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We introduce iteration in process algebra by means of (the original, binary version
of) Kleene’s star operation: x*y is the process that chooses between z and y, and
upon termination of x has this choice again. We add this operation to a whole range
of process algebra axiom systems, starting from BPA (Basic Process Algebra). In
the case of the most complex system under consideration, ACP,, every regular
process can be defined with handshaking (two-party communication) and auxiliary
actions. Next we introduce nesting in process algebra: z"y is defined by the equa-
tion z*y = z(2*y)x + y. We show that * and * are not interdefinable in most of the
axiom systems we regard. The extension with , and the extension with * and :
of the systems considered also give a genuine hierarchy in expressivity. Finally, it
is argued that each finitely branching, computable graph can be defined in ACP,
extended with * and ¥, and using handshaking and auxiliary actions.

While writing this paper, we heard of the news that Stephen C. Kleene has died in January 1994.

We acknowledge the substantial influence he has had on our work.

1. INTRODUCTION

Systems of recursion equations play a fundamental role
in process algebra as a means to specify or to analyze
infinite behaviour. The purpose of this paper is to in-
troduce two operations that give sufficient expressive
power to study infinite behaviour in process algebra
without such systems.

In 1956, Kleene introduced in [16] the binary opera-
tion * for describing ‘regular events’. He defined regular
expressions, and gave algebraic transformation rules for
these, notably

E*F = FV E(E*F)

(E*F being the iterate of E on F). Kleene also noted
the correspondence with the conventions of algebra,
treating 'V F as analogous to E + F, and EF as the
product of E and F.

In [11], Copi, Elgot and Wright showed interest in
the results in [16]. However, they judged in particular
Kleene’s theorems on analysis* and synthesis' obscured
both by the complexity of his basic concepts and by the
nature of the elements used in his nets. These authors
introduced simpler and stronger nets (in a sense weak-
ening Kleene’s synthesis result, but stating that this
“brings the essential nature of the result into sharper

*Theorem 5, stating that finite automata model regular events.
tTheorem 3, stating that each regular event can be described
by a finite automaton (‘nerve net’).

focus”), and simpler (equally named) operations. In
particular, they introduced a unary * operation

“[...] because the operation Kleene uses seems “essen-
tially” singulary and because the singulary operation
simplifies the algebra of regular events. It should be
noted that the singulary and binary star operations
are interdefinable.”

Following Kleene in [16], we introduce z*y in process
algebra with defining equation
Ty =z (2*y) +y.

So z*y is the process that chooses between z and y, and
upon termination of = has this choice again. For exam-

ple, the process a*b for actions a and b can be depicted
by

a*b

v

where / is a symbol expressing (successful) termina-
tion.

The operation * can be added to, for example, the fol-
lowing process algebra axiom systems: BPA, PA, ACP,
ACP; (see [1] and [6]). In each case many models are
known that allow to solve the equation P = z - P + Y.
Most of these models satisfy the scheme RSP (Recursive
Specification Principle, a fixed point principle) which
allows one to infer that such P is unique as well.
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244 J. A. BERGSTRA, I. BETHKE AND A. PONSE

Taking y = € (the empty process, or skip), one ob-
tains z™e which satisfies

tfe=1z-(z%e) + e

According to [19] (inspired by [13]), the unary opera-
tion _*e is a plausible candidate for the unary version
of Kleene’s star operation in process algebra. Note that
the unary operation _*e cannot be used in a setting
without having € available as a separate process (adopt-
ing Kleene’s defining equation). Moreover, with € the
interdefinability of the unary and the binary star, noted
in [11], is preserved.

Obvious as € may be (being a unit for ), its introduc-
tion is non-trivial because at the same time it must be
a unit for || (merge) as well. In the design of BPA, PA,
ACP and related axiom systems, it has proven useful to
study versions of the theory, both with and without e.
Just for this reason we propose the star operation with
its (original) defining equation given by Kleene in [16].

In [17], Milner paid some attention to ‘star be-
haviours’, i.e. bisimulation congruence classes that are
representable by regular expressions (in the modern
sense, with unary *) He showed that a simple regular
behaviour is not a star behaviour and raised the ques-
tions of a complete axiomatization, and what structural
properties of (finite) transition systems characterize star
behaviours.

In [20], Troeger introduces a process specification lan-
guage with iteration, writing y wh z (y while z) for z*y.
This work contains an interesting axiom for *:

'y (z+y)*2) +2) = (z+y)*2

(see further Section 3 for axioms on *). However,
Troeger concentrates on semantical characterization re-
sults for the restriction of the language obtained by ex-
cluding (explicit) internal choice.? Therefore, the main
results in [20] refer to a different setting.

We call the operation * BKS (Binary Kleene Star), in
order to give self-explanatory naming for other, related
iteration operations and to avoid confusion about the
arity of what is nowadays known as ‘Kleene star’.

In this paper we also introduce the non-regular op-
eration * (sharp), which we call the Nesting Operation
(NO). This operation is defined by

zﬁy=x-(mﬁy)-x+y.

So zﬁy is the process that chooses between x and y,
and upon termination of z has the choice to perform z
again, or to perform y and upon termination of y repeat
z the number of times it has already been performed.
As an example, the process a* b for actions a and b can
be illustrated by

Le. excluding expressions such as a- P +a-Q or (a- P ||
b-Q)+a-R.

The main results in this paper concern the expres-
sivity of ACP systems enriched with * and/or *. First,
any regular process can be specified in ACP, with *,
using only ‘handshaking’ (i.e. two-party communica-
tion). Secondly, it turns out that every finitely branch-
ing, computable graph modulo rooted 7 (or weak) bisim-
ulation can be expressed in ACP, with * and * restrict-
ing to handshaking. A basic reference for a proof of this
second result is [3], where it is shown that each finitely
branching, computable graph is recursively definable by
a finite guarded specification over ACP..

Many of the results on iteration in this paper have
been documented in the report [10] which is super-
seded by the present paper. Furthermore, we notice
that ACP% was introduced in [8] as an abbreviation for
ACP. extended with a particular group of often used
axioms and proof rules. This abbreviation we now con-
sider obsolete.

2. AXIOMS AND TRANSITION RULES

In this section we introduce various process algebra
axiom systems, associated operational semantics using
bisimulations, and recursive specifications. For a de-
tailed introduction to these matters, see e.g. [1].

