
A Generalization of ACP Using Belnap’s

Logic

Alban Ponse1 Mark B. van der Zwaag2

Programming Research Group, University of Amsterdam, The Netherlands

Abstract

An overview is given of ACP with conditional composition (i.e., if-then-else) over Belnap’s four-valued logic.
The interesting thing is that much of ACP can be analyzed using this logic. For example, both the choice
operation + and δ (deadlock) can be seen as instances of conditional composition, and the axiom x + δ = x
follows from this perspective. Furthermore, parallel composition can be generalized to conditional parallel
composition, which has sequential composition as an instance, next to common parallel composition, pure
interleaving and synchronous ACP.
This article is an extended abstract of [12]. The full article contains all proofs and some examples on parallel
scheduling in GACP.

Keywords: Many-Valued Logic, Belnap’s Logic, Process Algebra, ACP, Conditional Composition, Choice

1 Introduction

In 1994, Jan Bergstra and co-workers experienced a revival in the specification of

datatypes with divergence, errors and recovery or exception handling. This was

triggered by languages such as VDM [8] and an upcoming interest in Java [6]. The

first outcome was an article on a four-valued propositional logic by Bergstra, Bethke

and Rodenburg [2]. Consequently it was felt that a combination with ACP [3] via a

conditional composition construct (i.e., an if-then-else operator) was obvious, and

a first paper involving Kleene’s three-valued logic [9] was written [4], the idea being

that in

if φ then P else Q

the condition φ may take Kleene’s truth value undefined. This led to [5] in which

the logic of [2] is combined with ACP, to papers in which other non-classical logics

were used, and ultimately to the four-valued logic C4 for ACP with conditional

1 Email: alban@science.uva.nl

2 Email: mbz@science.uva.nl

Electronic Notes in Theoretical Computer Science 162 (2006) 287–293

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.102

mailto:alban@science.uva.nl
mailto:mbz@science.uva.nl
http://www.elsevier.com/locate/entcs

composition (in [11] baptized “the logic of ACP”). In [11] we show that this logic

(with one, sequential connective) is equivalent to the natural extension of Kleene’s

three-valued logic with a fourth truth value (which has symmetric connectives). It

was only two years ago that we found out that this latter logic is Belnap’s four-

valued logic [1], as we could have known from, e.g., [7].

In this article we focus on process-algebraic conditional composition over Bel-

nap’s logic. A tricky corner in ACP is the combination of choice and deadlock. One

often reads that the process x+y makes a choice between x and y. However, this is

not true for a+δ, where a is an action and δ represents deadlock (indeed, a standard

ACP axiom is x + δ = x). Can choice in this case be seen as a prescriptive opera-

tion? In this article we show that it can: there is a straightforward correspondence

with conditional composition over Belnap’s logic, allowing one to explain the nature

of choice in process algebra from a logical perspective. We generalize alternative

composition + to conditional composition +φ so that

x + y = x +B y

where B (both) is the truth value which stands for both true and false. We describe

our results only informally; all proofs can be found in [11,12].

2 Belnap’s Logic and Conditional Composition

Belnap’s logic B4 [1] has truth values B, T, F, and N, where B (both) represents

both true and false, T and F are the values true and false, and N (none) represents

undefinedness. 3 Negation is defined as an involution (satisfying ¬¬x = x) by

¬B = B, ¬T = F, ¬F = T, and ¬N = N, and conjunction (∧) and disjunction (∨) are

the greatest lower bound and the least upper bound in the distributive lattice

F

B N

T

����

�� ��

called the truth ordering [7]. This characterization of the logic as a distributive

lattice with involution leads directly to a finite and complete equational axiomati-

zation [11].

