definition. 

Having defined the predicate fail, we can formulate four requirements on an 
operator that  models backtracking. We use the symbol 

+ 

(pronounce try) for this operator. These requirements are formulated in terms of the 
relational semantics [.] for Z(BPAgce, ]~(Altag)) and the above predicates. 

At this stage we define "~p + q]" only informally. The idea is that  if p contains 
no pass actions, then ~p + q] can be interpreted as follows: if backtracking is not 
triggered the relational semantics of [p + q] in s is equivalent to the the relational 
semantics ofp in s, otherwise it is equivalent to the union of the relational semantics 
of p and q in s (see the Requirements I and II). I f  p does contain pass actions, we 
only partially define ~p gr q] (see the Requirements I I I  and IV). Let a G AItag. 

R e q  I. va  ~ str(z, s) .  ~pass(a, s) ^-~fail(x, s) ==> Ix § v](s) = [zl(s) ,  
R e q I I .  Va E str(x,s).~pass(a,s) /\ fail(z,s) ~ [ = g - y ] ( s ) = i z i ( s ) U [ y l ( s ) ,  
R e q  I I I .  pass(a,s) ~ [a ~- y](s) = [a](s), 
R e q  IV.  pass(a,s) ~ [(a. z)~-y](s) = [z ~-yl(effect(a,s)).  

Observe that  Requirement II  implies that  

-enabled(z,s) ==~ ix + y ] ( s )  = [Yl(S)- 

For reasons of simplicity, the Requirements I and I I  are a bit more restrictive 
than necessary. The premisse Va E str(z, s).-,pass(a, s) could be replaced by a form 
in which only strings with non-inert pass actions are considered: the formal inverses 
and the flag actions. 
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The Requirements III and IV express the transparency of actions for which pass 
holds w.r.t, backtracking. These requirements also express the simple behaviour of 
inert pass actions in the scope of the backtracking operator § 

The requirements above only partially express the semantic properties of our 
backtracking operator as a result of the clause Wr e s~r(z, s) .  "~pass(~, s) in the 
Requirements I and II. We give an example to illustrate the complications that  
occur when a process contains a mixture of actions for which pass holds and actions 
for which pass does not hold. Let z = (a + b). 6 with pass(a, s) and invertible(b, s). 
This process satisfies none of the requirements, while the desired relational semantics 
is obvious: 

[(a + b). ~ § y](s) = [ylCeZect (a, s)) U IylCs). 

The difficulty of formulating requirements for this general type of processe s is that 
every non-inert pass action in the left argument of § that is part of a not successfully 
terminating string, influences the initial state of the right argument of § 

In the sequel § will be defined in an algebraic way. Indeed it will turn out that 
this operator satisfies all the requirements (see Theorem 4.3.4). 

4 BPA(§ Basic Process Algebra with backtracking 

In this section we formalise the notions introduced in the previous section. However, 
we reverse our approach and start off from a partitioned set of actions, instead of 
a data environment. We define criteria for 'admissible' Boolean algebras and data 
environments: these must respect the definitions of Section 3.2. 

Next the binary operator § for backtracking is axiomatised. For this operator 
some fundamental properties are proved, the most important of which is associa- 
tivity. This important property only holds if the Boolean algebra that defines the 
guards satisfies some special constraints. 

4.1 S igna tu re  and  ax ioms  o f  BPA(§ 

The starting point for the axiomatisation of backtracking is formed by the signature 
~U(BPAgce, •(A)) (see Section 2). We continue by extending E(BPAgce,B(A)) to a 
setting with Aftag and the predicates defined in Section 3.2. The approach in that 
section was based on a specific data environment in order to provide some intuition 
for the partitioning of A and the extension to Afzag. We now take a reverse approach, 
and assume that we have given a set of actions Afz~g, partitioned by mutually 
exclusive predicates Invertible, Pass and Commit. We have also a predicate Inert 
that is a subset of Pass U Commit. Instead of starting from the data environment 
based notions 'inertness', 'semantic invertibility' and 'inverse actions', we take a 
more abstract point of departure and define criteria on Boolean algebras and data 
environments that preserve the meaning of these notions. 

The class of non-inert actions for which Pass holds is divided in formal inverses 
and flag actions (see Section 3.2). These two special types of atomic actions are 
studied more closely now, in order to define a setting in which backtracking can be 
axiomatised. 
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Recall tha t  flag(a) was introduced to indicate tha t  the atomic action a, where 
Invertible (a) holds, has been executed in the scope of a backtracking operator  and 
has induced an inverse action. We defined Pass(flag(a)). We regard flag actions as 
the result of an application of a function Flag to elements from the set of actions 
{a E A [ Invertible (a)}. In order to make Flag a total  function, its domain is extended 
to Aftag. Below, the formal definition of the Flag function is given. 

D e f i n i t i o n  4 .1 .1 .  The function Flag : Aflag "-'* Afzag U {5} is defined by 

dof f flag(a) if Xnvert~ble(a) holds Flag (a) 
= ], 5 otherwise. 

[] 

For an action a E {b E A I Invertible(b)} its formal inverse is writ ten as undo(a). 
From the partit ioning algorithm it can be seen that  an action b # a can exist with 
undo(b) = undo(a). We defined Pass(undo(a)). The undo actions are now regarded 
as the result of the application of a function Undo to elements from the set of actions 
{a e A ] Invertible(a)}. The domain of the Undo function is extended to Aftag as 
follows: 

D e f i n i t i o n  4 .1 .2 .  The function Undo : Afzag "* AIlag U {5}' is defined by 

Undo(a) aef= { ~ndo(a) ifotherwise.Invertible(a) holds 

[] 

We have the following identities, which state tha t  double application of the func- 
tions Flag and Undo yields 5. I terated application is not allowed because both  func- 
tions are not defined on 5. 

C o r o l l a r y  4 .1 .3 .  Let a E Afag. 

Invertible(a) ~ (Flag(Flag(a)) = 5) A ( UndoC Undo(a) ) = 5) A 
(Undo(Flag(a)) = 5) ^ (Flag(Undo(a)) = 5 )  

P r o o f .  Follows easily from the Definitions 4.1.1 and 4.1.2. [] 

Having defined the functions Flag and Undo, we extend ,U(BPAgce,~(A)) to a 
setting with AItag. First the Boolean algebra needed for backtracking is defined. 

D e f i n i t i o n  4.1.4.  Given a partitioned set of actions Aylag, a Boolean algebra 
~(Afz~g) is defined as containing expressions 

- {enabled(a) ] for all a E Ailag }, 
- {Inert(a), Invertible(a), Pass(a), Commit(a) la ~ AStag}, 

and satisfying 
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- -  Inert(a) = f t r u e  if Inert(a) holds in the part i t ion 
false otherwise, 

and similarly for the predicates Invertible, Pass and Commit, 
- enabled (flag(a))-- enabled(a)whenever Invertible (a) holds. 

[] 

Closed terms over E(BPAgce,  ~(Allag)) are now evaluated in a data  environment 
t-~flag �9 

D e f i n i t i o n  4.1.5.  A data environment ~flag o v e r  a part i t ioned set of actions Aylag 
and a Boolean algebra ~(Afzo~) is a tuple (S, action, effect, eval), where 

- S is a non-empty set of data-states,  
- act ion:Aflag x S - ~ A l l a g  U {~}, 
- effect : Allag x S --* S, satisfying 

v s  e s .  effect(f lag(a),  s) = e/~eet(a, s),  
Invertible(a) = t r u e  ==~ Vs e S .  effect(undo(a), effect(a,s)) = s, 

Inert(a) -- t r u e  ~ Vs e S .  (enabled(a,s) = t r u e  =~ effect(a,s) = s), 

- eval : ~(Afzag) x S ---* ~(Afz~g), satisfying the axioms in Table 7 and whenever 
Invertible ( a ) = t r u e ,  also satisfying 

eval( enabled (a), s) <_ eval( enabled (undo(a) ), effect(a, s) ). 

[] 

It seems straightforward to require action( flag(a), s) = action(a,s) whenever 
Invertible (a) = t rue .  We do not,  however, because it may be desirable to keep the 
distinction between flag(a) and a after evaluation of the process in which they occur 
with the state operator.  

In the previous section a data-state  dependent predicate was defined in some data  
environment 3 tha t  described the actual s tatus of an action in a certain data-state:  
invertible(a, s), which holds if a is enabled in s (i.e. eval(enabled(a), s) r false) ,  and 
a is an invertible action. In a similar way pass(a, s) and commit(a, s) were de~ned. 
These semantic predicates have their counterparts  in a Boolean algebra 1~(Afzag). 