2.1. The systems BPA(A) — ACP,(4,7)

Let P be the sort of processes under consideration, con-
taining a finite set A of actions a, b, ..... Let furthermore
v : Ax A — A be a partial function that is commutative
and associative (i.e., v(a,v(b,c)) = v(v(a,b),c)). We
write v(a,b) | if v(a,b) is defined, and ~(a,b) T other-
wise. We further write (a, b, ¢) instead of v(a,y(b, c)).
The function 7 defines communication actions and mod-
els the simultaneous execution of actions. In the case
that vy(a,b,c) 1 for all a,b,c € A, we speak of handshak-
ing (two-party communication, see [9]).
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PROCESS ALGEBRA WITH ITERATION AND NESTING 245

TABLE 2. Axioms of Standard Concurrency (SC), with a € A

sC1 (zl y)lLz = | (yl=2)

scz (wlay)z = ol (ayl 2)
SC3 zly = ylz

SC4 zlly = ylle

scs x|(ylz) = (z]y) ]z

sce  zll(yllz) = (zlly)ll=

The actions in A and the communication func-
tion 7 can be regarded as parameters of the theory
ACP.(A,7). In Table 1 the signature and axioms of
the system ACP.(A,~) are collected. We take - to be
the operation that binds strongest, and + the one that
binds weakest. As usual in algebra, we often write zy
instead of x - y. Furthermore, for n > 0 we define z"*!
as z-z", and z! as .

The following five subsystems of ACP,(A,~y) have
been introduced in [6, 7]:

BPA(A). The signature of BPA(A) contains the ele-
ments of A, and the operations + and -. The axiom
system BPA(A) contains the axioms A1-A5.

BPAs(A). The signature of BPAs(A) is the signature
of BPA(A) extended with §. We often write As for
AU{6}. The axioms of BPAs(A) are A1-A7.

PA(A). The signature of PA(A) contains the elements
of A, the operations +, -, || and the free merge ||.
The axioms of PA(A) are A1-A5, the axiom

M) z|y=z|| y+yl =

and the axioms CM2-CM4 (in the case of PA(A)
these are referred to as M2-M4). So PA(A) processes
do not communicate.

PAs(A). The signature of PAs(A) is the signature of
PA(A) extended with 6. The axioms of PA(A) are
A1-A7 and M1-M4.

ACP(A,~). The signature and axioms of ACP(A, y) are
defined by all axioms in the left-hand side column of
Table 1.

Standard Concurrency. Standard Concurrency
(SC) consists of the axioms given in Table 2 and pro-
vides the axiomatic support for reasoning with the par-
allel operators (see [9]). The axiom system given in
Table 1 allows one to derive the SC identities for closed
instances by structural induction and the axioms CF1,
CF2 (see [7]).

2.2. Transition rules and bisimulation seman-
tics

We define a structural operational semantics, and re-
late processes to transition systems, providing an oper-
ational semantics in the style of Plotkin [18]. Then we
define bisimilarity as an equivalence between transition
systems. We use this operational semantics and bisim-
ilarity in the proofs of some of the classification results
in Sections 3 and 4. Observe that various notions are
defined relative to our specific choice of the operational
semantics.
A transition system is a tuple (S, L, T, s), where

S is a set of states,

L is a set of labels,

T C (SxLxS)U (SxL) is a transition relation,
s € S is the initial state.

Let E(A) be one of the process algebra axiom systems
BPA(A) — ACP(A,~), and let P(E(A)) represent all
processes over E(A). As the set of states S we take
P(E(A)). As labels we take the atomic actions in A.
The transition relation T contains transitions

.~ .€P(E(A)) x Ax P(E(A)),

and for modelling (successful) termination, special tran-
sitions

.~ /€ P(E(A) x A

(pronounce 4/ as ‘tick’). The idea is that for a € A,
a transition P —2» P’ expresses that by executing a,
the process P can evolve into P’. In this case P’ rep-
resents what remains to be executed. The transition
P =5 / expresses that the process P can terminate
(successfully) after executing a. The rules in Table 3
define the transition relation 7. The signature and pa-
rameters of E(A) (possibly including a communication
function 7) determine which rules are appropriate. For
example, the last four rules for || are not relevant for
PA(A). Note that the state 6 has no outgoing transi-
tions. Finally, the transition system related to a process
P has P itself as initial state. If E(A) is fixed, we often
write simply P for the transition system

(P(E(A)),A,T,P).

A bisimulation is a binary, symmetric relation R on
states over E(A) that satisfies

PRQ & P -°» P’ implies
Q.Q % Q & P'RQ, and
PRQ implies (P - / <= Q - /).
Two states P and @ are called bisimilar, notation
PeQ,

if there exists a bisimulation R with PRQ.
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246 J. A. BERGSTRA, I. BETHKE AND A. PONSE

TABLE 1. Signature and axioms of ACP,(A,~) where a,b € As, HJIC A

sorts: A (a given, finite set of actions),
P (the set of processes; A C P),
operations: +:P x P — P (alternative composition or sum),
i PXxP-oP (sequential composition or product),
| :PxP —P (parallel composition or merge),
L:PxP—P (left merge),
| :PxP—P (communication merge, v: A x A — A is given),
Og:P—>P (encapsulation, H C A),
T1:P—>P (abstraction, I C A),
constants: 6€P\A (deadlock or inaction),
TeP\A (silent or internal action).
(A1) z+y = y+z | (T1) T =
(A2) z+(y+2) = (z4+y)+=2 | (T2) T+ = TC
(A3) z+zx = =z | (T3) a(tc+y) = a(tz+vy)+azx
(A4) (z4+y)z = zz+yz |
(A5) (zy)z = z(yz) |
(A6) z+6 = =z |
(A7) bx = 6 |
|
(CF1) alb = ~v(a,b) if~(a,b) ]| |
(CF2) alb = 6 otherwise |
|
(CM1) zlly = zlly+yllz+zly |
(CM2) a x = ax | (TM1) || x T
(CM3) ax| y = a(z|y) | (TM2) 7zl y = 7(z]y)
(CM4) (z+vy)| 2z = z| 2+y]|_=2 | (TC1) Tz = §
(CM5) az|b = (a|b)z | (TC2) x|t = 6
(CM6) albz = (a|b)zx | (TC3) Tr|ly = x|y
(CMT) ar |[by = (a|b)(z ] y) | (TC4) z|Ty zly
(CM8) (z+4y)|z = z|z+y]|=z |
(CM9) z|(y+z) = zlytz|z |
|
| (DT) On (1) T
| (TI1) T(t) = 7
(D1) Og(a) = a ifagH | (TI2) Ti(a) = a ifa¢gl
(D2) Oy(a) = 6 ifa€eH | (TI3) Ti(a) = 1 ifa€el
(D3) Ou(z+y) = Onu(z)+0u(y) | (TH)  7(@z+y) = 7(x)+71(y)
(D4) O (zy) Or(z) - On(y) | (TI5) mi(zy) = 7i(z) - 71(y)
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TABLE 3. Transition rules for BPA(A) — ACP(A,~), wherea,bce A, HC A

a€ A a—/
+ z o y =y R y—>V
z+y > Ty >y Ty -/ T+y -/
r -7 T -/
x.yi)zl.y x.y_aqy
zlly--1a |y |y z|y zlly -y |y -z

a ' b /

Ty

if y(a,b) | ——— ify(a,b) |
b b
z |y 22 |y z |y 222 v
a b ’ a / b
PV VY ) | P UV (e |
Ty 225y Ty T
L A -
ey |y ol y—>y
|
pzov::eld - y-y -5y yy % yy -y
’Yai
xly v(a,b) z ” y/ x|y ~(a,b) y/ $|y ~(a,b) z x|y ~(a,b) \/
-7 T/
15) ifad H ——  ifa¢ed H
i Br(a) = on(e) ¥ o) =y F

THEOREM 2.1

1. (Soundness) Bisimilarity is a congruence relation
with respect to all operators defined (for a ‘modern’
proof see [2]), and all azioms presented are valid in
bisimulation semantics.

