
THREAD ALGEBRA AND RISK ASSESSMENT SERVICES

JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Abstract. Threads as contained in a thread algebra emerge from the behavioral

abstraction from programs in an appropriate program algebra. Threads may make

use of services such as stacks, and a thread using a single stack is called a pushdown

thread. Equivalence of pushdown threads is decidable. Using this decidability

result, an alternative to Cohen’s impossibility result on virus detection is discussed

and some results on risk assessment services are proved.

§1. Introduction. This paper is about thread algebra [2, 6]. Threads
are processes tailored to describe sequential program behaviour and emerge
from the behavioral abstraction of sequential programs. A basic thread
models a finite program behaviour to be controlled by some execution en-
vironment: upon each action (e.g. a request for some service), a reply true
or false from the environment determines further execution. Any execu-
tion trace of a basic thread ends either in the (successful) termination state
or in the deadlock state. Both these states are modeled as special thread
constants. Regular threads extend basic threads by comprising loop be-
haviour, and are reminiscent of flowcharts [14, 12]. Threads may make use
of services, i.e., devices that control (part of) their execution by consuming
actions, providing the appropriate reply, and suppressing observable activ-
ity. Regular threads using the service of a single stack are called pushdown
threads. Apart from the distinction between deadlock and termination,
pushdown threads are comparable to pushdown automata or pushdown
processes as described by Stirling [17] or Burkart and Steffen [10].

First, we recall from our companion paper [3] that equivalence of push-
down threads is decidable, and we provide a sketch of our proof. Then we
elaborate on Cohen’s impossibility result on virus detection [11] (in that
1984 paper, the term computer virus was coined). Whereas Cohen showed
that a test predicate that decides whether a program executes (and spreads)
a virus cannot exist, we proposed in [9] a more modest test that can be used
to forecast whether the execution of a thread has no security hazard. This
is decidable for regular threads (as argued in [9]), and also for shrat-safe
pushdown threads (as argued in this paper). In our approach, a security

Meeting
Edited by Unknown
c© 1000, Association for Symbolic Logic 1

2 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

hazard is modeled as the occurrence of a certain action in a thread. We
define a service SHRAT (security hazard risk assessment tool) that pro-
vides the replies to such tests. The idea is as follows: a security hazard is
modeled by an action risk and the security hazard risk test as sh.ok. In
case SHRAT replies true to

if sh.ok then P else Q,

P will not execute risk and execution continues with P . In the other case
(reply false), Q will be executed instead because P would execute risk
(there is no security hazard risk assessment of Q). A major point is whether
P itself may or may not execute sh.ok tests. If P is regular, this is not
a problem and we prove that SHRAT is correct. In the case that P is a
pushdown thread, correctness only follows if P is shrat-safe, i.e., contains
no occurrences of both sh.ok and risk (this is a decidable property).

Our approach offers an alternative to that of Cohen in his well-known
paper [11] which shows the impossibility of a test action that reacts on
two arguments P and Q at the same time. More precisely, Cohen consid-
ers a decision procedure D (a predicate on program texts) that determines
whether a program executes (and spreads) a virus. Then Cohen’s impossi-
bility result is established by the program C defined by

C = if ¬D(C) then P else Q,

where P executes a virus, and Q is virus-free.

§2. Threads and services. In this section we recall the definitions of
basic threads and regular threads. Furthermore we discuss services that
may be used by a thread, and we consider the use-operator, which defines
how a thread uses a service.

2.1. Threads. Basic thread algebra [6]1, BTA, is tailored for the de-
scription of sequential program behaviour. Based on a finite set of actions
A, it has the following constants and operators:
• the termination constant S,
• the deadlock or inaction constant D,
• for each a ∈ A, a binary postconditional composition operator �a� .

We use action prefixing a ◦ P as an abbreviation for P � a� P and take ◦
to bind strongest.

The operational intuition behind thread algebra is that each action rep-
resents a command which is to be processed by the execution environment
of a thread. More specifically, an action is taken as a command for a service
offered by the environment. The processing of a command may involve a

1In [5], basic thread algebra is introduced under the name basic polarized process
algebra.

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 3

change of state of this environment. At completion of the processing of the
command, the service concerned produces a reply value true or false to
the thread under execution. The thread P �a�Q will then proceed as P if
the processing of a yielded the reply true indicating successful processing,
and it will proceed as Q if the processing of a yielded the reply false.

BTA can be equipped with a partial order and an approximation operator
in the following way:

1. v is the partial ordering on BTA generated by the clauses
(a) for all P ∈ BTA, D v P , and
(b) for all P1, P2, Q1, Q2 ∈ BTA, a ∈ A,

P1 v Q1 & P2 v Q2 ⇒ P1 � a� P2 v Q1 � a�Q2.