D e f i n i t i o n  4.1.6.  Given ]~(Aftag), we define the following abbreviations for all 
a E A f l a g :  

invertible (a) = e~abled (a) ^ Invertible (a), 
pass(a) = enabled(a) A Pass(a), 

�9 c o m m i t ( a )  = enabled(a)  ^ C o m m i t ( a ) .  

[] 
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From the definition of the partition of Allag it follows that  also these predicates are 
mutual ly exclusive. From the above information we can derive a simple result: 

enabled (a) = revertible (a) V pass (a) V commit (a). 

Now we add the binary backtracking operator + (introduced in Section 3), and 
the functions Flag and Undo to the signature Z(BPAgee ,$(Aymg)) .  The signature 
thus obtained, Z(BPAgce,  Flag, Undo, +, B(AImg)), will further be abbreviated as 

~7(BPA(+)). 

Let P denote the set of process terms over ~7(BPA(q-)), and B the set of Boolean 
expressions over B(Ayza~). Consequently, we extend the domain of the enabled pred- 
icate to terms over 17(BPA(+)). 

The axioms for the q- operator are listed in Table I0. The binding power of q- is 
taken to be less than �9 and stronger than :-+. The axiom system BPAgce, extended 
with the 5 axioms for the q- operator will be referred to as BPA(q-). Observe that 
this way of axiomatising the + operator is in accordance with the basic term scheme 
of Definition 2.1.1. 

(Bal) ~ ~- z = 
(Ba2) a ~- z = 
(Ba3) a .  z + y = 

(Ba4) (~ + y) + ~ = 

(B~5) (r :-~ ~) + y = 

X 

i=~ertibl~(a) :-~ Frog(a). (= + V=do(a). y) + 
pa,~(a) :-4 a. (= + y) + 
commi~(a) :-+ a. x + 
~e~abled(a) :-+ 
e~abl~d(~) :-~ �9 + ~ + ~=ablr :-~ y + z + 

r  z + y + - , r  y 

Table 10. The axioms of BPA(q-) for backtracking, where a 6 Almg, r E B. 

Axiom Ba l  expresses that  6 in the left argument of the q- opera tor  leads to 
the choice of the right argument. The axiom Ba2 states tha t  backtracking over a 
single action as the left argument of the + operator does not occur: the occurrence 
of a single action a leads either to successful termination or to the choice of the 
right argument,  depending on the enabledness of a. The summand  enabled(a) :~  a 
equals a according to Lemma 2.2.3. The guards in Ba3, which are mutual ly  exclusive, 
represent the actual test on the atomic actions under the + operator.  In this axiom 
the core of the backtracking mechanism is best visible: if an action a is invertible, 
then a is removed from the scope of + after applying the function Flag to a, and the 
formal inverse of a is inserted with the function Undo, prefixing the right argument  
of the + operator. Note that  certain restrictions on the set of actions A)la9 may 
lead to the cancellation of summands in the right hand side of Ba3. Axiom Ba4 
defines how the choice operator + distributes over §  and axiom Ba5 defines how 
the guarded command construct :--* is removed from the scope of + .  
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The Booleans representing the partitioning predicates Inert, Invertible, Pass and 
Commit have the useful property of any Boolean r E { t rue ,  false}: 

r :-+ z . y  = r : - ,  z .  (r : ~  y). 

As a consequence, we can replace Flag(a) by flag(a) in axiom Ba3 as soon as it is 
known that  Invertible (a) = t rue .  Likewise we can replace Undo(a) by undo(a). 

The following theorem states that  the ~- operator can be eliminated from closed 
27(BPA(q-)) terms. Consequently, properties of ,U(BPA(q-)) terms can be proved 
by induction on the structure of basic terms over 27(BPAgce,B(A1ta,) ) (see the 
Representation Lemma 2.1.2). 

T h e o r e m  4.1.7 (Elimination); 

1. I / p  is a closed term over Z(BPA(+)) ,  then there is a basic term ff over the 
signature 2~(BPAgce, B(Altaa) ) such that 

BPA(~-) I- p = / i  

~. BPA(~-) is a conservative extension of BPAgce, i.e., for all closed terms p and 
q over Z(BPAgce,~(A/ta , ) )  we have 

BPA(~-) F- p = q r BPAgce b p = q. 

P r o o f .  See Appendix. 

4.2 P r o p e r t i e s  of  t he  § o p e r a t o r  

In this section some properties of the ~- operator are proved. The Enabledness The- 
orem 4.2.2 shows that  enabled(z ~-y) is equivalent to enabled(z + y). After this, we 
will show that  associativity does not hold in general for the ~- operator: an extra 
constraint on B(Apaa) must be satisfied to have associativity. 

We start  off by giving some identities which demonstrate the interaction of ~- 
and the guarded command : ~  in various ways. These identities are used for further 
results. 

L e m m a  4.2.1. 

1. r :--, (r :--+ z) + y  = r : - ,  z+y,  

(r :--* z + r :--* y) + z = r ^ enabled(z) : 4  z + z + 
r A enabled(y) : ~  y + z + 
(~r v -~enabled(z)) ^ ( ~ r  V -enabIea(y) )  :-+ z, 

3. = + y = enabled(=) :--. z + y + -~enabled(=) : ~  y, 

4. (r162162162 

P r o o f .  See Appendix. [] 
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The following theorem states that enabled (z § y) is equivalent to enabled (z + y) 
whenever x represents a closed term. A result which from a semantic point of view 
is not very surprising. 

T h e o r e m  4.2.2 (Enabledness). I f  p is a closed term over ~U(BPA(§ then the fol- 
lowing holds: 

enabled (p + y) = enabled (p) V enabled (y). 

Pr oo f .  See Appendix. [] 

In order to obtain an associative operator for backtracking, a restriction on the 
Boolean algebra ~(Altag ) is needed. We illustrate this with an example. 

E x a m p l e  4.2.3. Let a, b, c e A flag, and Invertible (a) = enabled (undo (b)) = t rue ,  
then 

1. (a . undo(b). 6 §  § c = 
enabled(a) :-~ flag(a), undo(b). (~ndo(a). c + -enabled(~nao(a)):-~ c) + 

~enabled(a) :~  c, 

2. a . u,~do(b) . 6 r (6 + c) = 
enabled (a) :--..> flag(a), undo(b), undo(a) . c + 

~enabled(a) :--* c 

(see the Appendix for a proof). It is easy to see that  the two process terms above 
are not equal. Consequently, associativity cannot hold in general for the § operator. 
E n d  e x a m p l e .  

We can obtain associativity for q- by only regarding Boolean algebras in which 
the actions undo(a) are uniformly enabled (as suggested by the example above). 

Def in i t ion  4.2.4. Let a E Ayzag. A restricted Boolean algebra ~(Alzag)-  is a 
Boolean algebra ~(A/tag ) that  satisfies the constraint 

Invertible(a) = enabled( ~ndo(a)  ). 

We write 22(BPA(§ for a signature ~U(BPA(§ defined over a Boolean algebra 
~(Afzag)- .  [] 

L e m m a  4.2.5. Let a E A/lag and Invertible(a) = t rue .  In a restricted Boolean 
algebra ]~(A/tag ) -  the following identity holds: 

pass(undo(a)) = t rue .  

P roo f .  By definition. [] 
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T h e o r e m  4.2.6 ( Associativity ). I f  p is a closed term over ,U(BPA(§ then back- 
tracking is associative: 

( p §  y) § z = p §  ( Y §  Z). 

Proo f .  See Appendix. [] 

We give an example that shows why we defined flag actions, and consequently had 
to extend the set of atomic actions from A to Allan , in order to obtain associativity 
of § For this purpose, we can assume that Flag(a) = a for a E A, and use axiom 
Ba3 in its current form. If Invertible (a) = t rue,  then the following identity can be 
derived. 

(a .  5 § 5) § b = a . undo(a) ,  undo(a) ,  b + ~enabled(a) :---* b, 

which is in general not equal to 

a . 5 § (5 § b) = a . undo(a) ,  b + ~enabled(a) :-~ b. 

Another design decision was to define Pass(undo(a))  for all invertible actions 
a. The reason for this is again the associativity of § it can neither be allowed to 
define Commit(undo(a))  nor to define InvertibIe (undo(a)).  We illustrate the inap- 
titude of the second alternative with an example. Suppose we have Invertible (a) = 
Invertible(undo(a)) = true,  and f lag(undo(a)) denoting the flagged duplicate of 
undo(a) and undo(undo(a)) denoting the inverse of undo(a). Then we can derive 

( a . 5 § 2 4 7  = 

enabled(a) :.-o f lag(a) ,  f lag(undo(a)) ,  undo(undo(a)) ,  b + ~enabled(a) :--.~ b, 

which can in general not be equal to 

a . 5 § (5 § b) = enabled(a) :---* f lag(a) ,  undo(a) ,  b + -~enabled(a) :--* b. 