Now we define an alternative logic C4 over these truth values that has only one,

ternary operation � � called conditional composition. This operation is defined

by

x � T � y = x, x � F � y = y, x � N � y = N,

3 Belnap motivated B as the result of conflicting outcomes of database queries, and N as the absence of
answers.

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293288

(C1) x � (u � v � w) � y = (x � u � y) � v � (x � w � y)

(C2) (x � w � y) � v � (x′
� w � y′) = (x � v � x′) � w � (y � v � y′)

(C3) (x � w � y) � w � z = x � w � (y � w � z)

(C4) T � x � F = x

(C5) x � T � y = x

(C6) x � F � y = y

(C7) x � N � y = N

(C8) x � B � y = y � B � x

(C9) x � B � N = x

(C10) B � B � x = B

Table 1
C4 axioms

and x � B � y = x � y, where � is the least upper bound of x and y in the lattice

N

T F

B

����

�� ��

called the information (or knowledge) ordering [2,7]. Conditional composition has

an operational, sequential reading: in x � y � z, first y is evaluated, and depending

on the outcome, possibly x and/or z. In Table 1 we give a complete set of axioms

for C4.

The logics B4 and C4 have exactly the same expressiveness, that is, their oper-

ations can be defined in each other: using B, T, F we have

¬x = F � x � T, x ∧ y = (y � x � F) � B � (x � y � F),

and, vice versa, using N,

x � y � z = (x ∧ y) ∨ (z ∧ ¬y) ∨ (x ∧ z ∧ N) ∨ (y ∧ ¬y ∧ N).

Hence the two logics can be considered “the same”, but with a different functional

basis. We show that the logics are truth-functionally complete for monotone func-

tions with respect to the information ordering. Let f be a (k + 1)-ary monotone

function and write x̄, y for (k + 1)-tuples. By monotonicity of f ,

f(x̄, y) = f(x̄, N) � (f(x̄, T) � y � f(x̄, F)) � ((N � y � f(x̄, B)) � y � N).

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293 289

(G1) x +φ� ψ � χ y = (x +φ y) +ψ (x +χ y)

(G2) (x +ψ y) +φ (x′ +ψ y′) = (x +φ x′) +ψ (y +φ y′)

(G3) x +φ (y +φ z) = (x +φ y) +φ z

(G4) (x +φ y)z = xz +φ yz

(G5) (xy)z = x(yz)

(G6) x +T y = x

(G7) x +F y = y

(G8) x +N y = δ

(†) x +φ y = x +ψ y if C4 � φ = ψ

Table 2
GBPAδ axioms

By induction on k, the function f is expressible (because f(x̄, a) is, for all truth

values a).

3 Conditional Composition in Process Algebra

We now look at GBPAδ, a generalization of BPAδ (Basic Process Algebra with

deadlock, which includes sequential composition ·, alternative composition + and

the constant δ for deadlock). In GBPAδ alternative composition is parametrized

with C4 terms φ, hence obtaining the operation +φ called conditional composition,

and x +φ y is read as if φ then x else y. The axiom system GBPAδ consists of

the axioms in Table 2. Deadlock corresponds to +N by axiom G8, and alternative

composition can be seen as the instance +B, as will be shown.

Next, we give an operational semantics for process-closed terms, that is, for

process terms that do not contain process variables. Let W be the set of valuations

for C4 terms, let A be the nonempty set of action symbols that comes as a parameter

of the axiom system, and let A × W be the set of transition labels. The transition

rules are given in the upper part of Table 4, where a transition with label a,w

models the execution of action a under valuation w.

We define (strong) bisimulation as usual. Process-closed terms are bisimilar (�)

if they are related by a bisimulation. Since bisimilar terms have matching action

steps for every valuation, we allow (user-defined) propositions in the logic, the

evaluation of which may not be constant throughout the execution of a process. The

transition rules are in the panth format [13], from which it follows that bisimilarity

is a congruence. Furthermore, the GBPAδ axioms are sound and complete [11,12].