2. π : N × BTA → BTA is the approximation operator determined by
the equations
(a) for all P ∈ BTA, π(0, P) = D,
(b) for all n ∈ N, π(n+ 1,S) = S, π(n+ 1,D) = D, and
(c) for all P,Q ∈ BTA, n ∈ N,

π(n+ 1, P � a�Q) = π(n, P) � a� π(n,Q).

We further write πn(P) instead of π(n, P).
The operator π finitely approximates every thread in BTA. That is, for

all P ∈ BTA,

∃n ∈ N π0(P) v π1(P) v · · · v πn(P) = πn+1(P) = · · · = P.

Every thread in BTA is finite in the sense that there is a finite upper
bound to the number of consecutive actions it can perform. Following the
metric theory of [1] in the form developed as the basis of the introduction
of processes in [4], BTA has a completion BTA∞ which comprises also
the infinite threads. Standard properties of the completion technique yield
that we may take BTA∞ as the cpo consisting of all so-called projective
sequences. That is,

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & πn(Pn+1) = Pn)}

with

(Pn)n∈N v (Qn)n∈N ⇔ ∀n ∈ N Pn v Qn
and

(Pn)n∈N = (Qn)n∈N ⇔ ∀n ∈ N Pn = Qn.

For a detailed account of this construction see [2]. In this cpo structure,
finite linear recursive specifications represent continuous operators having
as unique fixed points regular threads, i.e., threads which can only reach

4 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

finitely many states. A finite linear recursive specification over BTA is a
set of equations

Xi = ti(X)

for i ∈ I with I some finite index set and all ti(X) of the form S, D, or
Xil � ai �Xir for il, ir ∈ I.

Example 2.1.1. We define the regular threads

1. a ◦ b ◦ D,
2. a ◦ b ◦ S and
3. (a ◦ b)∞ (this informal notation is explained below)

as the fixed points for X1 in the specifications

1. X1 = a ◦X2, X2 = b ◦X3, X3 = D,
2. X1 = a ◦X2, X2 = b ◦X3, X3 = S,
3. X1 = a ◦X2, X2 = b ◦X1, respectively.

Both a ◦ b ◦D and a ◦ b ◦ S are finite threads; (a ◦ b)∞ is the infinite thread
corresponding to the projective sequence (Pn)n∈N with P0 = D, P1 = a ◦D
and Pn+2 = a◦(b◦Pn). Observe that a◦b◦D v a◦b◦S, a◦b◦D v (a◦b)∞,
but a ◦ b ◦ S 6v (a ◦ b)∞.

Convention 2.1.2. In reasoning with finite linear recursive specifica-
tions, we shall from now on identify variables and their fixed points. For
example, we say that P is the regular thread defined by P = a ◦P instead
of stating that P equals the fixed point for X in X = a ◦X.

2.2. Services. A service is a component of an execution architecture for
threads that can be used to determine the reply to an action. In [7] various
services (called state machines in that paper) were considered, as well as
their possible role in thread execution. A service is a pair 〈Σ, F 〉 consisting
of a set Σ of so-called co-actions and a reply function F . The reply function
F of a service 〈Σ, F 〉 is a mapping that gives for each sequence of co-actions
in Σ+ the reply produced by the service. This reply is a boolean value true
or false.

Example 2.2.1 (Stack). One of the services that will occur in what
follows is the stack S = 〈Σ, F 〉 with Σ = {push:i, topeq:i, empty, pop | i ∈
I} for some finite set I, where push:i pushes i onto the stack and yields
reply true, the action topeq:i tests whether i is on top of the stack, empty
tests whether the stack is empty, and pop pops the stack if it is non-empty
with reply true and yields the reply false otherwise (leaving the stack
empty). By S(α) we denote a stack with contents α ∈ I∗ with the leftmost
element of α on top in case α 6= ε with ε the empty stack contents. In
Example 3.1.1 we return to the use of a stack as a service.

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 5

In order to provide a specific description of the interaction between a
thread and a service, we will use for actions the general notation c.a where
c is the so-called channel or focus and a is a co-action. For example, we
write s.pop to denote the action which pops a stack via channel s.

For a service S = 〈Σ, F 〉 and a finite thread P , we define P using the
service S via channel c, notation P/c S, by the following rules:

S/c S = S,
D/c S = D,

(P � c′.a �Q)/c S = (P/c S) � c′.a � (Q/c S) if c′ 6= c,
(P � c.a �Q)/c S = P/c S ′ if a ∈ Σ and F (a) = true,
(P � c.a �Q)/c S = Q/c S ′ if a ∈ Σ and F (a) = false,
(P � c.a �Q)/c S = D if a 6∈ Σ,

where S ′ = 〈Σ, F ′〉 with F ′(σ) = F (aσ) for all co-action sequences σ ∈ Σ+.
Note that actions that use a service S are not observable. The use operator
is expanded to infinite threads P by stipulating

P/c S = (πn(P)/c S)n∈N.