2. (Completeness) Up to and including ACP(A,~) all
axiom systems are complete with respect to bisim-
ilarity between the processes that can be expressed 4.
(without recursion, see [1]).

In the sequel we use the following notions based on our
operational semantics:

1. An action a € A is an exit of P if P -5 /.
2. P is a successor of Q if Q - P for some a € A.
3. Let the relation —» for w € A* with € denoting the
empty string be defined as follows: )
in

(a)P-—e——»P, TI

P-Q Q-5R
P2y R
P5Q Q>

P wa \/ ‘

(b)
()

)

Then Q is a proper substate of P if P —» Q for some
w e A*\ {e}.
P is a state of Q if either P = Q, or P is a proper
substate of Q.

. If P =%/, then w is called a trace of P.

If P-2Y» Py % ...P, =% P,;;... for i € N, then

wwp...w;... is called an infinite trace of P, notation
P wWwe... Wi...

7-bisimilarity. Transition rules for ACP,(A,~) can
be obtained by extending the rules in Table 3 to a rang-

gover A, f AU {7}, and including the rules defining
transitions displayed in Table 4 below.

THE COMPUTER JOURNAL, VoL. 37, No. 4, 1994

8102 1800100 6] UO Jasn wepislswy UBA NIBNSISAIUN AQ 811G/ E/StZ/v/LENornsqe-aoie/|ulwoo/wod dno olwapeoe//:sdny wolj papeojumoq



248 J. A. BERGSTRA, I. BETHKE AND A. PONSE

Let P,P’ € P. We define the binary relation =
by P = P’ if either P = P’ or P -5 P" = P’
for some P” € P, and the unary relation P = / if
P = P’ I /. Furthermore, we define P == P’
if P—= Q % Q = P/, and P == / if either
P— Q> Q = /or P= Q — / for some
Q,Q € P. Observe that the relations == and =
coincide (as do the y/-variants of both).

Now a 7-bisimulation is a binary, symmetric relation
R C (PU{V/}) x (PU{4/}) that satisfies

PRQ & P -5 P’ implies

(a=7 & P'RQ), or
3Q'.Q = Q' & P'RQ’, where Q' may be +/,

PRQ & P -5 ./ implies
Q= or(a=7 & Q=+)).
Two ACP,(A,~) processes P and @ are called rooted

7-bisimilar if there exists a T-bisimulation R with PRQ
that moreover satisfies

P =5 P’ implies
3Q'.Q — Q' & P'RQ’ where P’,Q' may be /.

Also ACP,(A,~) is sound and complete with respect
to rooted T-bisimilarity between the processes that can
be expressed (without recursion, this follows from [7]).

TABLE 4. Transition rules for 77, wherea € A;, IC A

a, g a
_ s e Y g
T1(z) — 71(2’) Ti(z) —

-1 -/
—————— ifa¢g] ——— ifagl
11 (x) — 77(2’) m1(z) —

2.3. Recursion

Though the operations * and f introduce recursion into
the axiom systems to be provided, we use recursive spec-
ifications and associated notions and rules to prove some
of our results.

Definition 2.1 A (recursive) specification E =
{E; | 7 € J} is a set of equations in the signature of
ACP,(A,~) with variables {X; | j € J} for some index
set J such that equation E; has the form X; = T;, where
T; is a finite ACP.(A,~)-term (with finitely many vari-
ables X; for i ranging over J). Given some process se-
mantics, processes P; (j € J) are a solution of E if
substitution of P; for X; in the equations of E yields
equations that hold in this semantics.

Specifications need not define processes in any reason-
able semantics, a clear example being {X = X}.

Definition 2.2 Let P be an expression containing
a variable X. An occurrence of X in P is T-guarded
if P has a subexpression a - QQ, where a € A; and Q
contains this occurrence of X .

We call a specification E = {X; =T, | j € J} 7-
guarded if by substituting T; expressions for X; occur-
rences in the right-hand sides a finite number of times,
one can obtain the situation that every occurrence of
every variable X; is T-guarded.

We claim that 7-guardedness and another restriction
depending on our operational semantics are sufficient
to guarantee a unique solution (per equation). We dis-
cuss this restriction below and first introduce the fol-
lowing convention in order to define transition rules in
a simple way. If a specification has solutions in terms
of transition systems (and some notion of equality over
these), then these solutions are referred to by the vari-
able names declared in E.

Adopting the convention above, we give in Table 5
the transition rules for recursive specifications.

TABLE 5. Transition rules for a recursive specification E,
where a € A,

T]‘ L*l‘,

T;
X; =V

For X;=T; € E:

Xj —a+$,

If for instance E = {X = aX +b}, then X - X by the

first transition rule and aX +b - X, and X - Vv
can be derived using the second rule.

Definition 2.3 A specification E = {X; = T} |
Jj € J} is T-convergent or T-founded if no X; has an
infinite T-trace, i.e., if X; —» P then not P .

E is T-divergent if E is not T-convergent.

Let E = {E; | j € J} be a T-convergent specifica-
tion, and I be some index set disjunct from J. The
specification F = {Y; = T; | i € I} U E is T-semi-
convergent if Y; = T;(X) for all i € I, where all T;
are expressions over the signature of ACP.(A,v) pos-
sibly containing variables from {X; | j € J}, but not
containing variables Y;.

Now recursive specifications that are both 7-guarded
and T-semi-convergent, are assumed to define processes
as solutions of each of their variables (this can be seen
as a model dependent analogon of RDP, the Recursive
Definition Principle, see, e.g. [3]). Note that the notion
7(-semi)-convergence depends on the semantics we use,
i.e., on the definition of transition systems.