Our claim that + equals +B is substantiated by showing that all axioms of BPAδ

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293290

are derivable in GBPAδ. Commutativity of alternative composition is derived by

x +B y = (y +F x) +B (y +T x) = y +F� B� T x = y +B x

using axioms G6, G7, G1, C8, and C4. Associativity is an instance of G3. Idempo-

tence:

x +B x = (x +T y) +B (x +T y) = x +T� B� T y = x

using G6, G1, and C4 � x�B�x = x. Right-distributivity of sequential composition

over alternative composition is an instance of G4. The axiom x + δ = x can be

derived by

x +B δ = (x +T y) +B (x +N y) = x +T� B� N y = x

using G6, G8, G1, and C9. Finally, the axiom δx = δ can be derived using G8 and

G4.

We find that process-algebraic and logical conditional composition are quite sim-

ilar, as becomes apparent when one compares their axioms. The process-algebraic

counterpart of the information ordering (≤) is the summand inclusion ordering ⊆
defined by x ⊆ y ⇔ x + y = y. So alternative composition can be said to be the

counterpart of � B � , while δ corresponds to N. The following result implies that

C4 characterizes choice and deadlock:

Proposition 3.1 For i = 1, 2, let pi be an open process term in which no action

symbols occur and the only operation is conditional composition. Let ti be the C4

term which is obtained from pi by interpreting +φ as � φ � and δ as N, and in

which the process variables also represent propositions. Then GBPAδ/� |= p1 ⊆ p2

iff C4 |= t1 ≤ t2, and hence GBPAδ/� |= p1 = p2 iff C4 |= t1 = t2.

4 Generalized Parallel Composition

GACP (Generalized ACP) is parametrized with a nonempty set A of action sym-

bols, and a commutative and associative function | : A×A → A∪{δ} which defines

which actions communicate. It extends GBPAδ with a generalization φ‖ψ of paral-

lel composition, where the condition φ covers the choice between interleaving and

synchronization, and ψ may determine the order of execution. Furthermore, it

has an auxiliary generalized left merge φ�ψ and generalized communication merge

φ|ψ , and the encapsulation operation ∂H , which renames actions from H ⊆ A to δ.

The axioms are those of GBPAδ with four straightforward axioms for encapsulation

(omitted here) and those in Table 3.

The operation
T
‖
B

restricts to interleaving (free merge), while
F
‖� for � ∈

{B, T, F} defines synchronous merge, and
T
‖
T

represents sequential composition.

Some typical identities:

x φ‖ψ y = y φ‖¬ψ x, x φ|ψ y = y φ|¬ψ x, and δ φ|ψ x = δ.

The transition rules are presented in Table 4. Bisimilarity is a congruence,

and all axioms are sound in the model thus obtained. The parallel composition

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293 291

(GM1) x φ‖ψ y = (x φ�ψ y +ψ y φ�¬ψ x) +φ (x φ|ψ y +ψ y φ|¬ψ x)

(GM2) a φ�ψ x = ax

(GM3) ax φ�ψ y = a(x φ‖ψ y)

(GM4) (x +φ y) ψ�χ z = x ψ�χ z +φ y ψ�χ z

(GM5) a φ|ψ b = a | b
(GM6) a φ|ψ bx = (a | b)x
(GM7) ax φ|ψ b = (a | b)x
(GM8) ax φ|ψ by = (a | b)(x φ‖ψ y)

(GM9) (x +φ y) ψ|χ z = x ψ|χ z +φ y ψ|χ z

(GM10) z φ|ψ(x +χ y) = z φ|ψ x +χ z φ|ψ y

Table 3
Axioms for generalized merge; a, b range over A

operations can be eliminated from process-closed terms, so GACP is complete for

these terms.

5 Conclusion

We have argued that conditional composition over Belnap’s logic characterizes

choice and deadlock in ACP from a logical perspective. We further remark that

conditional composition can be used to define sequential connectives such as Mc-

Carthy’s directed ∧ [10], left sequential conjunction ∧
�

[2], and Fitting’s ∧→ [7]. E.g.,

x ∧
�

y = y � x � F. Finally we remark that the generalized merge can be used to

model parallel scheduling, see [11,12] for examples.