As a consequence, P/c S = D if for every n, πn(P)/c S = D.

Example 2.2.2. We consider again the threads a ◦ b ◦ D, a ◦ b ◦ S and
(a◦b)∞ from Example 2.1.1 but now in the versions c.a◦c.b◦D, c.a◦c.b◦S
and (c.a ◦ c.b)∞ for some channel c and service S = 〈{a, b}, F 〉. Then
(c.a◦c.b◦D)/c S = D and (c.a◦c.b◦S)/c S = S, but (c.a◦c.b)∞/c S = D.

§3. Pushdown threads and decidable equivalence. In this section
we consider pushdown threads, i.e., regular threads that use a stack. Then,
we recall from our paper [3] that equivalence of pushdown threads is decid-
able and sketch a proof of this fact.

3.1. Pushdown threads. In the next example we show that the use
of services may turn regular threads into non-regular ones.

Example 3.1.1. Let {a, b, s.push:1, s.pop} ⊆ A, where the last two ac-
tions refer to the stack S defined in Example 2.2.1 with I = {1}. By the
defining equations for the use operator it follows that for any thread P and
σ ∈ {1}∗,

(s.push:1 ◦ P)/s S(σ) = P/s S(1σ).

Furthermore, it easily follows that

(P � s.pop � S)/s S(σ) =

{
S if σ = ε (the empty sequence),
P/s S(ρ) if σ = 1ρ.

6 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Now consider the regular thread Q defined by 2

Q = (s.push:1 ◦Q) � a�R,

R = b ◦R� s.pop � S.

Then for all σ ∈ {1}∗,
Q/s S(σ) = ((s.push:1 ◦Q) � a�R)/s S(σ)

= (Q/s S(1σ)) � a� (R/s S(σ)),
R/s S(1σ) = b ◦R/s S(σ),
R/s S(ε) = S.

It is not hard to see that Q/s S(ε) is an infinite thread with the property
that for all n ∈ N, a trace of n+1 a-actions produced by n positive and one
negative reply on a is followed by n b-actions and S. This yields an non-
regular thread: if Q/s S(ε) were regular, it would be a fixed point of some
finite linear recursive specification, say with k equations. But specifying
a trace containing k b-actions followed by S already requires k+1 linear
equations X1 = b ◦X2, ..., Xk = b ◦Xk+1, Xk+1 = S, which contradicts the
assumption. So Q/s S(ε) is not regular.

We call a regular thread that uses a stack as described in Example 2.2.1
a pushdown thread. In what follows we assume that pushdown threads are
given with help of a distinguished identifier from a finite linear recursive
specification F and a stack over some fixed alphabet. The equations in F
may contain actions that address the stack via the use-application /s .

3.2. Decidable equivalence. From our companion paper [3] we quote
the following result:

Theorem 3.2.1. Equivalence of pushdown threads is decidable.

This theorem follows from a reduction to the dpda-equivalence problem
whose decidability was proved by Sénizergues [15, 16]. Here we provide
only a sketch, a detailed proof can be found in [3].

The idea is to use a transformation from pushdown threads to dpda’s
such that the identity

P/s S(α) = Q/s S(β)

holds if and only if the identity

L(A, P ′α′) = L(A, Q′β′)
holds, where the latter identity expresses that for the derived dpda A,
the language accepted by ‘configuration’ P ′α′ equals the one accepted by

2Note that a linear recursive specification of Q requires (at least) five equations.

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 7

configuration Q′β′. The transformation described in [3] consists of five
steps and uses the dpda-equivalence result as formulated by Stirling [18]
because this is closer to our setting:

1. Transform P/s S(α) and Q/s S(β) such that initially the stacks are
non-empty (also if one of α and β is the empty string), and such that
upon their termination the stack is empty. The reason for this step
stems from the fact that language acceptance for dpda’s is defined on
configurations of the form Rα where R is a ‘state’ and α is a non-
empty stack contents. A word w is in the accepted language iff the
dpda in initial state R empties the stack by performing the transitions
whose labels form w.

2. Replace occurrences of D by loops that fill the stack (e.g., replace
Pi = D by Pi = s.push:j ◦ Pi for some j ∈ I). The reason for this
step is that D has no equivalent in the dpda-equivalence result.

3. Normalize infinite traces: replace each equation Pi = Pl � a � Pr by
Pi = S�b�(Pl�a�Pr) with b an action that occurs not in P and Q.
Here S is the thread that first empties the stack and then terminates
(S is also used in step 1). The reason for this step is that each infinite
trace becomes interlarded with exits b, and is thus characterized by
finite traces which in turn are subject to dpda language acceptance.

4. Construction of an associated pushdown automaton (pda). The spec-
ifications of the so far transformed P (α) and Q(β) admit a straight-
forward definition of a pda whose transitions are deterministic. The
only remaining problem is that the ε-transitions (that stem from stack
actions) need not pop the stack, as required by the decidability result
in [18].

