
Bachelor Informatica

Normal forms for FSCLU, three-
valued Free Short-Circuit Logic

Joris Smeets

June 18, 2021

Supervisor(s): dr. A. Ponse

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Acknowledgements

First of all, I would like to show my gratitude to my supervisor, Alban Ponse, for his
supervision during the project and for introducing me to the topic of short-circuit logic
during the brief presentation at the AVI visit to the Theory of Computer Science section. He
spent many hours reviewing drafts, providing feedback, answering questions and discussing
my normal forms with me. Without his feedback and quick answers to my questions, I might
never have completed the proof of the correctness of the normalisation function.

I would also like to thank my roommates and family for keeping up with my grumpy,
sleep-deprived and stressed behaviour during my thesis project.

Finally, I would like to thank the friends I met during my study. I always enjoyed
studying together in the brainwave, the group projects, attending lectures at the 3rd row
and the drinks after we handed in a project.

3

Abstract

Short-circuit evaluation only evaluates the second argument of an expression if the first
argument is sufficient to determine the value of an expression. In free short-circuit logic
(FSCL), the evaluation of atoms can cause side effects and atoms’ evaluation will not be
memorised. An atom that is evaluated multiple times in a compound statement could
have different truth values. In three-valued FSCL an evaluation can be True, False and
Undefined. This thesis provides us with the normal forms, and the normalisation function
that can potentially be used to prove the completeness for three-valued free short-circuit
with Undefined.

4

Contents

1 Introduction 7
1.1 Outline . 8
1.2 Ethical considerations . 8

2 Evaluation trees and axioms, for short-circuit logic with undefinedness 9
2.1 Axioms and normal forms FSCL . 9
2.2 Axioms and evaluation trees FSCLU . 10
2.3 Axioms, for short-circuit logic with undefinedness 12

3 Normal forms for three-valued logic 13
3.1 Normal forms . 13
3.2 Defining normal forms using recursive functions 15

3.2.1 Definition of f using fn . 15
3.2.2 Definition of f using f c . 17

4 Conclusion 25
4.1 Discussion . 25
4.2 Conclusion . 25

A Correctness of the normalisation function 29
A.1 General results . 29

A.1.1 Correctness of the negation function . 30
A.1.2 Correctness of the conjunction function 33

5

6

CHAPTER 1

Introduction

Short-circuit logic is a variation of logic that evaluates the second argument of an expression
if and only if the first argument is not enough to determine the value of an expression. To
differentiate between a short-circuit conjunction or disjunction and a not short-circuit conjunction
or disjunction, programming languages such as C and Java use different notations for short-circuit
logic expressions. C has the short-circuit conjunction && , the bitwise conjunction & , the
short-circuit disjunction || and the bitwise disjunction |. It is important to differentiate between
short-circuit and bitwise in computer science, because atoms can have side effects. For example
in C the Listing 1.1 will print ”a is 0 , b is 1” where the code in Listing 1.2 will print ”a is 0 ,
b is 0”.

Listing 1.1: bitwise disjunction

1 int a = 0;

2 int b = 0;

3 if(a==0 | (b+=1)){}

4

5 printf("a is %d ,",a);

6 printf("b is %d ",b);

Listing 1.2: short-circuit disjunction

1 int a = 0;

2 int b = 0;

3 if(a==0 || (b+=1)){}

4

5 printf("a is %d ,",a);

6 printf("b is %d ",b);

In Listing 1.2 a == 0 is true so b+= 1 will not have any influence on the evaluation result of
the expression and is for that reason not evaluated. In this paper, we represent short-circuit
conjunction with the symbol ∧qa and short-circuit disjuntion with the symbol ∨qa . This will follow
notation set by [1].

In FSCL atomic side effects that happen during the evaluation of atoms will be taken into
account [3]. Two statements in FSCL are only equivalent if they have always the same evaluation
result. In FSCL a ∨qa a and a are not equivalent because it is possible that the evaluation results
differ. For example, if x = 0 and a = (x+ = 1 ∧qa x == 2) the second a of a ∨qa a evaluates as
T (True) due to the increment. Hence, the statement a ∨qa a will be evaluated as T, while the
statement a will be evaluated as F (False).

In FSCL atoms can only evaluate as T or F. Hence, an expression such as 1.1 is not possible
in FSCL. In the case of y = 0 this statement is neither T, nor F because division by zero is
undefined.

(x/y = 5) (1.1)

7

For this expression to evaluate only as T or F this expression needs to be rewritten to y =
0 ∨qa (x/y = 5) [4]. When y is equal to zero, the evaluation of the left side of the disjunct is T,
so the right side of the disjunct will not be evaluated. In FSCL, expressions such as T ∨qa x can
be rewritten to T by the use of the axioms from EqFSCL, which we will explain later. These
axioms have been proven complete for closed terms [7].

In this thesis project, we will talk about FSCLU, three-valued FSCL with U, where the
evaluation of expressions can be T, F and U (undefined) and provide normal forms for FSCLU and
the normalisation function. These normal forms can potentially be used to prove the completeness
of EqFSCLU (the axioms of FSCLU) for closed terms because for the completeness proof of
EqFSCL normal forms have been used. The normal forms for EqFSCL are not sufficient for
EqFSCLU, because trees with U leaves can not be represented by these normal forms.