References

[1] N.D. Belnap. A Useful Four-Valued Logic. In J.M. Dunn and G. Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 8-37, D. Reidel, 1977.

[2] J.A. Bergstra, I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values: true, false, divergent
and meaningless. Journal of Applied and Non-Classical Logics, 5(2):199-218, 1995.

[3] J.A. Bergstra and J.-W. Klop. Process algebra for synchronous communication. Information and
Control, 60 (1/3):109-137, 1984.

[4] J.A. Bergstra and A. Ponse. Kleene’s three-valued logic and process algebra. Information Processing
Letters, 67(2):95-103, 1998.

[5] J.A. Bergstra and A. Ponse. Process algebra with four-valued logic. Journal of Applied Non-Classical
Logics, 10(1):27-53, 2000.

[6] G. Bracha, et al. The Java Language Specification (2nd edition). Addison Wesley, 2000.

[7] M.C. Fitting. Kleene’s three valued logics and their children. Fundamenta Informaticae, 20:113-131,
1994.

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293292

a
a,w−→ √ x

a,w−→ √

xy
a,w−→ y

x
a,w−→ x′

xy
a,w−→ x′y

x
a,w−→ x′/

√
, w(φ) ∈ {B, T}

x +φ y
a,w−→ x′/

√
x

a,w−→ x′/
√

, w(φ) ∈ {B, F}
y +φ x

a,w−→ x′/
√

x
a,w−→ x′/

√
, w(φ) ∈ {B, T}, w(ψ) ∈ {B, T}

x φ‖ψ y
a,w−→ (x′/

√
) φ‖ψ y

x
a,w−→ x′/

√
, w(φ) ∈ {B, T}, w(ψ) ∈ {B, F}

y φ‖ψ x
a,w−→ y φ‖ψ(x′/

√
)

x
a,w−→ x′/

√
, y

b,w−→ y′/
√

, a | b = c, w(φ) ∈ {B, F}, w(ψ) ∈ {B, T, F}
x φ‖ψ y

c,w−→ (x′/
√

) φ‖ψ(y′/
√

)

x
a,w−→ x′/

√
, y

b,w−→ y′/
√

, a | b = c

x φ|ψ y
c,w−→ (x′/

√
) φ‖ψ(y′/

√
)

x
a,w−→ x′/

√

x φ�ψ y
a,w−→ (x′/

√
) φ‖ψ y

x
a,w−→ x′/

√
, a �∈ H

∂H(x)
a,w−→ ∂H(x′/

√
)

Table 4
Transition rules. a, b, c ∈ A; w ∈ W ; x′/

√
and y′/

√
range over P ∪ {√}, where P is the set of

process-closed terms; and x φ‖ψ

√
=

√
φ‖ψ x = x,

√
φ‖ψ

√
= ∂H(

√
) =

√

[8] C.B. Jones. Systematic Software Development using VDM (2nd edition). Prentice-Hall International,
Englewood Cliffs, 1990.

[9] S.C. Kleene. On a notation for ordinal numbers. J. of Symbolic Logic, 3:150-155, 1938.

[10] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg
(eds.), Computer Programming and Formal Systems, pages 33–70, North-Holland, Amsterdam, 1963.

[11] A. Ponse and M.B. van der Zwaag. The logic of ACP. Report SEN-R0207, CWI, 2002.

[12] A. Ponse and M.B. van der Zwaag. A generalization of ACP using Belnap’s logic. Submitted to Journal
of Logic and Algebraic Programming.

[13] C. Verhoef. A congruence theorem for structured operational semantics with predicates and negative
premises. Nordic Journal of Computing, 2(2):274-302, 1995.

A. Ponse, M.B. van der Zwaag / Electronic Notes in Theoretical Computer Science 162 (2006) 287–293 293

	Introduction
	Belnap's Logic and Conditional Composition
	Conditional Composition in Process Algebra
	Generalized Parallel Composition
	Conclusion
	References