5. Construction of a dpda in which the ε-transitions only pop the stack.
The pda thus obtained is transformed by changing its transition rules
for ε. Those that do not pop the stack are either swallowed by an
observable transition and yield a new transition rule, or form a loop,
in which case they can be omitted. This step preserves language
acceptance and concludes the transformation.

We will exploit this decidability result by replacing certain equations
in the definition of the regular thread that underlies a pushdown thread,
i.e. in the definition of P when considering P/s S(α). For example, it is
decidable whether a pushdown thread is normed, i.e., has the option to
terminate (to end in S): let a linear recursive specification

F = {Pi = ti(~P) | i = 1, ..., n}

be given (and thus a repertoire of stack actions and external actions). Re-
place each equation Pi = S ∈ F by P i = a ◦ P i and overline all remaining
identifiers. Then Pk/s S(α) is normed ⇔ Pk/s S(α) 6= P k/s S(α).

8 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Remark 3.2.2. Interestingly, inclusion of pushdown threads is not de-
cidable (although two pushdown threads are equivalent if they are included
in each other). This follows from a reduction to the halting problem for
Minsky machines — an approach also taken in Jančar et al. [13]. A detailed
proof is recorded in [3].

§4. Security hazard risk assessment. In this section we consider the
possibility that a pushdown thread uses a service that supports forecasting
of certain future behaviour. In [8] various such services are studied (e.g.,
the halting problem and “rational agents”) and in [9] we discuss a rather
specific case: a service SHRAT (security hazard risk assessment tool). In
this paper we provide a detailed construction of SHRAT for regular threads
and a proof of its correctness. Finally, we consider SHRAT for pushdown
processes and distinguish the case of shrat-safe threads.

4.1. A definition of SHRAT. We model a security hazard in a push-
down thread P as the execution of an action risk. Furthermore, P may
contain a test action sh.ok that can use the service SHRAT to forecast
whether risk will be executed: SHRAT replies true to

Q� sh.ok �R

if Q does not execute risk, and false if Q does execute the action risk
(and thenR is executed instead). In order to model forecasting, we first de-
fine the residual thread of a pushdown thread P as the thread that remains
after zero or more actions of P have been executed:

Definition 4.1.1. Let P be a pushdown thread. We write Q ∈ Res (P)
whenever Q is a residual thread of P:
• P ∈ Res (P),
• P ∈ Res (P � a�Q),
• Q ∈ Res (P � a�Q), and
• if R ∈ Res (Q) and Q ∈ Res (P), then R ∈ Res (P).

Of course, the very idea of a service SHRAT that supports forecasting of
the execution of future actions risk in a residual thread Q� sh.ok�R of
P, thus

(Q� sh.ok �R)/sh SHRAT (1)

requires that SHRAT is aware of the specification of Q. So, a reply function
that only uses the current co-action and those processed before is in this
case not sufficient. It seems most natural to model that SHRAT “gets to
know and analyzes” Q’s specification upon the request sh.ok in the use-
application (1) above. We describe this change of state of SHRAT and the
resulting reply in the following definition.

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 9

Definition 4.1.2. Let a pushdown thread P be given by some specifi-
cation FP and let sh.ok be the only action in P with focus sh. Then the
service SHRAT is defined by the following two properties:

(1) for any residual thread Q� sh.ok �R of P,

(Q� sh.ok �R)/sh SHRAT = (Q� sh.ok �R)/sh SHRAT(FP ,Q),

where SHRAT(FP ,Q) is the instance of SHRAT that has loaded FP and
analyzed Q, and

(2) (Q� sh.ok �R)/sh SHRAT(FP ,Q) =
Q/sh SHRAT (thus reply true) if no risk-action

will be executed in Q/sh SHRAT,
R/sh SHRAT (thus reply false) if a risk-action

will be executed in Q/sh SHRAT.

The (instantiated) service SHRAT(FP ,Q) models a “security hazard risk
assessment” in the sense that if a security hazard in Q is modeled by the
execution of the action risk, the reply true to Q�sh.ok�R ensures that
in the residual thread Q/sh SHRAT no security hazard will occur (cf. [9]).

It can be the case that SHRAT(FP ,Q) replies true because SHRAT will
reply false to a future sh.ok-test in Q/sh SHRAT. For example, in the
regular thread P1 given and depicted below, the various sh.ok-tests are
evaluated as follows:

P1 = P2 � sh.ok � P8 (true)
P2 = P3 � a� P4

P3 = P5 � sh.ok � P6 (true)
P4 = P6 � sh.ok � P7 (false)

P5 = b ◦ P2

P6 = risk ◦ P1

P7 = c ◦ P8

P8 = S.

P1: 〈sh.ok〉
��	 @@R

P2: 〈 a 〉
��	 @@R

P3: 〈sh.ok〉
��	 @@R

P4: 〈sh.ok〉
��	 @@R

P5: [b] P6: [risk] P7: [c]

?
P8: S

//

// \\

?