For reasoning with recursive specifications, we intro-
duce the fixed point rule RSP (Recursive Specification
Principle, discussed in for instance [3, 5]). This rule
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PROCESS ALGEBRA WITH ITERATION AND NESTING 249

states that every specification E has at most one solu-
tion per variable:

E(l'v_) E(y’_)

=Yy

(RSP)

We claim that RSP is a sound rule with respect to the
bisimulation semantics introduced thus far (now includ-
ing transition systems identified by recursion variables)
provided E is both T-guarded and 7-convergent. In this
case E has a unique solution (per variable). So the ex-
ample specification {X = X}, or for another example
{Y =71-Y} cannot be used in RSP in a sound way.
Typically, specifications that are both 7-guarded and
T-convergent can be used to prove that some 7-semi-
convergent specification defines a certain process.

Definition 2.4 A process P; is regular over As if
Py is a solution for X; from a finite specification

{X,' = Z(ai,j . Xj) + B; l i=1, ,n}
Jj=1

where a; ; and B; are finite sums of actions or 6.

Observe that a specification defining a regular process
is both 7-guarded and T-convergent. As an example,
the specification £ = {X = aX + b} defines a regular
process.

3. ITERATION

In Section 1 we introduced Kleene’s star operation * in
process algebra, and called this operation BKS (Binary
Kleene Star) with defining axiom

a*y = z(z*y) +y.
In this section we add * to the axiom systems intro-
duced, and formulate various expressivity results. Fi-

nally, we introduce a ‘fair iteration rule’ for expressing
a notion of fairness.

3.1. Axioms and transition rules

In Table 6 we introduce the axiom system BPA*(A),
obtained by adding the BKS axioms (BKS1) — (BKS3)
to BPA(A).

The third iteration axiom BKS3 stems from [20],
where it is used for a slightly different process spec-
ification formalism. Some typical BPA*(A) identities
are

e*((x+y)*z) = (z +y)*2 (substitute z + y for y in
BKS3, and apply BKS1, A2, A3), and

t*(2*y) = z*y (apply BKS1, A3 and BKS3).

The systems BPA;(A) — PA3(A) are defined by in-
clusion of the BKS axioms (BKS1) — (BKS3).

In Table 7 we give some more axioms for BKS. The
system ACP*(A,~) is defined by inclusion of (BKS1) —
(BKS4), and the system ACP; (A, ) by inclusion of the
BKS axioms (BKS1) — (BKS5).

TABLE 6. The axiom system BPA*(A)

(A1) T+y = y+=zx

(A2) z+{y+z) = (z+y)+=z
(A3) z+zx = x

(A4) (z+y)z = zz+yz
(A5) (zy)z = x(yz)
(BKS1) z-(@*y)+y = 2y
(BKS2) ™y -z) = (2%y) -z
(BKS3) z*(y-(z+v)*2)+2) = (z+7y)*z

TABLE 7. Some more axioms for BKS

(BKS4) 0n(z*y) = 0u(z)*0u(y)
(BKS5) 7;(z*y) 1(z)*71(y)

Transition rules. Given our description of BKS, the
transition rules for this operation defined in Table 8 are
quite obvious.

TABLE 8. Transition rules for BKS, where a € A,

- T -5/

'y o (zfy) fy Sty
y =y y =

Note that with the first two transition rules, a state P
can have itself as a proper substate, e.g. a*b~by the
transition a*b % a*b.

It can be easily shown that the BKS axioms are valid
in bisimulation semantics, and according to [2], bisimi-
larity is a congruence with respect to *.

In [12], Fokkink and Zantema prove that bisimilar-
ity between BPA*(A) processes is axiomatized by the
axioms of BPA*(A).

We now introduce some further terminology on a spe-
cial kind of regular processes, namely the ‘cyclic’ ones.
A chain in a binary relation R over states is a sequence
(Po, ..., P,) such that (P;,P;11) € R for i < n. The
chain (P, ..., P,) is a cycle if the P; are all syntactically
distinct and also (P, Py) € R. A trivial cycle contains
one state Py such that (Py, Py) € R. A cycle is non-
trivial if it is not trivial. A state P is root-cyclic if P
has a cycle starting at P with the ‘successor’ relation
as R. A state P is cyclic if P has a state @ that is
root-cyclic. For example, a(a*b) + b is cyclic: a*b is a
proper substate that is root-cyclic.
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250 J. A. BERGSTRA, I. BETHKE AND A. PONSE

LEMMA 3.1 Let P be a process expression over
ACPI(A,~) or one of the smaller signatures. Then P
has finitely many states.

Furthermore, if Q is (7-) bisimilar with P, then either
none or both P and @ are cyclic.

Proof By induction on the maximal depth of the
*_nestings in P. The second part of the lemma follows
immediately. [ ]

We end this section by showing that a particular, simple
regular process can be specified in ACP} (A, ) without
its actions being the result of communications.

LEMMA 3.2 Let the reqular process P be defined by
P = a-Q+c

Q = b-P+d
or graphically: p c V.
a b
d
Q—

Then P can be expressed in ACP; (A, ) with handshak-
ing (and some auziliary actions) without its actions be-
ing subject to communication.

Proof Assume H def {k1,ke,k3} C A\ {a,b,c,d,i}
and let v be defined by ~y(ki, k1) = (ko k3) =
~(k3,ke) = ¢ and undefined otherwise. Consider the
process

P iy 0 0u((a(b+ dka) + cka)R || S)

with

R = (ki(a(b+ dk2) + ck2))* k3
S = ki"(ksko).

Then one can derive P = P in ACP}(A4,~v) with RSP:

P = a-100p((b+dk2)R|S) +
c Ty o Ou(kaR | S)
= a-7po0u((b+dk)RS) +
c Ty o Ou(R || k2)
= a-7po0u((b+dk)R || S) +ec

gy 0 O ((b+dk2)R || S)
= b-1po0u(R|S) +
d- 1y 00 (k2R || S)
= b-73y 0 0u((a(b+ dks) + cko)R || S) +d

= b-P+d.
]

3.2. Hierarchy and expressivity results
We have the following hierarchy results:
THEOREM 3.3 Let < mean “less expressive than”.
BPAS(A)

PA*(A)
ACP*(A,v) < ACP>(A,~), provided A contains at least
6 actions.

Then BPA*(A) PAS(4) <

Proof All these inequalities are proved for the asso-
ciated **-systems in Section 4.3, and these proofs can
all be easily restricted to the *-axiom systems. ]

We did not attempt to find lower bounds for the number
of actions necessary.

Furthermore, we have the following expressivity re-
sult for ACP;(A4,7).

THEOREM 3.4 For each regular process P over As
there is a finite extension B of A such that P can be
expressed in ACP;(B,vy) with handshaking only, and
the actions in A not subject to communication.