4.3 B i s imula t ion  and  re la t ional  semant ics  

First we give the transition rules for ~U(BPA(§ x's by combining those of Tables 6 
and 9 with the ones given in Table 11. 

L e m m a  4.3.1 (Congruence).  Let S be given. The relation ~_ between closed terms 
over the signature Z(BPA(§ ~,s is a congruence with respect to the operator §  

Proo f .  See Appendix for a sketch. [] 

We have the following result: 

T h e o r e m  4.3.2 (Soundness) .  Let a data environment S be given, and let p ,q  be 
closed terms over ~(BPA(§ x,s. It holds that 

B P A ( §  ~ p_~q .  
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a e A enabled(a):~a if enabled(a) # false 
a , ~ /  

a e A if enabled(a) # false A Invertible(a) = t r u e  
flag(a) enabled(a):--a V 

+ 
Y ~:--,b~ yl 

z +y ~:--~b> y, 
if r A enabled(z) = false 

r ) 

Y ~/ if r A enabled(z) = false 
z + y r V/ 

z 4- y ~:--.b x' 4- undo (a). y 
if Invertible(b) = t r u e  

X X r ~t 
if Pass(b) = t rue  r ) a:' 

z + y  ~:--.b z ' + y  z ~ - y  
if Commit(b) = t r u e  

Tab le  11. Additional transition rules for BPA(~-), where b E Afz~ o, r E B. 

P r o o f .  I t  is easy to check tha t  all new axioms of BPA(~-) are valid. By the  Congru- 
ence Lemma 4.3.1 the  soundness of B P A ( + )  follows immediate ly .  [] 

In order to prove tha t  the Requirements  I - IV, formula ted  in Section 3, are  
satisfied by the relat ional  semantics  of 4-, we formally define the  re la t ional  semantics  
for closed te rms over E ( B P A ( §  

D e f i n i t i o n  4 .3 .3 .  Let  p, q denote closed te rms over ~ (BPA(4- ) ) ,  and  a d a t a  envi- 
ronment  S be given. Then 

v ,  e s .  b + q](,) [ d ( , ) ,  
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where r is a closed term over ~(BPAgce,~(As,  zag)) such tha t  B P A ( + )  b p + q = r .  
[] 

By the Elimination Theorem 4.1.7 the expression [p 4- q](s) is well-defined: ac- 
cording to this theorem the 4- operator can be eliminated from closed s 
expressions. Moreover, because BPA(§  is a conservative extension of BPAgce, we 
find that  if BPA(4-) ~- p 4- q = r and BPA(4-) b p 4- q -- r ' ,  then BPAgce ~- r = r ' .  
Using Lemma 3.1.2 we find that  Vs e S .  [rl(s)  = [ r ' ] (s) .  

T h e o r e m  4.8.4  (Requirements). Requirements I - I V  are satisfied by the relational 
semantics of 4-. 

P r o o f .  See Appendix. [] 

5 R e c u r s i v e l y  d e f i n e d  p r o c e s s e s  a n d  a n  e x a m p l e  

In this section Basic Process Algebra with backtracking is extended with recursion. 
Furthermore,  an example is given of a recursive specification over ~(BPA(4-)) ,  as 
well as its evaluation with state operators. 

5.1 S p e c i f y i n g  p r o c e s s e s  b y  r e c u r s i v e  e q u a t i o n s  

We introduce processes defined by possibly recursive equations. We do not consider 
state operators as a means to specify processes in this way. 

D e f i n i t i o n  5.1.1.  A recursive specification E = {~: = t~ [~ E VB} over the signa- 
ture ~ ( B P A ( §  is a set of equations where VE is a possibly infinite set of indexed 
variables and t~ a term over ~(BPA(4-))  such tha t  the variables in t~ are also in 
V/v. [] 

A solution of a recursive specification E = {z = t~ ]z E V~v} is an interpretation 
of the variables in VE as processes, such tha t  the equations of E are satisfied. For 
instance, the recursive specification {z = z} has any process as a solution for z, and 
{z = az} has the infinite process "a ~' '  as a solution for z. The following syntactical 
restriction on reeursive specifications turns out to enforce unique solutions (modulo 
bisimilarity). 

D e f i n i t i o n  5.1.2.  Let t be a term over the signature 2~(BPA(+)), and E = {z = 
t ,  [~ e Vs} a recursive specification over 2~(BPA(4-)). 

- An occurrence of a variable z in t is guarded iff t has a subterm of the form a. M 
with a E Afzag, and this z occurs in M.  

- The specification E is syntactically guarded iff all occurrences of variables in the 
terms tz are guarded. 

- The specification E is guarded iff there is a syntactically guarded specification 
E '  = {z = t ~_ [z e VE} over ,U(BPA(4-)) such tha t  BPA(4-) b t~ = t~ for all t~. 
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Now the signature ~U(BPA(q-))rtEc, containing representations of recursively de- 
fined processes, is defined as follows. 

Def in i t ion  5.1.3. The signature S(BPA(q-))R~c is obtained by extending the sig- 
nature Z(BPA(4-)) in the following way: for each guarded specification E = {z = 
t= I x 6 VE} over Z(BPA(~-)) a set of constants {<z [E>] z e VE} is added, where 
the construct <z [E> denotes the z-component of a solution of E. r3 

Some more notations: let E = {z = t~ ]z 6 Vm) be a guarded specification over 
~U(BPA(~-)), and t some term over ~(BPA(§ Then < t ] E >  denotes the term 
in which each occurrence of a variable x 6 VE in t is replaced by <x [ E > ,  e.g., the 
expression <aaz [{x = az}> denotes the term aa<z [{z = az}>.  

For the constants of the form < x  [ E >  there are two axioms in Table 12. In 
these axioms the letter E ranges over guarded specifications. The axiom REC states 
that  the constant < z  ] E >  (z e VE) is a solution for the x-component of E,  so it 
expresses that  each guarded recursive system has at least one solution for each of 
its (bound) variables. The conditional rule RSP (Recursive Specification Principle) 
expresses that  E has at most one solution for each of its variables: whenever one 
can find processes p~ (z E Vm) satisfying the equations of E, notation E(p'~), then 
p~ = <z [E>. 

(REC) < z [ E > = < t ~ ] E > i f z = t ~  E E  

E - ~  
(RsP) if �9 e v E  

p~ = <z ]E> 

Table 12. Axioms for guarded recursive specifications. 

Finally, a convenient notation is to abbreviate < z  [ E >  for z E VE by X once 
E is fixed, and to represent E only by its REC instances. The following example 
shows all notations concerning recursively specified processes, and illustrates the use 
of REC and RSP. 

E x a m p l e  5.1.4. Consider the guarded recursive specifications E -- {~ = az} and 
E'  = {y = ayb} over Z(BPA(~-)). So by the convention just introduced, we write 
X -= a X  and Y = aYb. With REC and RSP one can prove 

BPA(~-) + REC + RSP ~- X = Y 

in the following way. First note that  X b  = aXb  by REC, so E ( X b )  is derivable. 
Application of RSP yields 

Xb = X. (1) 
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R~c (1) 
Moreover, Xb = aXb = aXbb, and hence E'(Xb)  is derivable. A second applica- 
tion of RSP yields Xb = Y.  Combining this with (1) gives the desired result. E n d  
e x a m p l e .  

The general transition rule by which processes defined by guarded recursive spec- 
ifications are associated with transitions systems is given in Table 13. The specifi- 
cation E = {z = t ,  [x 6 Vz} denotes a guarded recursive specification over the 
signature ~7(BPA(+)). 

<x [E> r x' 
if z = G E E 

Table 13. Transition rule for guarded recursive specifications, where a 6 A frog, r 6 B. 

The algebraic manipulation of process terms over ,U(BPA(+))REo may require 
the axiom SB, Standard Backtracking, stating that  backtracking is associative. The 
reader should keep in mind that  this axiom is sound in a signature with a restricted 
Boolean algebra B(AImg)-  , but that  associativity does not hold in general. Without 
proof we state that  the Enabledness Theorem 4.2.2 is derivable for process terms 
over Z(BPA(§ 

(SB) (x+y)+z=x+(y+z) 

Table 14. The axiom for Standard Backtracking. 

5.2 A n  e x a m p l e  of  a p roces s  w i t h  backtrack ing  

In this section we evaluate in ~7(BPAgce, B(Aflag))REC a recursive specification over 
IT(BPA(+))REc in a given data environment ,S/~9 in a specific initial data-state. 
By virtue of the Elimination Theorem 4.1.7 we can apply any state operator to 
closed terms over Z(BPA(+))REc. By the definition of guardedness, also recursive 
specifications over ,U(BPA(+))REc can be evaluated. 