?

where

and

[a]

?

P

≈ a ◦ P

〈 a 〉
��	 @@R

≈ Pl � a� Pr.

Pl Pr

Clearly, the thread T = P1/sh SHRAT satisfies T = b ◦ T � a� c ◦ S.

10 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

In the next section we discuss how to instantiate SHRAT for regular
threads in an appropriate way.

4.2. SHRAT for regular threads. Following Convention 2.1.2, we
assume that if a regular thread P1 is given, it is given by a linear recursive
specification FP1 that contains an equation P1 = t1(~P). Furthermore, we
say that an equation Pj = Pl � a � Pr in FP1 has a predecessor if Pj
occurs in the right-hand side of at least one equation. Finally, we restrict
to specifications FP1 with the property that if Pj = Pl�sh.ok�Pr ∈ FP1 ,
then l 6= r (otherwise, the reply to sh.ok would be meaningless).

Starting from P1/sh SHRAT with the regular thread P1 specified in FP1 ,
we provide an algorithm that upon each residual thread of the form

(Pm � sh.ok � Pj)/sh SHRAT

constructs an instantiated service SHRAT(FP1 , Pm) that gives the correct
reply. Typical for this algorithm is that SHRAT(FP1 , Pm) contains a copy
of FP1 in which all sh.ok actions are annotated with the correct reply. To
this end, FP1 is loaded into SHRAT and analyzed as follows: number each
equation that contains a risk-occurrence starting from 1. Then, for each
numbered equation label each predecessor equation with the next free num-
ber until a connecting sh.ok-equation is found, or a loop occurs, or an equa-
tion without predecessors is found. In the case that some sh.ok-equation
is found and connects via its true-branch, its sh.ok-action is annotated
false (sh.okfalse); if it connects via its false-branch, the equation is la-
beled with a fresh negative number (it may possibly lead to a risk-action,
namely when a false-annotation is added in a future inspection). Then
this procedure is repeated for equations labeled with a negative number,
again instantiating first occurrences of sh.ok-actions with false if their
true-branch leads to an action risk. Finally, all non-annotated sh.ok-
actions are annotated true because their true-branch does not lead to a
risk-action.

In Figure 1, we illustrate how the annotation proceeds: first the two
lowest sh.ok actions are annotated false, and because of the ↘ arrow,
the equation of the leftmost one is labeled with a fresh negative number.
The combination of the false-annotation and this label leads to the false-
annotation of the topmost sh.ok-action.

Construction of SHRAT(FP1 , Pm) for a regular thread P1. Let FP1 =
{Pi = ti(~P) | i = 1, ..., n} be a linear specification of the regular thread P1.
Upon a residual thread

Pm � sh.ok � Pw,

the service SHRAT(FP1 , Pm) is constructed as follows: load FP1 in SHRAT.
We further call this copy Fan

P1
. Label each equation in Fan

P1
that contains

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 11

〈sh.ok〉
�

�
�
�	

@@R

〈sh.ok〉
��	 @@R

〈sh.ok〉
��	 @@R

[risk] [risk] . . .

. . .

?
. . .

?
. . .

⇓

〈sh.okfalse〉
�

�
�
�	

@@R

〈sh.okfalse〉
��	 @@R

〈sh.okfalse〉
��	 @@R

[risk] [risk] . . .

. . .

?
. . .

?
. . .

Figure 1. Annotating sh.ok actions

risk in the right-hand side with a number, starting from 1, say 1, ..., k. If
no risk-actions occur in Fan

P1
, then apply step 3 below. In the other case,

apply step 1:

1. On Fan
P1

apply the procedure Eval+(1), where Eval+(i) for i ≥ 1 is
defined as follows:
Eval+(i): If the equation labeled with number i has the form

(i) Pj = Pl � a� Pr,

then evaluate all Pj occurrences in the right-hand sides of all equa-
tions, i.e., apply steps (1a) - (1e) below exhaustively, where evaluation
goes with some bookkeeping: we will in some cases give equations a
next free number and possibly annotate sh.ok-actions with false.
The first free positive number is k+1 and the first free negative num-
ber is -1. Furthermore, the next free number for positive numbers is

12 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

the smallest p > 0 not already used, and for negative numbers the
largest p < 0 not already used:
(a) No non-evaluated Pj occurrences left: if there is an equation num-

bered i+1 then apply Eval+(i+1), else, if negative numbers are
used, go to step 2; if none of these is the case, go to step 3,

(b) If Pv = Pj � sh.ok � Pq, then replace sh.ok by sh.okfalse and
search the next non-evaluated Pj occurrence (a possible number
of this equation is preserved),

(c) If Pv = Pq � sh.ok�Pj and this equation is not numbered, then
give it the next free negative number and search the next non-
evaluated Pj occurrence, else just search the next non-evaluated
Pj occurrence,

(d) If Pv = Pq � sh.okfalse � Pj and this equation is not num-
bered, then give it the next free negative number and search the
next non-evaluated Pj occurrence, else just search the next non-
evaluated Pj occurrence,

(e) All remaining cases, i.e., equations of the form Pv = Pj�b�Pq or
Pv = Pq�b�Pj : if not yet numbered, give this equation the next
free positive number and search the next non-evaluated Pj occur-
rence; else, just search the next non-evaluated Pj occurrence.