Proof Let the regular process P; be given by
n
Pi=> (cij-P)+6i
Jj=1
where «; ; and §; are finite sums of actions or §. We

may assume that a;; = 6 for all j € {1,...,n}, for if
not, we can duplicate the identifier P;, e.g.:

X = aX+bY+c
Y = dX +e

then becomes
X = aX'+bY +c
X' = aX+bY +c
Y = dX +e.

In the case that n = 1, apparently P, = 31 (as ay 1 =
8), and therefore expressible in BPAs(A).

Assume n > 1. We extend A to A’ by adding fresh
actions from sets H and I, where

H % {ri(b),5:(b) | i € {1,...,n},b € {0,1}},

T fe(b) i€ {1,..,n},be {0,1}},
and define 7/ on (A’\ A) x (A’ \ A) by +'(r:(b), s;(b)) =
¢i(b) and undefined otherwise.

For i = 1,...,n we define the following (regular) pro-
cesses:

Z; = m:(1)-Z]+7:i(0)
z; = Yioi(ag;-si(1)-Zi) +
Bi - (ljeqa,...np\ i} $5(0))

where ||j€{1} T; = I and ||j€{1,...,k+2} Ty =
(ljeqr,...k+1y %5) || Ths2. Note that Z;, Z; are well de-
fined, because n > 1.
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PROCESS ALGEBRA WITH ITERATION AND NESTING 251

An intuitive explanation:

r;(0) = ‘read instruction to terminate’,
(1) = ‘read instruction to (re)activate’,
i(0) = ‘instruct the i, process to terminate’,
(1) = ‘instruct the i, process to (re)activate’.

Let P; be defined by
Pi=71100u(Z] || (leqa,...n0\{iy Z5))-

Then the P; solve the recursion equations for the P;:
fix 79, then

Pi, = 11005(Z] || (lkefr, ..n})\{io} Zk))
= o1, T100m(si(1) Zy |
(ke 1, ..n}\fio} Zk)) +
Bio - 71 0 O ((lje{1,....n )\ {io} 55(0)) ||
(ljeq1,...np\fio} Z3))

= Y @iy T Tro0u(Z, ||

—~
—

(Ikeqa,...n}\fiors} Zk) |
(O h=1 (k- se(1) - Z5) +
Bj - (lkeqa,...np\ 5} Sx(0))) +

io - (leq,mi\{io} T)
= Y1 %o, Pj+Bi

because || is commutative and associative as a ‘process
constructor’ (by the SC axioms). Note that in (1) it
is essential that a;,;, = 6. With RSP it follows that
I_Di = Pi-

Next we show that all Z;, and therefore all P;, can
be defined in ACP}(B,~) where B,~ are extensions of
A’ and 7’ respectively. In Figure 1, we give a schematic
picture of Z;. In this figure, s;(1) - Z; for i € {2,...,n}
are proper states if a;; # 6 (and non-existent other-
wise) and the boldface arrows to the right represent all
steps to s;(1)-Z1, and the boldface arrow to the left rep-
resents all transitions defined by §; (provided 3; # 6).

Now let A” be defined as the finite extension of A’
with (fresh) actions

I U Hy with I ¥ (i} B % (k) ko, ks )

and consider the process ?1 defined by

Pi = 71,00m((rn(1) - (Cj_g(ar;-s;(1)) +
Bi-R-kg)+711(0) - k2)- Q| S)

QR = (ki-m(1) (Cjogplon-s5(1)) +
Br-R-k2))*ks

R = l|jegz...n} 55(0)

S = ki*(ks-ky).

Let «y be defined by y(k1, k1) = v(ke, k3) = ¢ and further
undefined on (A" \ A’) x (A" \ A').

__ With RSP one can easily show in ACP7(A"”,~") that
P, = Z; (cf. Lemma 3.2):

P,

r1(1) - 71, 0 0, (g, - 85(1)) +
Br-R-k2)-Q| S) +

r1(0) - 71, 0 Om, (k2 - Q|| S)

r1(1) - 71, 0 O, (=g (- 85(1)) +
Bri-R-k2)-Q| S) +

r1(0) - 71, 0 O, (Q || k2)

= 11(1) - 11, 00m, (Xj=o(cr,; - 55(1)) +
Bri-R-k2)- Q| S)+ri(0)

71, 0 0, (g1, -85 (1)) + A1 R-k2) - Q|| S)
= Y iplar;-8i(1) -1, 00m, (Q || S) +
Br-R-71,00m,(k2- QI S)

Zg o+ 85(1)) - 71, 0 Om, ((r1(1)
(Zj 2(0‘11"31'(1))4‘/31 R - k) +
)
)

n(0)k2)-QS)+ -
= Yioalan; - s5(1) _1_31 +p1-R
= Zj=2(a1,1 s;(1) - ‘P1)+pB R

In a similar way Zs, ..., Z, can be treated, so for some
appropriate, finite extension of A” to B and of ~”

7, one can find a definition of the (arbitrarily chosen)
regular process P; in ACP}(B,7). ]

3.3. Fairness

Due to the character of 7, one would also want to be
able to abstract from infinite sequences of 7 steps or
divergence. Depending on the kind of process semantics
one wants to use, different solutions have been found. In
the case of T-bisimulation, a general solution is provided
by Koomen’s Fair Abstraction Rule (KFAR), introduced
in [6]. For each n and each set of equations, there is a
version KFAR,,. For example, the rule KFAR; reads as
follows:

z=ir+y (el

71(x) =7 - 71(y)

(so the infinite 7 sequence induced by iz is reduced to
a single 7 step). By the definition of * we now have an
immediate representation of the process in the premise
of KFAR;, namely i*y. Henceforth we can represent
KFAR,; by the law

TI(i*y) =7-7/(y) (tel).
Given our ‘distribution law’

(BKS5)  7i(z*y) = m1(2)*71(y)
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/\

% ~ ljetz,...ny 85(0) <

FIGURE 1.

(see Table 7), we can even represent KFAR; simply by
(FIR,)

(taking z for 77(y)), where FIR abbreviates Fair Itera-
tion Rule.

*
TT=T-x

4. ITERATION AND NESTING

In Section 1 we introduced the nesting operation NO,
notation *, with defining axiom

xﬁ y= :10(:cji y)T + y.

In this section we prove the non-interdefinability of *
and * in most of the axiom systems introduced. Then
we define extensions with * of the axiom systems intro-
duced thus far. We come up with several expressivity
results, the last one of which concerns the modelling of
a Turing machine in ACP} (A, ) with * and handshak-
ing. As a consequence, the expressivity result that each
finitely branching, computable graph can be expressed
by a finite, guarded specification in ACP,(A,~), formu-
lated in [3], can also be expressed in the setting with *
and * by a single term.