Our example shows in an easy way that  many of the previously defined notions 
can be combined to analyse a small problem, borrowed from the chess game. 

E x a m p l e  5.2.1. A well-known problem from the chess game that  can be solved 
with backtracking is the 8 Queens Problem (see e.g. [Bra86]). The problem can be 
formulated as follows: "Put 8 queens on a chessboard such that  none of the queens 
attacks another". In order to illustrate the backtracking mechanism of BPA(+)ttEC, 
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we reduce this problem to a much simpler one that  is in essence analogue. Our 
simplified version of this problem is "Put 3 rooks on a 3 • 3 'chessboard' such that  
none of the rooks attacks another". We start off by defining the set of atomic actions 
A and the Boolean algebra B(A). We use the sort Nat for representing the natural 
numbers. On Nat we have the functions +, - and an equality function eq. 

As a set A of atomic actions for the 3 Rooks Problem we choose 

A de___f {puti,putbacki, write, write(k1, k2, k3), ready I i E {1, 2, 3}, ki e Nat} ,  

where puti and putbacki put Rook i on another position, write is evaluated as 
write(k~,k2, k3) writing the current data-state (the positions of the three rooks) 
to some external device, and ready indicates that  the process has terminated. 

The Boolean algebra B(A) we use for the 3 Rooks Problem contains, next to 
expressions enabled(a) with a 6 A, expressions 

eq(nl,n2), 

where nl ,n2 represent natural numbers. 
Let i 6 {1,2,3} and ni, ki, k~ 6 Nat. For solving the 3 Rooks Problem we take 

the following data environment S = (S, action, effect, eval): 

- S d,j { ( k l ,  kg., k3) [ k,, k2, kz E Nat}. 
- The action function is defined as the identity function on A, except for 

action(write, (kl, k2, k3)) de__f write(k1, k2, k3). 

- The effect function is defined with the help of a predicate attack. The substitution 
of k~ for ki in (kl,kg.,k3) is denoted by (kl,k2,k3)[k~/ki]. 

attack(ni,(kl,k2,k3) ) de___f V ~i ---- k S. in Nat, 
l <_s. <i 

effeet(p t. (ki, do = 

(kl, k2, ka)[(kr + 1)/k~] if "~attack((k, + 1),, (kl, k2, k3)) in Nat 
effect(p t. + otherwise, 

effect (putbacki, ( kl , k2, k3)) de_f 

(kl,k2, ka) if kl = 0 in Nat 
(kl ,  k2, k3)[(kl - 1)/ki] if kl ~ 0 in Nat and 

-~attack((kl - 1)i, (kl, k2, k3)) in Nat 
effeet(p=tbaek , (kl, k3)[(kl - otherwise. 

The actions write, write(k1, k2, k3) and ready are inert, and uniformly enabled. 
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- The  eval function is given by 

eval ( enabled (puti ), ( kx , k2, ks)) 

t r u e  if 3hi �9 ki < ni _< 3 and 
~attack (k,, (kl ,  k2, ks)) and 
-~attack(ni, (ka, k2, kS)) in Nat 

fa lse  otherwise, 

eval(enablcd(putbacki), (kl, k2, ks)) d=ef true, 

eval(eq(na,n2), (kl, k2, ks)) def ~ true if nl  = n2 in Nat 
= ~ fa lse  otherwise. 

Wi thout  proof  we state  tha t  putbacki is an inverse action o fpu t l  so we par t i t ion A 
by defining Invertible (puti), Pass(putbackl) and Pass(write). We fur thermore  define 
Pass(write(k1, k2, ks)) and Pass(ready), though we also could have classified these 
actions as Commit. For the part i t ioned set of actions we then  have 

A flag = {puti, undo(puti),flag(puti), write, write(k1, k2, k3), ready 
I i e {1, 2, 3}, ki e Nat}, 

where 
undo(putl) aef putbackl. 

The  definition of an extended da ta  environment  ,.q/~ag is simple: extend the func- 
t ion action to Allag with the identity on flag actions (note t ha t  the  requirements in 
Definition 4.1.5 are satisfied). Let  i E Nat. The process tha t  generates  solutions of 
the 3 Rooks Problem is specified by 

E de_f { Bi = eq(i, 1):--* (put1. B2 + -,enabled(put1):--~ ready) + 
eq(i, 2) :--* put2 �9 B 3  q- B1  + 
eq(i, 3) :--* put3 " write. 5 + put~. �9 Bs }. 

The process Bi always tries to put  Rook i on a next  position on column i, such tha t  
it does not a t tack  any rook on a column j < i. I f  this is not possible then  if i > 1 
it tries to put  the rook on column i - 1 on a next  position.. As soon as the rook on 
column 1 cannot be put  on a next position, the process te rminates .  I f  Rook 3 is put  
on a new position a write action follows, after which a 5 (triggering backtracking) is 
met .  

Finally we prove tha t  E specifies a process tha t  can generate  all possible solutions 
of the 3 Rooks Problem. We demonst ra te  this by evaluating ~(0,0,0)(B1), which is 
the process tha t  s tar ts  by put t ing Rook 1 on our chessboard, where all rooks are on 
a row (0, 0, 0) (say, not on the chessboard). 

The  evaluation of B1 in da ta-s ta te  (0, 0, 0) yields a ~ (BPA6)  process t ha t  per- 
forms write(ka, k% ks) actions for all possible solutions of the 3 Rooks Prob lem as 
follows (see the Appendix for a proof): 

)~(o,o,o) ( B1) = put1" 
1 ag(put ). 

l ag(vut3 ) " w r i t e ( i ,  2, 3).  ndo(put  ). 

(put3 ) . writ (1, 3, 2 ) .  ndo ). 
undo(put2). 

undo(put2). 
~(a,0,0)(B1) 
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~(1,0,0)(B1) = purl" 

~ag(p~t~) �9 ~rite(2,1, 3). ~do(p~t3). 
~ag(p~ts). 

~g(p~t~) �9 ~rite(2, 3,1). ~ndo(p~t~)- 
undo(puts). 

undo(puts). 
~(s,0,0)(B1) 

k(2,0,0) (B1) = put1" 
~ag(p~t2). 

[tag(p~t~). 
~ag(p~t~) . ~rite( ~, Z, 1). ~do(p~t~). 

undo(put:). 
undo(put2). 

ready. 

The inverse actions used here for the specification of the 3 Rooks Problem are 
uniformly enabled. Consequently, the Boolean algebra B(Aizag ) is a restricted alge- 
bra ~(AIzag)-. However, for a proof of the evaluation above this is not necessary, 
because we do not use associativity of the ~- operator. The 3 Rooks Problem can 
also be solved using a finite domain {0,1, 2, 3) instead of Nat. In this case, the def- 
inition of a data environment for specifying this problem needs some adaptations. 
E n d  example .  

The 8 Queens Problem can be specified and evaluated analogously by changing S 
into a tuple of 8 natural numbers instead of 3, and by changing the attack predicate, 
such that attacks on the diagonals of the chessboard are included. The specification 
E requires only small adaptations. 

Moreover we mention here that many variants of the 3 Rooks Problem are con- 
eeivable. For instance, only small changes in the definition of the data environment 
~q make it possible to specify this problem with only one put and one putback ac- 
tion. Also non-determlnistic choices between the rooks to be put can be specified, 
such that evaluation leads to various correct solutions in the form of traces with the 
desired write actions. 

6 C o n c l u d i n g  r e m a r k s  

The operator q- for modelling backtracking over a given data environment was ax- 
iomatised. For this purpose, we defined the axiom system BPAgce as a core system, 
containing an explicit notion of enabledness. 

Observe that the special case 

enabled (a) = t r u e  for all a E Ayzag 

simplifies some parts of the theory considerably. Notably,  the  ~- becomes associative 
for any Boolean algebra ~(Aftag) .  We remark that this case is equivalent to a setting 
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without explicit enabledness: backtracking can only be triggered by guards or & (and 
not by atomic actions anymore). 

A closer s tudy of what  backtracking implies led us to the conclusion tha t  the 
introduction of only the predicate enabled on the atomic actions is not  sufficient 
for an axiomatisation of a backtracking operator. Some additional information on 
the nature of atomic actions is needed in order to decide how to deal with an ac- 
tion that  is subject to backtracking. When every action gets the same t rea tment  in 
the scope of a backtracking operator,  the notion of backtracking becomes diffuse. 
For instance, if repeated backtracking on a single action is allowed, the mechanism 
becomes inefficient, and moreover a binary and associative backtracking opera tor  
seems impossible to axiomatise. 