2. On Fan
P1

apply the procedure Eval−(−1), where Eval−(i) for i ≤ −1 is
defined as follows:
Eval−(i):
• if the equation labeled with number i has the form

(i) Pj = Pl � sh.ok � Pr,

then apply Eval−(i−1) if there is an equation numbered i−1, other-
wise go to step 3;
• if the equation labeled with number i has the form

(i) Pj = Pl � a� Pr for a 6= sh.ok

(possibly a = sh.okfalse), then evaluate all Pj occurrences in the
right-hand sides of all equations, i.e., apply steps (2a) - (2e) below
exhaustively, where evaluation again goes with some bookkeeping: we
will in some cases give equations the next free negative number and
possibly annotate sh.ok-actions with false:
(a) No non-evaluated Pj occurrences left: if there is an equation num-

bered i−1 then apply Eval−(i−1), else go to step 3,
(b) If Pv = Pj � sh.ok � Pq, then replace sh.ok by sh.okfalse and

search the next non-evaluated Pj occurrence (a possible number
of this equation is preserved),

(c) If Pv = Pq � sh.ok � Pj , then search the next non-evaluated Pj
occurrence,

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 13

(d) If Pv = Pq � sh.okfalse � Pj and this equation is not num-
bered, then give it the next free negative number and search the
next non-evaluated Pj occurrence, else just search the next non-
evaluated Pj occurrence,

(e) All remaining cases, i.e., equations of the form Pv = Pj�b�Pq or
Pv = Pq�b�Pj : if not yet numbered, give this equation the next
free negative number and search the next non-evaluated Pj oc-
currence; else, just search the next non-evaluated Pj occurrence.

3. Replace all sh.ok occurrences in Fan
P1

that are not yet annotated by
sh.oktrue.

Now SHRAT(FP1 , Pm) is defined as the service that replies to the residual
thread Pm�sh.ok�Pw with the annotation b found in the right-hand side
Pm � sh.okb � Pw of its internal specification Fan

P1
.

Theorem 4.2.1. Let P1 be a regular thread specified by the linear recur-
sive specification FP1 . Then, upon each residual thread of the form

Pm � sh.ok � Pw,

the tool SHRAT(FP1 , Pm) is sound, i.e., agrees with Definition 4.1.2.
Hence,

(Pm � sh.ok � Pw)/sh SHRAT
= (Pm � sh.ok � Pw)/sh SHRAT(FP1 , Pm)

=

{
Pm/sh SHRAT if Pm/sh SHRAT does not execute risk,

Pw/sh SHRAT otherwise.

Proof. Assume Pm�sh.ok�Pw is a residual thread of P1. Clearly the
algorithm for SHRAT(FP1 , Pm) terminates and Pm � sh.okb � Pw occurs
at least once as a right-hand side in Fan

P1
(in case of multiple occurrences,

b has the same value). We argue that the boolean b is the correct reply to

(Pm � sh.ok � Pw)/sh SHRAT(FP1 , Pm).

In case Fan
P1

contains no risk action, all annotations are true (step 3),
which obviously is correct.

In case Fan
P1

contains at least one risk action, it is clear that after
all Eval+(i)’s have been applied (step 1), all true-branches of annotated
sh.okfalse actions lead to risk. Furthermore, the right-hand sides of all
negatively numbered equations have a sh.ok action (possibly annotated
false) of which the false-branch leads to risk. At Eval−(i) (step 2), the
negatively numbered equations with non-annotated action sh.ok will not
be annotated false (as their true-branch does not lead to risk). The re-
maining labeled equations all have a residual thread that may lead to risk,
and thus yield next (negative) numbers until a loop occurs, or an equation

14 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

without a predecessor is found, or another sh.ok that connects via its true-
branch occurs (in the latter case, this action is annotated false). Hence,
after step 3, all annotations are correct. a

4.3. SHRAT for pushdown threads. It is not clear how to define a
(terminating) algorithm for SHRAT that is correct for arbitrary pushdown
threads. However, in the particular case that either no test action sh.ok
or no action risk is executed by a pushdown thread P, the correct reply
of sh.ok in

(P � sh.ok �Q)/sh SHRAT

follows easily from Theorem 3.2.1 (i.e., equivalence of pushdown threads is
decidable): consider a pushdown thread

Pk/s S(α)

where Pk is specified in F . Assuming that the action a′ does not occur
in F , define Fa′ by replacing in F each occurrence of the action a by a′

and replacing all identifiers Pi by P a
′

i . Then Pk/s S(α) does not execute
a if and only if Pk/s S(α) = P a

′

k /s S(α), so this is decidable. Note that if
Pk/sS(α) = P a

′

k /sS(α), then for any residual thread Pl/sS(β) of Pk/sS(α),
also Pl/s S(β) = P a

′

l /s S(β).