4.1. Axioms and transition rules

In Table 9 we introduce the axiom system BPA*(A),
obtained by adding the NO axioms (NO1) — (NO3) to
BPA(A) (cf. the system BPA*(A) given in Table 6).

A typical BPA*(A) identity is

of (zhy) = 2ty

(take y = = in (NO3)).

The systems BPAg(A) - PA?S (A) are defined by inclu-
sion of the NO axioms (NO1) — (NO3).

In Table 10 we give some more axioms for NO. The
system ACP*(A,~) is defined by inclusion of (NO1) -
(NO4), and the system ACP*(A,~) by inclusion of the
NO axioms (NO1) — (NOS5).

Given our description of NO, the transition rules de-

A schematic picture of Z;

TABLE 9. The axiom system BPA*(A)
(A1) Tty = y+z
(A2) z+ (y+2) (x+y)+2
(A3) T+ x
(A4) (z+y)z xz+yz
(A5) (zy)z = z(yz)
(NO1) :v-(xﬂy)-x+y = xﬁy
(NO2) (@Fyz = o)
(NO3) (z+y)f (@ (@ +y)F2)- (@ +y)+2)

= (z+y)z

Some more axioms for NO

TABLE 10.

NO4) opu(aty) =
NO5) Tz(zﬁy) =
NO6) oy
NO7) e =

0 (z)F 8 (y)
()i (y)

z*6

*

T X

TABLE 11.

Transition rules for NO, where a € A~

a /
r — T

T -/

shy o' ((efy) o)

oy = @Fy) o

fined in Table 11 ite obvi y >y y =V
ned in Table 11 are quite obvious. o + o
It can be easily shown that the axioms in Table 9 Ty —Y 'y =
and Table 10 are valid in bisimulation semantics ((NO7)
only in rooted 7-bisimulation semantics), and according
to [2], bisimilarity is a congruence with respect to *.
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PROCESS ALGEBRA WITH ITERATION AND NESTING 253

REMARK 4.1 The axiom (NO2) is one of the
identities’

(e™ly) -z = @) (yo) (n > 0).

These identities are valid in bisimulation semantics, and
for n > 1 not derivable in BPA*(A). Their validity
follows easily from a variant of RSP, say RSP*:

r=yry+z — x=yﬁz

which is sound in a setting without 7 and 7; operations.
Here is a proof of the identities above:

(@)@ y) (™) + y)z

((z)Fy) (@) + yo
(@) y)a) (@) + ya
") (yz).

The validity of NO3 also follows easily with RSP*.

From the main result in [4] it follows that bisimilar-
ity between BPA*(A) processes is decidable (the associ-
ated recursive specifications are ‘normed’). It is an open
question how BPA*(A) should be extended in order to
axiomatize bisimilarity.

As * gives rise to essentially non-regular processes,
it cannot be defined in any of the *-systems consid-
ered so far. Conversely, the process algebra axiom sys-
tems BPA®(A) up to and including ACP*(A4, ) lack *-
processes. That is, throughout this part of the hierar-
chy, * and * remain non-interdefinable.

THEOREM 4.1

1. The operation ¥ s not definable in ACP>(A,~), and
2. The operation * is not definable in ACP*(A,~).

Proof Clearly, ! is not definable in terms of *. This
follows immediately from Lemma 3.1 and the observa-
tion that ati b has infinitely many non-bisimilar states.
To prove the second part of the theorem, we shall
show that the basic *-process a*b is not definable in
ACP*(A,~).

For the purpose of this proof, we shall introduce the
following terminology: we shall say that a process

1. P has an exit iff for some a € A, a is an exit of P,

2. P always has an ezit iff every state @ of P has an
exit,

3. P has a 1-ezit iff P has an exit,

4. P has an n+ 1-ezit iff P has a successor @ which has
an n-exit, and

5. P has arbitrary exits iff for every n € N, P has an
me-exit, for some m € N with n < m.

§Personal communication with Fokkink.

Observe that a™b has arbitrary exits and always has an
exit. We shall now show by structural induction that
such a process does not exist in ACP*(4,7).

The base case is clear: atoms do not have arbitrary
exits and § has no exit at all. For the induction step,
we have to distinguish several cases. We shall consider

Assume that PﬁQ has always and arbitrary exits.
Then @ must always have an exit. It follows from the
induction hypothesis that @) cannot have arbitrary ex-
its. That is, for some n + 1 € N, @ does not have an
n + 1 + k-exit for any k € N. By the assumption, P*Q
must have such an exit. So, P*(Q has a successor R
which has an n + k-exit. R cannot be a successor of @,
for otherwise @@ would have an n + 1 + k-exit. So either
R = P - ((P*Q) - P) for some successor P’ of P, or
R= (Pﬂ Q) - P. However, in both of the cases, R does
not have an exit. This contradicts the assumption that
ph Q@ always has an exit. [ ]

However, in ACP¥(A,~) things are different:

Proposition 4.1 The process a*b can be defined
in ACP* (A,~) with handshaking.

Proof Let H Qef {a1,a2,b1,b2,ky, k2, k3, ka} C A\
{a, b}. Define

Y (Cllkl)ti (b1k2)

j (k3(az + bz))ﬁ k4

and v by

v(a1,a2) = a, ~y(ki,k3) =1, 7y(ki,a2) =4,
Y(b1,b2) = b, (k2 ka) =1, ~(ar,k3) =1
and undefined otherwise. Then
Ty © On(Py || (a2 + b2) P2)
is a solution of X defined by the recursive specification
Xi=a-Xj1+b (jEN),

and
T{i} © 8H(P1 . (alkl)j‘*'l “ ((12 + bz)Pz . (k3((12 + b2))j+l)

solves the equation for X;,;. This can be seen as fol-
lows:

O (P || (ag + b2) P)
= (a1, a2) - Oy (ki1Pi(ar1ky) | P2) +
Y(b1,b2) - O (k2 || P2)
= a-7y(ki,k3) Ou(Pi(arky) || (ag + b2) Py
(k3(az +b2))) + b - (k2 ka)
= a-i-0g(Pi(ark:) || (a2 + b2) Py
(ks(ag +b2))) +b-d
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and
Ou(P1 - (ark1)7t1 || (a2 + b2) Py - (k3(az + b2))7+1)
= v(a1,02) - (k1 Pi(ark: )2 |
s - (ka(ag + b)) ™) +
(bl,bz) On (kg - (ark)7+ |
- (k3(ag + b)) *1)
= a-vy(k1,ks) - Ou(Pr(arky)’+? ||
(ag + b2) P2 - (k3(az + b))’ +2) +
b-y(ka, ka)-
Or ((ark1)?*h || (ka(ag + b2))'*)
= a-i-0u(Py(ark:)i*? || (a3 + bs) Py
(ks(az + b2))7*?) +
b-i- (v(a1, k3) - v(k1,a2)) !
= a-i-0g(Pi(a1k1)7*? || (az + b2) P2
(ka(ag +b2)) *2) +
boi-(i-4)it.