In order to motivate some of the design decisions we had to make for obtaining 
associativity of q-, some examples were given. A basic design decision, which we 
made in Section 3, was to choose for a deterministic notion of invertibility: if an 
action a is invertible, then undo(a) can undo any possible effect s '  of a in some 
initial data-state  s. So according to this notion we already know in data-s ta te  s tha t  
undo(a) exists in s' and tha t  it is enabled in s'. 

A totally different, more general backtracking mechanism can be obtained by 
a different, non-deterministic, notion of invertibility. We can for instance, given an 
action a, also select a unique inverse action, say b, but  not require enabledness of 
b in every possible effect of a (this implies a notion "possible invertibility" instead 
of semantic invertibility). In the case of backtracking, a test after execution of  a is 
then needed to verify whether b is enabled or not, next to an invertibility test  on a. 
Some s tudy after this option led us to the conjecture tha t  backtracking, using a non- 
deterministic notion of invertibility, is essentially different from backtracking with a 
deterministic notion of invertibility, and tha t  it would be much more complicated to 
axiomatise an associative backtracking operator. 

However, in the approach we took, also strong measures had to be taken in order 
to obtain associativity of q- within the setting of BPA(q-). We had to require uniform 
enabledness of inverse actions. This led us to defining a restricted Boolean algebra 

The signature ~(BPAgce,  ~(A)) as introduced in Section 3 can easily be extended 
with parallel operators, suitable for the description of concurrent,  communicat ing 
processes, and the same holds for ,~(BPA(q-)). The axiom system ACP (Algebra 
of Communicat ing Processes, see e.g. [BW90]), forms a suitable basis for such ex- 
tensions. Care has to be taken, however, with the communications defined between 
atomic actions: if two actions a and b communicate to some resulting action c, then 
it can be derived tha t  c must exactly be enabled if both  a and b are (provided tha t  
the interaction between the guarded command :--* and the communication merge I 
is axiomatised by (r : 4  ~) I ( r  :--* Y) = r A r : 4  (x ] y)). In other  words, the 
Boolean algebra ]~(A) must be compatible with the communicat ion function 7 by 
satisfying enabled(c) = enabled(a) A enabled(b) whenever "y(a, b) -- c (a, b, c e A). 

The empty process a (skip, axiomatised by e. z = z -  e = x), is compatible with 
BPAgce but not with BPA(q-): from the axiom E- x = �9 it follows tha t  enabled(c) = 
t r u e  must hold, and it is also evident tha t  eq-z = e. Now assume tha t  invertible(a) = 
t r u e  for some a. Then we can derive a = aq- x = a.eq- x ----- flag (a). (e q- undo (a). z) = 
flag(a), contradicting the use and meaning of flag actions. 
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It  is beyond the scope of this paper to make a detailed comparison of the back- 
tracking mechanism of the language PROLOO with that  of BPA(+).  We only mention 
one interesting similarity: in both formalisms there is the possibility to specify pro- 
grams that  refute any possibility of backtracking after a given program part (trace) 
has been executed. In PROLOC the cut predicate can be used to block the way back, 
and in BPA(+) any uniformly enabled commit action can be used for this. An impor- 
tant difference, however, is that  backtracking in a PROLOO program has a 'global' 
character; it is not restricted to the scope of a specific operator, such as in BPA(+),  
but it covers a whole program. 
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Appendix 

Proof of the Congruence Lemma 2.3.4. This can be proved either in a direct manner, 
or by using the main result of BAETEN and VI~HOEF [BV93]. We give a proof 
using the second alternative: in [BV93] it is shown that  if transition rules satisfy 
some syntactical restrictions, the so-called path format, then strong bisimulation is 
a congruence. We cannot use this result in a direct way, because our definition of 
bisimulation is not standard: we demand evaluation of the guards in labels and, 
moreover, the existence of a finite number of 'matching'  transitions. However, with 
some standard facts about Boolean algebras, we can relate our operational semantics 
with one to which the setting of [BV93] applies. As a general reference to Boolean 
algebras we mention [Mon89]. We first sketch our proof: 

1. Embed ~(A) in a complete, atomic Boolean algebra, say l~(A) +, by some em- 
bedding f .  Such embeddings exist by STONE's representation theorem. 

2. Any Boolean f ( r  can be represented in ~(A) + as Vier~ ati with atl atomic. 

(For 1 it is essential that  r is a finite sum or product.) 
3. The rules in Table 6 can be adapted to corresponding "B(A)+-transition rules" 

enablcd( a):---*a 
in the spirit of 1 and 2 above. For example, an axiom a ~/corre- 

sponds with axioms a at,:--,a x/ if f(enabled(a) ) = Ylez  ati. 
4. The lt~(A)+-transition rules satisfy the path format (we regard guarded com- 

mands unary operators). 
5. Two transition systems are bisimilar (in the sense of Definition 2.3.3) iff their 

corresponding ~(A) + systems are. Here 'corresponding' means having the same 
initial state. 

6. For the B(A)+-transition systems, our definition of bisimilarity coincides with 
the one following from [BV93] in this case. 
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From 4 - 6 it follows that  our definition of bisimularity is a congruence. 
Further comments on 3 and 4. We regard transition systems that  differ in two 

aspects from the ones defined in Section 4.3. First, guarded commands are considered 
unary operators: for each r in tI~(A), there is an operator r :--* .. Second, as labels 
we use expressions of the form 

at :--~ a 

where at ranges over the Boolean atoms of ~(A) +. This affects the precise definition 
of the labels of the transition systems defined before. 

As for the transition rules, the axiom for atomic actions in Table 6 has to be 
replaced by 

a e A if f(enabIed(a)) = Viez  ati 
a ati:---*a ) V 

(note that  this may give rise to an infinite number of transitions). The two transition 
rules for the guarded commands have to be exchanged by 

2 at:---+a) ~! X a~:---*a~ / 
if at <__ f ( r  and if at <_ f ( r  

aS: --~G x l  ~I[:---~(; 

The remaining transition rules are the same as those in Table 6, though r now 
ranges over the atoms of ~(A) +. These rules indeed satisfy the path format defined 
in [BV93]. 
Further comments on 5 and 6. Call two closed terms p, q over ,U(BPAgce, ~(A)) 
bisimilar w.r.t. ~(A) +, notation 

p --~+q, 

if their B(A) + transition systems are strongly bisimilar according to the standard 
definition (cf. [BW90]). 

L e m m a  A.1.  For all closed terms p, q over ~U(BPAgce, B(A)) we have that  p _~+q 
iff p _~ q. 

P roof .  A binary relation over the closed process terms is a bisimulation according 
to Definition 2.3.3 iff it is a bisimulation in the standard sense (regarding II~(A) + 
transitions). The following two properties can be used to prove this fact: 

1. I f p  a t : - ~  p ,  then for some r in ]~(A),p ~:--'~, p' and at < f ( r  and likewise 
for transitions ending in ~/; 

2. I f p  ~:~a, p' ,  then p ~*':--'~, p'  for f ( r  = Vir  and likewise for v/- 
transitions. 

Both these properties follow easily by structural induction. 
As an example we show "only if '  (the converse statement that  a bisimulation 

according to Definition 2.3.3 is one for the I~(A) + transitions in the standard sense 
can be proved similarly). 
Suppose pRq for some bisimulation R in the ]~(A) + sense. Observe that  the number 
of states in a transition system (of either type) connected to the root is finite, so we 
may assume that  R is finite. 
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Now assume p ~:-~)  f .  By proper ty  2 we find atl such tha t  p at~:--.~ p~ and 
f ( r  = V i e / a t i .  By R being a finite bisimulation, there is afinite number  of different 

qj~'s with q ~t~:--*~, qi~ and plRqi ~. By proper ty  1, for each such qi~ there is a Boolean 

expression e j ,  with q %.,:-*a qi, and ati < f(r  Because f is an embedding,  it 
follows from f ( r  = Viez ati < Viez  f ( r  t ha t  ~b _< Viez r  The  remaining three 
clauses of Definition 2.3.3 follow in the same way. Hence R is also a bisimulation in 
the sense of Definition 2.3.3. 

Proof of the Elimination Theorem ~.l .T for BPA(+) .  

1. If  p - 4 + ~, with q, ~ basic terms over Z(BPAgce,~(Afzag)) ,  then it can be 
proved by induction on the s tructure of q. According to L e m m a  2.1.2, 5 cases 
have to be distinguished. 
Case 1. ~ -= 6, trivial. 
Case 2. ~ -- a, where a E A flag. 

a + ~ = enabled(a):--~ a-t--~enabled(a) :--* ~. 