A pushdown thread P = Pk/s S(α) is called shrat-safe if either P =
P risk′

k /s S(α) or P = P sh.ok′

k /s S(α). In both cases the correct reply to
sh.ok in

P � sh.ok �Q

can be found:
• if P = P risk′

k /s S(α), then this reply is true, thus

(P � sh.ok �Q)/sh SHRAT = P/sh SHRAT,

• if P = P sh.ok′

k /s S(α), then both replies can occur, thus

(P � sh.ok �Q)/sh SHRAT

=

{
P/sh SHRAT (reply true) if Pk/s S(α) = P risk′

k /s S(α),

Q/sh SHRAT otherwise,

where the latter case is only meaningful if Q is also shrat-safe.
Although much weaker, it is not unreasonable to consider shrat-safe push-

down threads. This situation can always be obtained: upon a residual
thread (P � sh.ok�Q)/sh SHRAT, rename all sh.ok actions in the spec-
ification of P, thus ignoring their forecasting effect and evaluating both
their true and false-branches. If SHRAT then replies true, this certainly

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 15

comprises a security hazard risk assessment of P. The only problem is that
if SHRAT replies false, it is not certain that P will indeed execute risk.

§5. Digression and discussion. In this paper we presented some of
our latest work on thread algebra and on security hazard risk assessment
(as defined in [9]). We end the paper with a few comments on the latter
subject.

5.1. Architecture-sensitive services. First, we propose to call ser-
vices as SHRAT architecture-sensitive services: in case SHRAT has to reply
to a thread

Q� sh.ok �R,

it first needs to analyze the future behaviour of Q and therefore it needs to
“know” both the specification and the particular execution state. Assuming
that Q is specified in FP , this idea is captured in Definition 4.1.2 by the
equation

(Q� sh.ok �R)/sh SHRAT = (Q� sh.ok �R)/sh SHRAT(FP ,Q),

which characterizes the instantiation of SHRAT to SHRAT(FP ,Q).
So, in the particular case of SHRAT (and similar services such as ratio-

nal agents discussed in [8]), the reply in a use-application is architecture-
sensitive and can not be defined with a reply function that only depends on
the current co-action and those processed before (such as the reply function
for the stack defined in Example 2.2.1). Typically, different use-applications
need not commute if architecture-sensitive services are involved, e.g.,

([(risk ◦ S � s.pop � S) � sh.ok � D]/sh SHRAT)/s S(ε) = D

while

([(risk ◦ S � s.pop � S) � sh.ok � D]/s S(ε))/sh SHRAT = S.

Use-applications with services with a reply function that only depends on
the current co-action and those processed before do commute if distinct
foci are used (cf. [7]).

5.2. SHRAT for pushdown threads. At this stage, it is not clear
how to define a (terminating) algorithm for SHRAT that is correct for
all pushdown threads. One possibility may be to approximate pushdown
threads by regular threads in such a way that a sound risk-analysis can be
established. Given a linear specification FP1 of P1 and a stack S, it seems
likely that in P1/s S(α) only finitely many stack configurations (uniformly
depending on FP1 and α) play a distinctive role with respect to SHRAT’s
replies.

16 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Another approach is to start from a game theoretic characterization of
SHRAT: in residual threads of the form

(Q� sh.ok �R)/sh SHRAT, (2)

the service SHRAT has to give the correct reply (according to its Defini-
tion 4.1.2), while the opponent replies to all other test actions and aims
for the execution of risk. We do not (yet) know whether game theoretic
results cover this particular game. Hence:

Open question: Is SHRAT decidable for all pushdown threads?

An interesting simplification may be the case of one-counter threads, i.e.,
regular threads that use a counter (a stack over a singleton datatype) in-
stead of a stack, with s.push and s.pop as the only actions. Also for this
case, the above question is still open.

Of course, security hazard risk assessment for computable threads is
undecidable. In the setting of Turing machines, given a regular control
program P and tape configuration Tape(αx̂β) with head pointing at x, it is
undecidable whether some action of P will be executed in P/tmtTape(αx̂β):
there is a straightforward reduction to the halting problem (cf. [8]).