Clearly, a*b also solves X ; for all j € N. Hence, by RSP
it follows that 7(; 0 9y (P || (a2 + b2)P2) =a™b. =

We define BPA*#(A) — PA}*(A) by inclusion of (NO1)
— (NO3) in the associated * systems. The system
ACP*¥*(A,~) is defined by inclusion of (NO1) — (NO6)
in ACP*(A, ), and ACP}*(A,~) is defined by inclusion
of all the axioms in Table 10 in ACP}(A4,~).

An example: the half-counter. We end this sec-
tion buy mtroducmg a basic process that can be specified
with * in BPA’”1 . The half-counter is specified by

((otji b) - ¢)*stop

for actions a, b, c and stop. Let HC abbreviate this ex-
pression, then the following transitions can be derived:

stop c
~—— HC —__ Jc¢-HC
b
a a

(aﬁb)-a3~c-HC ——+ a’-c-HC

The process HC has an ‘add mode’ characterized by the
(a"b) - a™ - ¢ - HC expressions, and a ‘subtract-or-test-
zero mode’ characterized by the a™ - ¢- HC expressions
above. Change of mode happens by a b step, a c step,
or in case of termination in the ‘zero state’ HC by a
stop step.

With two half-counters one can specify a counter in
ACP*(A, v)+RSP, either with or without an option to
terminate (i.e., using either stop, or § instead). In the
next section we regard a more general case: we use two
half-counters to specify a stack over a finite data type.

4.2. The stack

Let D = {d1,...,dn} for some N € N\ {0} be a finite
set of data elements, ranged over by d. Let furthermore
D* be the set of finite strings over D, ranged over by
w, and € denote the empty string. Then the stack S,
over D with termination option is defined by

Se = Zjvzl r(d;) - Sq; + r(stop)

de = Z;'vzl r(dj) ' dedw + S(d) : Sw

(and a non-terminating stack is obtained by leaving out
the 7(stop) summand). Here the contents of the stack
is represented by the S-index: Sy, is the stack that
contains dw with d on top. An action r(d;) (receive
d;) models the push of d; onto the stack, and an action
s(d;) (send d;) models a pop of d; from the stack. The
action 7(stop) models termination of the (empty) stack.
Observe that taking N =1 (D = {d;}), the equations
above specify a counter (the stack contents then models

the counter value). We have the following fundamental
result for ACP*(A,~).

THEOREM 4.2 A (terminating) stack over a finite
data type D with actions from A can be expressed in
ACP*(B,~) with handshaking only, B a finite exten-
sion of A and the actions in A not subject to commu-
nication.

Proof We first define the two half-counters that we
need in order to specify S in ACP*(B, ).

U =12),

with Ej,Bj,Ej,Topj € B\ A. We use the following ab-
breviations (n € N):

P, = ((@*b) ;)" Stop

def _ T _ —_—
P;(0) = (ajﬁbj) “Cj - Pj + stop,
Pin+1) % (g5, artt g P
def
Q;j(0) = ¢-F
def _p41 =
Qij(n+1) = a}" -g;- P

It follows immediately that

1. P = P;(0) =a; - P;(1) + b; - Q;(0) + stop;,
2. PJ(n+ 1) =a; - Pj(n+2) +b; - Qj(n+ 1),
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3. Qj(’ll+ 1) =aj - QJ(TL)

Given D = {d;,...,dy} for some N > 0, we encode
D* according to the Godel numbering ~': D* — N
defined by:

rd;w" j+ N

This coding is a bijection with inverse decode : N — D*
defined by:

nmod N=0=

decode(n) def ) € ifn =0,
dn * decode("I‘VN ) otherwise,

nmod N >0=—
n—(n mod N)

decode(n) def dn, mod N * decode(*—"F—)

where * denotes concatenation of strings.

So in case N = 3, eg., (dsdidy’ = 24, and
d600d6(32) =dod d3 € {dl,dg, dg}*.

Next we define the auxiliary processes with actions
aj,bj,cj, stop; € B\ A that in combination with the P;
can be used to define S.:

N
Xp = Zr(dj) -al - by - Xj + r(stop) - stop, - stop,
i=1

with for k=1,..,Nand N > 1:

X, = Z;V=1 r(d;) - Push; + s(dx) - Popy,
Push;, = Shiftlto2- a’f - N Shift2to1 - Xi
Pop, = af-4 Shift1to2- Testy
Shift1to2 = (a1-a2)*cy - by
N Shift2tol = (a2 af’) Co b1
7{,—Shift1to2 = (af’ -a2) cy - by
Testg = ag-a;-Test; +c2-Xp
Test; = ag-a;-Testo +co- by - X1
Testy, = ag-ap-Testg+co by Xo
Testy = ag-a1-Test; +co-b1-Xn

or in case N = 1, as above, except for
Test; = ag-aj-Test; +co-by - X;5.
Let ~ for j = 1,2 be defined on (B \ A)? such that
7(a5,85) = (b, bj) = (c;, &) =

7(stop;, stop;) =
i€ B\ A

Taking
H = {aj,ﬁj,bj,l_)j,cj,Ej,stopj,stopj |] = 1,2},
I={i},

we show that 77 0 Oy (Xp || P1(0) || P2(0)) behaves as
the stack S..

71 00 (X || P1(0) || P2(0))

= 2N r(dy) - 110 0m (] b X; || Pr(0) || P2(0)) +
r(stop) - 71 o O (stop; - stopy || P1(0) || P,(0))

= SN r(dy) o0 by - X; || Pi(G) || Pa(0)) +
r(stop) - 7 71 o (stopy || P2(0))

= SN r() -t 10 8m(X; 1| Qa() |l Pa(0)) +
r(stop) - 7T

D SN r(d)) - 710 0m(X; 1| Qu () | P2(0)) +

j=1
r(stop).

We are done if T © BH(XJ' ” Ql( '_djwj) || PQ(O)) be-
haves as Sy ., the stack with contents djw for some
w € D*. We prove this by first analyzing the behaviour
of O (X, || Q1( "djw") || P2(0)). This analysis is ar-
ranged in a graphical style in Figure 2, where P - Q
represents the statement P = a - Q for some a € A,
P 2% Q represents P = w - @ and branching from ex-
pressions represents application of +. So the uppermost
expression in the picture underneath with its arrows and
resulting expressions represents the equation

Or (X || Qu("djw) || P2(0)) =
s(d;) - 9 (Pop; || Q1 (j + N ") || Pa(0)) +
SN r(dx) - Ou(Pushy || Q1( Td;u) || P2(0))

which is obviously derivable. With the axiom z =z - 7
(T1) and identity (1) above, it can be seen from Figure 2
that

71 0 0 (Xo || P1(0) || P2(0))
770 0u(X; || Qi1("djw") || P2(0))

satisfy the equations for S, and Sg;, respectively (j =
1,...,N and w € D*). By RSP it follows that

S =
710 0k (Xo | (@F51) 1) 5top, || (@2 Ba) - 22)*5topy)

where the abbreviations P;(0) are written out.