The right hand side of this expression is a basic term. 
Case 3. ~ -  a - q l  where a E Aflag. By Lemma2 .1 .2  ql is also a b a s i c  term,  
smaller than  ~. Induction hypothesis: Theorem 4.1.7.1 holds for q~. 

a. q' + ~ = in,,ertibZe(a) : ~  Flag(a) .  (q' + Undo(a). ~) + 
p~ (~ , )  :--. a .  (q' + ~) + 

commit(a) :---~ a .  ql + 
-~enabled(a) : 4  ~. 

By induction q~ + Undo (a). ~ and q~ + ~ are provably equal to basic terms.  Using 
L e m m a  2.1.2 we see tha t  the right hand side of a .  q~ + 7; is equal to a basic t e rm 
5. 
Case 4. ~ - qa + q2- Both qx and q2 are basic terms,  smaller than  ~ by L e m m a  
2.1.2. Induction hypothesis: Theorem 4.1.7.1 holds for ql and q2. 

(ql + q2) + ~ = enabled(q1):-* ql + ~ + enabled(q~) : 4  q2 + ~ + 
~enabled(qx) ^ ~enabled(q~) :-~ ~. 

By induction qa + r and q2 + r are provably equal to basic terms.  According to 
L e m m a  2.1.2, the right hand side of (q~ + q2) + r equals a basic term. 
Case 5. ~ - r :--* ql. According to L e m m a  2.1.2, q~ is also a basic term, smaller 
than  q. Induction hypothesis: Theorem 4.1.7.1 holds for q~. 

(r : ~  q') + ~  = r :--* q' + ~ +  ~r  : +  ~. 

By induction q~+ ~ is provably equal to a basic term.  According to L e m m a  2.1.2, 
the right hand side of (r : ~  ql) + ~ equals a basic term.  
Finally, if p = q ~ r with q and r closed terms over ,~(BPA(+)) ,  it has to be 
proved tha t  there is a basic term/3 such tha t  p = 15. Induct ion hypothesis: 

B P A ( + ) b q = ~  and r = ~ .  

So p = ~ + ~. Using the results above @ + ~ can be represented by a basic t e rm 
15 such tha t  p = :5. This finishes the proof. 
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Proof  of  L e m m a  4 .L1 .  

1. r 1 6 2 1 6 2 1 6 2 1 6 2  
= r 1 6 2  :---* x + y +  r 1 6 2  :---* y 

= r  

2. ( r 1 6 2  enabled(q~ :---~ x) :--+ (r :---* x) + z + 
enabled (r  :--* y) :-.+ (~b :--~ y) ,4- z + 

-`enabled(r :--, ~) ^ -`enabled(r :-~ V) :--, 

r ^ enabled(x) :--, (r :--, x) § ~ + 
4/A enabled(y) :.--r (~ :.-.-, y) ,d- z + 
-,(r ^ enabled(x)) ^ -`(r ^ enabled(y)) :---, z 

4.2.j.1 r ^ enabled(z)  : ~  x + z + 

r A enabled(y)  :---+ y + z + 
(-1r v -`enabled(x)) ^ (- ,r V -`enabled(v)) :--. ~. 

3. z + y = ( x + z ) + y  

= enabled(z):--,  x + y +  enabled(x):..-.r x + y  + 
-`enabled(z) ^ -'enabled(x):--,  y 

= enabled(x) : ~  x + y + - ,enabled(x)  : ~  y. 

4. ( r  : 4  z + - , r  : ~  y) + z 
4.2.1.2 

= r A enabled (z)  :---+ z + z + 
-`r A enabled(y) :-.-* y q- z + 

r ^ -`enabled(~,) :-., z + -,r ^ -,enabled(y) :.--, ~ + 
-`enabled(~) ^ - ` enab led (y ) : -~ ,  

~b :--+ (enabled(z )  :.--+ z ~ z + 
-'enabled(x) V (-'enabled(z) ^ -`enabled(v)) : ~  z) + 
-'r : 4  (enabled(v) :--* V + ~ + 
-,enabled(y) V ( - 'enabled(z)^ - `enabled(y) ) :~  ~) 

= q5 :---~ (enabled(x)  :--, x + z -4- ~enabled(x)  :---~ z)  + 
-`r :--~ (enabled(y) :--* y ~- z + - .enabled(y)  :--~ z)  

4,2.1.3 
= r :--* z + z + - ~ r  : ~  y + z .  

[] 
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Proof of the Enabledness Theorem ~.2.2. By induct ion on the  s t ruc tu re  of p. Ac- 
cording to  the  El iminat ion Theorem 4.1.7, we have to  dis t inguish five cases. Let  q, 
ql and  q2 be basic te rms over ~(BPAgce ,  B(Altag)) , and a e Aftag. 
Case 1. p = 6, trivial.  
Case 2. p = a. 

enabled(a § y) = enabled(enabled(a) :~  a + -.enabled(a) :--, y) 
= enabled (a) V (-" enabled (a) A enabled (y)) 
= e=abled(a) V enabled(y). 

Case 3. p - a . q. 

enabled(a . q § y) = enabled(pa,,(a) :-~ a . (q + y) + 
invertible(a) :---* Flag(a).  (q § Undo(a).  y) + 
commit(a) : ~  a .  q + 
-"enabled(a) : ~  y) 

= (invertible (a) A enabled (Flag(a))) V (pass (a) A enabled (a))V 
( eommi~(a) A enabled(a)) V (-"enabled(a) ^ enabled(y)) 

= invertible(a) v p ~ s ( a ) V  commi t (a )v  (-"enabled(a) A eNabled(y)) 
= enabled(a) V enabled(y) 
= e=abled(a, q) V enabled(y). 

Case 4. p = ql + q2, induction hypothesis:  Theorem 4.2.2 holds for ql and q2. 

enabled((ql + q~) + y) enabled(enabled(q1) :--, ql § Y + 
enabled(q2) :~  ql § Y + 

-"enabled(q1) A -"enabled(q2):--* y) 

enabled(enabled(q1) >-4 ql + y)V 
enabled(enabled(q~) :---~ q2 + y)V 
enabled (-" enabled (ql) ^ -" enabled (q~):-~ y) 

(enabled(q1) ^ enabled(q1 § y))V 
(enabled(q2) A enabled(q2 § y))V 
(-"enabled(q1) ^ -"enabled(q~) ^ enabled(y)) 

Ind.Hyp. 
(enabled(q1) A (enabled(q1) V enabled(y)))V 
(enabled(q2) A (enabled(q2) V enabled(y) ) )V 
(-" enabled (q~ ) ^ -" enabled (q~ ) ^ e~abled (y) ) 

= enabled(ql) V enabled(q~) V 
(~(enabled(q~) V enabled(q~)) ^ enabled(y)) 

= enabled(q1) V enabled(q~) V enabled(y) 
= enabled(ql + q2) V enabled(y). 
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Case 5. p - r : 4  q, induction hypothesis: Theorem 4.2.2 holds for q. 

enabled((r :~  q) § y) = enabled(r : 4  q § y + -~r : 4  y) 
= enabled(r : 4  q § y) Y enabIed(-~r :---, y) 
= (r A enabIed(q § y)) V (7 r  A enabled(y)) 

_r,a.~vv. (r A (enabled(q) V enabled(y))) V (--?r A enabled(y)) 
= (r ^ enabled(q)) V (r ^ enabled(y)) V (--,r ^ enabled(y)) 
= enabled(r :---* q) V enabled(y). 

[] 

Proof of Example 4.L3. We prove the two identities of Example 4.2.3 in reversed 
order. 

a .  undo(b) .  6 + (6 + c) = a .  undo(b) .  6 + c 
= ~enabled(a) : 4  c +  enabled(a):4  a .  undo(b). 6 § c 
= ~enabled(a)  : 4  c + enabled(a) : 4  f lag (a ) .  (undo(b) .  ~ + undo(a)  �9 c) 
= -'~enabled(a):4 c + enabled(a):4  f lag(a),  undo(b). (5 § undo(a),  c) 
= ~enablea(a) : 4  c + enabled(a):4 f lag(a),  undo(b), undo(a).~.  

The term a. undo(b) �9 6 § 6 occurring in the following identity can be t reated anal- 
ogously. 

(a . undo(b). 8 §  § c 

4.2.1.4 

(~enabled(a) : 4  5 + enabled(a) : 4  f lag(a),  undo(b), undo(a).  5) § c 

-~enablea(a) : 4  6 § c + enabled(a) : 4  flag(a),  undo(b), undo(a).  ,5 § c 
-~enabted(a) : 4  e + enabled(a) :--, f lag(a),  undo(b). (undo(a).  6 § c) 

= ~enabled(a) : 4  c + enabled(a) : 4  flag(a), undo(b). 
(enabled(undo(a)) : 4  undo(a) .c  +-,enabled(undo(a)) : 4  c) 

= ~enabled(a) :4  c + enabled(a):4  flag(a),  undo(b). 
(undo(a).  c + ~enabled(undo(a)) : - ,  c). 