5.3. SHRAT and external services. In order to define security haz-
ard risk assessment in precisely the same way as was done in [9], the results
and explanations for both the regular and the pushdown case in Section 4
should be slightly modified. In [9], a thread can also engage in external
communication with a service E (via actions with focus e). Such a commu-
nication blocks further assessment of SHRAT because E is beyond control
of the thread under execution. It is not difficult to implement this modifi-
cation in the algorithm for regular threads: in the evaluation step, simply
stop evaluation upon an equation defined by a postconditional composi-
tion over e.m. However, for clarity of presentation we did not consider this
possibility before.

REFERENCES

[1] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of

concurrency, Information and Control, vol. 54 (1982), no. 1/2, pp. 70–120.
[2] J.A. Bergstra and I. Bethke, Polarized process algebra and program equiv-

alence, Automata, languages and programming, Proceedings 30th ICALP, Eind-
hoven, The Netherlands (J.C.M. Baeten, J.K. Lenstra, J. Parrow, and G.J. Woeginger,

editors), LNCS, vol. 2719, Springer-Verlag, 2003, pp. 1–21.

[3] J.A. Bergstra, I. Bethke, and A. Ponse, Decision problems for pushdown
threads, Electronic report PRG0502, Faculty of Science, University of Amsterdam,

2005, available at www.science.uva.nl/research/prog/publications.html.
[4] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication,

Information and Control, vol. 60 (1984), no. 1/3, pp. 109–137.

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 17

[5] J.A. Bergstra and M.E. Loots, Program algebra for sequential code, Journal
of Logic and Algebraic Programming, vol. 51 (2002), no. 2, pp. 125–156.

[6] J.A. Bergstra and C.A. Middelburg, A thread algebra with multi-level strategic
interleaving, Proceedings CiE 2005 (S.B. Cooper, B. Loewe, and L. Torenvliet, editors),
LNCS, vol. 3526, Springer-Verlag, 2005, pp. 35–48.

[7] J.A. Bergstra and A. Ponse, Combining programs and state machines, Journal
of Logic and Algebraic Programming, vol. 51 (2002), no. 2, pp. 175–192.

[8] , Execution architectures for program algebra, Technical report Logic
Group Preprint Series 230, Department of Philosophy, Utrecht University, 2004, to
appear in the Journal of Applied Logic, prior version available at http://www.phil.uu.

nl/preprints/lgps/?lang=en.
[9] , A bypass of Cohen’s impossibility result, Advances in grid computing

- EGC 2005 (P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, edi-

tors), LNCS, vol. 3470, Springer-Verlag, 2005, also vailable as Electronic report PRG0501
at www.science.uva.nl/research/prog/publications.html, pp. 1097–1106.

[10] O. Burkart and B. Steffen, Pushdown processes: Parallel composition and
model checking, Concur’94, LNCS, vol. 836, Springer-Verlag, August 1994, pp. 98–113.

[11] F. Cohen, Computer viruses - theory and experiments, Computers & Security,

vol. 6 (1984), no. 1, pp. 22–35, also available at http://vx.netlux.org/lib/afc01.html.
[12] S.A. Greibach, Theory of program structures: Schemes, semantics, verifi-

cation, LNCS, vol. 36, Springer-Verlag, 1975.
[13] P. Jančar, F. Moller, and Z. Sawa, Simulation problems for one-counter

machines, Proceedings of SOFSEM’99: The 26th Seminar on Current Trends in
Theory and Practice of Informatics, LNCS, vol. 1725, Springer-Verlag, 1999, pp. 398–
407.

[14] Z. Manna, Mathematical theory of computation, McGraw-Hill, New-York,
1974.

[15] G. Sénizergues, L(A) = L(B)?, Technical report 1161-97, LaBRI, Université

Bordeaux, 1997, available at www.labri.u-bordeaux.fr.
[16] , L(A)=L(B)? decidability results from complete formal systems, Theo-

retical Computer Science, vol. 251 (2001), pp. 1–166.
[17] C. Stirling, Decidability of bisimulation equivalence for pushdown processes,

Technical report EDI-INF-RR0005, Laboratory for Foundations of Computer Science,

University of Edinburgh, 2000, available at http://www.inf.ed.ac.uk/research/lfcs/

publications.html.
[18] , Decidability of dpda equivalence, Theoretical Computer Science, vol.

255 (2001), pp. 21–31.

18 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

PROGRAMMING RESEARCH GROUP, FACULTY OF SCIENCE

UNIVERSITY OF AMSTERDAM, THE NETHERLANDS

and

APPLIED LOGIC GROUP, DEPARTMENT OF PHILOSOPHY

UTRECHT UNIVERSITY, THE NETHERLANDS

URL: www.science.uva.nl/~janb/

PROGRAMMING RESEARCH GROUP, FACULTY OF SCIENCE

UNIVERSITY OF AMSTERDAM, THE NETHERLANDS

URL: www.science.uva.nl/~inge/

PROGRAMMING RESEARCH GROUP, FACULTY OF SCIENCE

UNIVERSITY OF AMSTERDAM, THE NETHERLANDS

URL: www.science.uva.nl/~alban/