Finally, we claim that X and all other process iden-
tifiers in its definition represent regular processes, and
can hence be expressed in ACP**(B,v) with handshak-
ing, provided B D A is sufficiently large (depending on
N, the size of D). This follows from Theorem 3.4. We
refrain from expressing Xy as a *_expression (parame-
terized with N).

Hence, the empty stack S. can be expressed in
ACP?*(B,~) with handshaking. [
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O (X; || @1("d;w?) || P2(0))

s(dj) r(dg) fork=1,..,N
9u(Pop; || @1(j + N "w') || P2(0)) 9 (Pushy || Q1( "djw’) || P2(0))
(a1]a@r)? by all Shift 1to2 communications
Ou(% Shift 1to2 - Testy || Q1(N "w’ || P2(0)) On(af - NShift2tol- X || Pi(0) || Q2( "d;w))
l by all & Shift1to2 comm’s (a1|a@)*
O (Testg || P1(0) || Q2( "w")) Ou(N Shift2to1 - Xy || Pr(k) || Q2( "djw’))

wW=€or w= dgv

/ ((afa2) - (aaf@)™ " [0 (Xe [ Qu(k+ N dyu) || Pa(0))

9 (Xo || P1(0) || P2(0)) O (Tests || P1(N ") || Qa2 (k)

by all N Shift2to1 comm’s

(azlaz2) - (as[ar)
On(Testy || Po("div") || Q2(1))
(k=1)§ (az[@2) - (a1]a1) é(k=N)
Op (Testz || Pr("d2v") || Q2(0))

l (calz) - (ba]br)

; i

O (X1 || @1(Tdrv") || P2(0))|[0m (X2 || Q1("d2v") || P2(0))]...... O (Xn || Qu("dnv') || P2(0))
(w = dyv) (w = dav) (w = dnv)

FIGURE 2. Calculations with 0y (X; || Q1( "djw") || P2(0))
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4.3. Hierarchy and expressivity results

All results on the *-hierarchy mentioned in Section 3.2
carry over to the associated *#-systems. A similar hi-
erarchy result can be obtained for *-systems.

THEOREM 4.3 BPA*(A) < PA*(A), and
BPA;*(A) < PA}(A).

Proof Consider the PA**(A) process P = (ab)*c || d,
which can graphically be characterized as follows (du-
plicating the |/ states):

c d c
4 P 1 Vv
b b
d a a
d
Vv 3 —— 2

with 1 abbreviating (ab)*c
2  abbreviating  b((ab)*c)
3 abbreviating  b((ab)*c) || d
4 abbreviating d.

Suppose P can be specified in BPA;”(A). As P is root-
cyclic over PA**(A), we can assume that P can be repre-
sented by a (syntactically) minimal root-cyclic process
over BPA;”(A), say @ bisimilar with P. We show by

induction on the structure of BPAZ”(A) processes that
such @ cannot exist, contradicting the supposition:

Q€ Asor Q = Q1 + Q2. Then Q is not root-cyclic.

Q = Q1 - Q2. Then necessarily @; has an initial d step
and an initial ¢ step. As @ can terminate in states
bisimilar with 1 and 4, it follows that Q; & 1 < 4. But
obviously 1 ¢ 4.

Q = Q1%Q,. Then necessarily Q; has no initial ¢ or d
step: after one of these termination is possible, so rep-
etition of one of these would otherwise also be possible,
which is contradictory. By minimality, ; must have
an initial a step. Again, the subsequent d step must be
necessarily from @2, so Q2 can terminate with dbc. But
this ‘termination path’ is not possible from Q. (Here
a proof for the related *-systems would end, see Theo-
rem 3.3.)

Q= Qlu Q2. As the case above. [ ]
THEOREM 4.4 PA}'(A) < ACP*(4,~).

Proof In a similar way as was done in the proof
above, one can show that (ab)*c || d with y(c,d) the
only communication defined, cannot be expressed in
PA}*(A). Moreover, also PA%(A) < ACP*(A,7) can
be proved using the process mentioned. |

THEOREM 4.5 If A contains at least 6 actions, one
can find v with handshaking such that ACP**(A,~) <
ACP}¥(4,7).

Proof Consider the following property of root-cyclic
states over ACP**(A4,~):

EXIT PROPERTY Let R be a root-cyclic state, and C a
cycle containing R. If two states in C have exits,
then they have the same exits.

The exit property holds for ACP**(A4,~). This can be
proved by induction on the syntactic structure of root-
cyclic states.

As a consequence it follows that the regular process P
defined by P = a-Q+a and Q = a-P+b cannot be spec-
ified in ACP**(A,~). However, adapting Lemma 3.2
to this process, it follows that P can be specified in
ACP;(A,~) provided A D {a,b,1, ki, k2, k3}, and hence
also in ACP*(A,~). [ ]

So we have the following hierarchy (for A containing at
least 6 actions):

BPA}*(A)
BPA*(A) < < PAJY(A) <
PA*(A)

ACP*(A,v) < ACP*(A, ).

Finally, we have the following expressivity result for
ACP}¥(A,7):

THEOREM 4.6 For each finitely branching, com-
putable graph with labels from A there is a finite ez-
tension B of A such that this graph can be expressed in
ACP*(B,~) with handshaking only, and the actions in
A not subject to communication.

In this paper we do not want to introduce the graph
model for ACP,(A,~). For a detailed introduction, see
[1]. Theorem 4.6 follows immediately from one of the
main results in [3]. The idea is that a computable
(finitely branching) graph can be characterized by a
rooted 7-bisimilar one that apart from its root has out-
degree of at most two. Such a graph can be defined with
help of two computable functions. Each computable
function can in turn be represented in ACP**(A, ) with
handshaking. This representation is based on the mod-
elling of a Turing machine with help of two terminating
stacks and a regular control process (using FIR;, see
Section 3.3). We have seen that such processes can be
defined in ACP?*(A, v) with handshaking.

5. CONCLUSIONS

The results described in this paper form a further step
in the equational founding of process algebra. We can
focus on a small number of recursion operations such as
* and *. Using such operations, processes can simply
be represented by closed terms.

As pointed out by a referee, the results stated in this
paper go through in the setting with branching bisimu-
lation, introduced in [14, 15].
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