Two lemmas for a proof of the associativity of the + operator. Below, two lemmas 
on backtracking in a restricted signature ~U(BPA(+))- are proved. Both  are needed 
for a proof  of the associativity of the § operator. 

L e m m a  A.2 .  In a restricted signature ~U(BPA(§ the following identity holds, 
where a E Aila a. 

Xn~ertible(a) : ~  Undo(a). (y § ~) = In, ertible(a) : ~  ( ~:ndo(a). y § ~). 
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P roo f .  
By case distinction. 
Case 1. Invertible (a) = false, trivial. 
Case 2. Xn~tible(a) = tr~e, so Vndo(a) = u~do(a), a~d from Lcmma 4.2.5 we 
have pass (undo(a)) = t rue .  It  follows immediately that  

Inve~tible (a) : ~  undo(a). ( y ,  ~) = pace(undo(a)) :-~ u~do(a). (y + ~) + false : - ~  ~ .  

From Definition 4.2.4 it follows that  

Invertible (undo(a)) A -~enabled (undo (a)) = false, 

S O  

Xn~t ib le(a)  :-~ u.do(a)  . (y + ~) = pa~(undo(a))  : ~  undo(a) .  (y + z) + 
Invertible(undo(a) ) A -,enabled(undo(a)):---, z. 

By Lemma 4.2.5 we also have 

invertible(undo(a)) = false and commit(undo(a))  = false. 

From axiom Ba3 it follows then that  

Xn~ertible(a) :-~ undo(a).  (y + z) = pace (undo(a ) ) :~  
(pace(undo(a)) :-~ undo(a).  (y + z) + 

~enabl~d(undo(a)) :-~ z) 
= Xn,~tible(a) :--, (undo (a ) . y  + z). 

[] 

Using the property of predicates r E { t rue ,  fa lse)  we can prove the following lemma. 

L e m m a  A.3.  In a restricted signature ~7(BPA(+))-  the following identity holds, 
where a E A flag. 

a . ~  + (y + ~) = in,,~,~ibl~(a) :--, Flag(a).  (~ + (~ndo(a)  . y  + ~)) + 
pass(a) : ~  a .  (~ + (y + z)) + 
commit(a) :---, a .  ~ + 
-,enabled(a) :---* y + z. 

P r o o f .  
By case distinction. 
Case 1. Invertible (a) = false, trivial. 
Case 2. Invertible(a) = t rue ,  so Flag(a) = flag(a) and Undo(a) ..~ undo(a). 
After application of Ba3 to a .  z + (y + z) we find that  only the first summand in 
not in the desired form yet: 

invertibte(a) :-~ f lag(a) .  (~ + undo(a) .  (y + z)).  

Using the definition of invertible and the property of predicates r E {t rue ,  fa lse)  
we insert Invertible (a) in this expression: 

invertibZe(a) :-~ flag(a). (~ + (Invertible(a) :-~ u~do(a) �9 (U + z))). 

Application of Lemma A.2 and subsequently again the property of predicates r E 
{t rue ,  false)  finishes the proof. [] 
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Proof  of  the Assoeiativi ty  Theorem 4.2.6. By induct ion on the s tructure of p. Ac- 
cording to the El iminat ion Theorem 4.1.7, we have to distinguish five cases. Let q, 
ql and q2 be basic terms over ~7(BPAgce, ~(Alzag)) ,  and a E A l ta  9. 
Case 1. p -= 6, trivial. 
Case 2. p - a. 

(a + y) + z = (enabled(a) :--* a + -~enabled(a) :--* y) + z 

~~'=~~ enabled(a):-~ a + ~ + ~enabled(a) :-~ y + z 
= enabled(a) : ~  a + -.enabled(a) : ~  y + z 

= a + ( y + z ) .  

Case 3. p - a .  q, induct ion hypothesis: associativity holds for q. 

( a . q + y ) +  z 

4 .2 .1 ,3  

(invertible(a) :--* Flag(a).  (q + Undo(a).  y) + 
pass(a) : ~  a .  (q q-y) + 
commit(a) :-~ a . q + ~enabled(a) :-* y) + z 

in~ertible (a) ^ enabled (Flag(a)) : ~  
FlagCa) . (q + Undo(a).  y) + z + 

pass(a) A enabled(a) : 4  (a.  (q + y)) + ~ + 
commit(a) ^ enabled(a) :-~ a . q + z + 
-"enabled(a) A enabled(y) :--* y + z + 
-~(pass(a) A enabled (a))A 
-~(eommit(a) A e~abled(a))A 
~( in~ertibl~(a) A enabled( Flag(a) ) )A 
-+,enabled(a) ^ enabled(y)):--* 

in,,ertible(a) : ~  Flag(a). ((q + Undo(a). y) + ~) + 
pass(a) :--* a . ((q + y) + z) + 
commi t (a)  :--~ a . q + 
-"enabled(a) ^ enabled(y) :-~ y + ~ + 
-(pass(a) v commit (a) V invertibte (a)V 
(-,enabled(a) ^ enabled(y))):--, 

invertible(a) :-~ Flag(a). ((q + Undo(a). y ) +  ~) + 
pass(a) :--* a .  ((q + y) + z) + 
commi t (a)  :--* a . q + 
-,enabled(a) ^ enabled(y) :--, y + ~ + 
-,enabled(a) ^ -,enabled(u):~ 

invertible(a) :-~ nag(a) .  ((q + Undo(a). y) + z) + 
pass(a) :-~ a.  ((q + U) + z) + 
commit (a)  :--+ a . q + 
~enabled(a) :---~ y + z 
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1,~a.=Hyp. invertible(a) : ~  Flag(a). (q 4. (Undo(a) . y  + z)) + 
pass(a) :--+ a .  (q 4- (y 4- z)) + 
commit(a) :--* a.  q + 
-~enabled(a) :--~ y 4- z 

A.j ~ . q + (y  + ~).  

Case 4. p ~. qx + q2, induction hypothesis: associativity holds for ql and q2. 

((ql + q2) 4- Y) 4- z = (enabled(q1) :--* ql 4- Y + enabled(q~) :.--~ q2 4- Y + 
~enabI~d(q~) ^ ",~nabl~d(q~) :-~ y) + 

e~abled(enabled(ql) :-~ q. 4- y ) : -~  (enabl,d(q~) : - .  q~ 4- V) 4- ~ + 
enabled(enabled(q~) :--* q2 4- Y):-'* (enabled(q2):--* q2 4- Y) 4- z + 
enabled(~enabled(q~) ^ -.enabled(q~) :-~ y) :-~ 
(-.~,abl~d(q~) ^ -.enabled(q~) :-~ U) + ~ + 
~enabled(e,abl~d(q~) :-~ q~ + y)^  
-~enabled(enabled(q2) : ~  q2 4- y)A 
-~enabled(-~enabled(ql) A -~enabled(q2) :---* y):---* z 

4,2.2 & 4,5.1.1 
enabIed(qa) :-+ (qa 4.Y) 4- z + 
e,abted(q~) :-+ (q: + y) + ~ + 
-~enabled(ql) A -~enabled(q2) A enabled(y) : 4  y 4- z + 
-,enabled(q~) ^ -~enabled(q2) m --,enabled(y):--, z 

4.2.1.3 enabted(q~) :-~ (ql + Y) + ~ + 
enabled(q2) :--* (qg. 4- y) 4- z + 
-~enabled(ql) A ~enabled(q2) :---* y 4- z 

Ind,Hyp. 
enabled (ql) :'--~ ql 4- (y 4- z) + 
enabled(q~) :--+ q~ + (y + z) + 
-,enabled(q1) A --,enabled(q2) :-4 y 4- z 

= ( q l + q ~ ) + ( y + ~ ) .  

Case 5. p ~ r :--+ q, induction hypothesis: associativity holds for q .  

( ( r  
4.2.1.4 

= r 1 6 2  

s,,d.~p. r :--, q + (y + z) + -,~ :--, y + z 
= (r :-~ q) + (u + ~). 

[] 
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Proof of the Congruence Lemma 4.3.1 (sketch). Because a direct proof seems to be 
rather complex, application of the congruence result from [BV93] as used in the 
proof of Lemma 2.3.4 is attractive here. Referring to the idea and terminology of 
that  proof and of the paper mentioned above, the following ingredients are needed: 

1. The transition rules for the state operators (see Table 9) must have associated 
versions in the ~(A) + setting, and the properties 1 and 2 defined in the proof of 
Lemma A.1 must be satisfied. 

2. For any r E ~(A), the unary predicate 

r A enabled(.) = false C /7(BPA(~-)) ~,s. 

must be definable in the path format. 

For the first ingredient, a function eval + : ~(A) + • S ~ ]~(A) + with the property 

eval+(f(r = f(eval(r for all r e ~(A),s  e S 

must be assumed (cf. the definition of the function eval in Table 7). The transition 
rules for the state operators then become 

)ts( X ) eval+ (at's):--*acti~ a's) , )~effect(a,s) ( X' ) 

if eval+(at A ](enabled(a)),s) # false, and likewise for the case z '  = ~/ and 
$effect(~,,)(z') = v/. These rules indeed satisfy the path format defined in [BV93]. 
Moreover, it is not hard to prove that  the transition rules for the ~(A) + format 
defined thus far satisfy the properties 1 and 2 referred to above. 

As for the second ingredient, let P~t abbreviate the predicate afAr(enabled(.)) = 
false. In Table 15 we define for each atom at in ~(A) + the predicate Pat in path 
format. 

po,(6)  
P~t(a) if at A f(euabled(a)) = false 
P,,(x + y) if Pat(z) and Pat(y) 
pot(~, v) if pot(~) 
pot(r :--, ~,) if Po,(,~) 
P.t(r :--* z) if at ~ f(r  

Table 15. The predicates for "not enabledness under at', where a E A, r E B and at  in 
~(A) +. 

It  is evident that  r A enabled(x) = false r VielPat,(x) for f ( r  = Vie l  atl- 
Now the first rule for the t ry operator becomes 

at:---*b y! 
v ' Po , (~)  
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and the second rule is adapted likewise with y'  _-- ~/. If  we change the remaining 
rules as in the proof of Lemma 2.3.4, and let r in Table 11 range over the atoms 
of ~(A) +, all transition rules for the B(A) + setting are defined in path format. A 
subtlety is that  according to [BV93], the bisimilarity of p and q thus obtained, 
say 'not-enabledness bisimilarity under Boolean atoms' ,  covers the property that  
Pat(p) ~ Pat(q). Regarding the meaning of Pat, this type of bisimilarity is not 
really different from our notion of bisimilarity, because this property means that  p 
has no outgoing transitions (with some abuse of notation: Pt rue(P))  iff q has none. 
Just  as in the proof of Lemma 2.3.4, the congruence result of [BV93] can be used to 
prove the lemma. [] 

Proof of Theorem 4.3.4. Requirements I I I  and IV follow immediately from Ba2 and 
Ba3, respectively. Requirements I and I I  can be proved simultaneously by induction 
on the structure of the first argument of the § operator~ which we may assume to be 
a basic term over S(BPhgce,  ~(Altag)). We will not give a complete proof because 
of its length. Instead we give a proof for one of the induction steps. 

Let a E Aftag, p be a basic term over -U(BPAgce, B(Aftag)), and s E Sflag. We 
prove that  a . p  satisfies Requirements I and I I  if p does. We assume that  Vq E 
str(a .p, s).-~pass((r, s) holds. This implies that  if enabled(a, s) = t r u e  then Vp E 
str(p, effect(a, s)).-~pass(p, effect(a, s)) also holds. We distinguish the following cases: 
Case 1. Invertible (a) = t rue .  With Ba3 we find 

b "p § ~](~) = [e~abted(a) :-~ ~ g ( a )  �9 (p § undo(a). Y)l(~) O 
[~e,~abled(a) :- .  yl(~) 

[p § undo(a), y](effect(a, s) ) if enabled(a, s) = t r u e  
= [y](s) otherwise. 

Case 1.1. enabled(a, s) = false. Then yail(a .p, s) = t r u e ,  so Requirement I follows 
trivially. Furthermore [a .p § y](s) = [y](s), and because [a.  p](s) = $ in this case, 
we find 

[ a ' p §  = [a-p](~) U M(~) ,  
which proves Requirement II. 
Case 1.2. enabled(a, s) = t r u e  A fail(a, p, s) = t r ue .  Now Requirement I follows 
trivially and fail(p, effect(a, s)) = t r u e  in this case. By induction we have 

[p § undo(a), yl( effeet(a, s) ) = [pl( effect(a, s) ) U [undo(a). yl( effect(a, s) ). 

We derive 

[a.p § y[(s) ~3  [p § undo(a), yl(effect(a, s)) 
~ d ~ , .  [pl(eZeet(a, s)) u In-do(a)- ~](effect(a, ~)) 

= [a.pl(~) U [y](elyeet(undo(a), effect(a, ~))) 
= [a .p l (~ )  U [yl(s), 

which proves Requirement II. 
Case 1.3. enabled(a,s) = t r u e  A fail(a, p,s) = false. Then Requirement I I  fol- 
lows trivially, and fail(p, effect(a, s)) = false. By induction we have [p § undo(a). 
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yl(effect(a, s)) = M(effect(a, s)), which equals Ia .  p](s) by definition in this case. 
This proves Requirement I. 
Case 2. Commit(a) = true.  With Ba3 we find 

{a .p  + yl(s) = {enabled(a):~ a. p](s)U {-,enabled(a):---* yI(s) 

[p](effect(a, s)) if enabled(a, s) = t rue  
= [y](s) otherwise. 

Case 2.1. enabled(a, s) = false. As case 1.1. 
Case 2.2. enabled(a, s) = t rue .  Then fail(a, p, s) = false, so Requirement II follows 
trivially. By the expansion of [a.p + y](s) above, Requirement I also follows trivially 
in this ease. [] 

Proof of Example 5.2.1. 

'~(o,0,0) (B1) --- put1" *~(1,o,o) (B2) 

= p~t~. ~ag (v~t~). ~(~,~,o)(B3 + undo (p~t~). ~)  

= putl" flag(put2), flag(put3), write(l ,  2, 3). 
,~(~,2,a)((6 + undo(put3), put~ . B3) + undo(put~). B1) 

= put1.  flag(put2), flag(puta), wri te( l ,  2, 3). 
~(~,2,3) (,ndo(v,~t3). p=t~. B3 + u,~do (p~t , ) .  B~) 

= put1. flag(put2), flag(puta), write(l ,  2, 3). undo(put3). 
:~(~,~,o) (p~t~. B~ + undo (p~t~). B~) 

= put1. flag(put2), flag(put3), write(l ,  2, 3). undo(put3), flag(put2). 
~(~,3,o) (B~ + undo (wt~) .  undo (wt~) .  BI) 

put1" flag(put2), flag(put3), write(l ,  2, 3). undo(puta ) . flag(put2). 
1~ag(p~t~ ) . write(l ,  3, 2). 
~(1,3,2)((~ ~ undo(pltt3), pitt2. B3) ~ u~do(pTtt2), undo(p~tt2). B1) 

v=a . l~ag (p=t2 ) . 1~ag (p=t3 ) . write(l ,  2, 3). =ndo(p=t~ ) . t~ag (p=t~ ). 
~ag(put3). write(l, 3, 2). undo(p~t3). 
~(~,3,o)(p=t~ " B3 + undo(p~t~) . =ndo(p=t2) . B1) 

puta . flag(put2), flag(put3), wri te( l ,  2, 3)- undo(put3),  flag(put2). 
1~ag (p~t3 ) . wri te( l ,  3, 2) .  undo(v~t3 ). 
~(1,3,o) (undo (p~t2 ) . ~ndo (p~t~ ) . B1 ) 
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= p~tl .  ~ag(p~t~). ~ag(p~t~) �9 w~ite(1, 2, 3). undo(p,,t~)./~ag(p~t~.). 
.aag(p~t3). write(l,  3, 2)- u,~do(p~t~) �9 ~ d o ( ~ t ~ ) .  
~cl ,~,o) ( ~ d o  (p~t~ ) . B~ ) 

= put1.  flag (put2). flag (put3). write (1, 2, 3). undo (put3). flag (put2). 
~ag(put~ ) . w r i t e ( l ,  3, 2) .  undo(put~ ) . undo(p~t~ ) . u n d o ( ~ t ~  ). 
)~(1,o,o)(B1). 

Analogously we find 

'~(1,0,0) (B1) = put1" flag(put2), flag(put3), write(2, 1, 3). undo(puta). 
flag (put2). flag (puta). write (2, 3,1). undo (puta ) . undo (puts). 
undo (p~t~). ~c~,o,o)(B1 ) 

)~(2,o,o) (B1) = put1. flag(put2), flag(put3) . write(3,1, 2). undo(put3). 
~ag(p~t~) . f a g ( w t ~ )  . wr i te (3 ,  2 ,1 ) .  undo(p~t3) . undo(w,t~.). 
undo (put2). ready 

[] 