1.1 Outline

The structure of this thesis is as follows: in Chapter 2, we will summarize the definition of
evaluation trees for short-circuit logic with undefinedness given by [2] and [7]. In Chapter 3,
we will define the normal forms, and normalisation function for FSCLU will be defined. This
normalisation function will be defined and proven correct with the use of auxiliary functions. In
Appendix A we will prove the correctness of this normalisation function by using these auxiliary
functions. We will end this thesis by discussing the use of these normal forms for a completeness
proof.

This thesis extends [7], so considerable parts of the text in the approaching sections stem
from [7].

1.2 Ethical considerations

This paper aims to contribute to proving the completeness of EqFSCLU, by defining the normal
forms that could, potentially, be used in the proof. Its scope falls entirely within theoretical
computer science, the formal foundation of computer science based on logic and mathematics.
This research is therefore not directly linked to the real world and it is difficult to know what
kind of repercussions (if any) this line of work could have.

What it could, and hopefully will do is to contribute to better education and better under-
standing of the logic that underlies computer programs.

8

CHAPTER 2

Evaluation trees and axioms, for
short-circuit logic with undefinedness

This chapter will discuss the relevant work and the theoretical background needed to define the
normal forms, by first introducing the normal forms used in the completeness proof of EqFSCL
and finally extending the axioms of EqFSCL to EqFSCLU.

2.1 Axioms and normal forms FSCL

To define correct normal forms and prove the correctness of the normalisation function, we can
build on normal form, and normalisation function from An independent axiomatisation for free
short-circuit logic[7]. In this section, we will discuss the given normal forms and axiomatisation
of FSCL.

F = ¬T (F1)

x ∨qa y = ¬(¬x ∧qa ¬y) (F2)

¬¬x = x (F3)

T ∧qa x = x (F4)

x ∨qa F = x (F5)

F ∧qa x = F (F6)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (F7)

¬x ∧qa F = x ∧qa F (F8)

(x ∧qa F) ∨qa y = (x ∨qa T) ∧qa y (F9)

(x ∧qa y) ∨qa (z ∧qa F) = (x ∨qa (z ∧qa F)) ∧qa (y ∨qa (z ∧qa F)) (F10)

Table 2.1: EqFSCL, a set of axioms for FSCL

SA is a defined set of closed (sequential) propositional statements over A by the following
grammar:

P ::= a|T|F|¬P |P ∧qa P |P ∨qa P

where a ∈ A. T is a constant for true, F for false and ¬ is negation.

The unary short-circuit evaluation function (se) is used to define SA functions as evaluation
trees (TA). For the proof for the completeness of EqFSCL for closed terms, normal forms and a
normalisation function have been introduced. The normalisation function is used to rewrite SA
to SNF . Normal forms for FSCL are:

9

Definition 2.1.1. A term P ∈ SA is said to be in SCL (short-circuit logic) Normal Form
(SNF) if it is generated by the following grammar:

P ::= PT | P F | PT ∧qa P ∗ (SNF -terms)

PT ::= T | (a ∧qa PT) ∨qa PT (T-terms)

P F ::= F | (a ∨qa P F) ∧qa P F (F-terms)

P ∗ ::= P c | P d (∗-terms)

P c ::= P ` | P ∗ ∧qa P d

P d ::= P ` | P ∗ ∨qa P c

P ` ::= (a ∧qa PT) ∨qa P F | (¬a ∧qa PT) ∨qa P F (`-terms)

2.2 Axioms and evaluation trees FSCLU

To extend to normal form for FSCL to the normal forms for FSCLU we first need to define
FSCLU and its axioms. In this section we will discuss the definition given in Non-commutative
propositional logic with short-circuit evaluation [2] for FSCLU.

The definition we will use for FSCLU is FSCL extended by the axiom CP-U.

x / U . y = U (CP-U)

CP-U implies U ∧qa x = U ∨qa x = ¬U = U, and also F ∧qa U = F. In CP-U Hoare’s conditional is
used [5]. Notation using Hoare’s conditional should be read from the middle to the corner. For
example, the term x / y . z should be read as ”if y then x else z”. This implies that first y is
evaluated, in case of y = T x is evaluated and in case of y = F z is evaluated.

Definition 2.2.1. The set of T U
A of U-evaluation trees over A with leaves in {T,F,U} is defined

inductively by

T ∈ T U
A ,F ∈ T U

A ,U ∈ T U
A , (X E a D Y) ∈ T U

A for any X,Y ∈ T U
A and a ∈ A

The operator E a D is called U-tree composition over a. In the evaluation tree X E a D Y ,
the root represented by a, the left branch by X, the right branch by Y and the underlining of the
a represents a middle branch to the leaf U.

A pictorial representation is an alternative for a formal notation of evaluation trees. For
example, the tree

(F E b D T) E a D T

can be represented as follows, where E gives a left branch and D a right branch:

a

b

F U T

U T

Replacing the middle branches of these nodes with an underlined nodes is an alternative
representation of U-evaluation trees and the representation of U-evaluation trees that will be
used in this thesis. The tree above can also be represented as follows:

a

b

F T

T

10

The set SA can be extended to SAU of closed (sequential) propositional statements over A
with U using the following grammar:

P ::= a | T|F|U|¬P |P ∧qa P |P ∨qa P

where a ∈ A. T is a constant for true, F for false, U for undefined and ¬ is negation. The
signature of SAU is

∑
SCL(A) = {∧qa , ∨qa ,¬,T,F,U, a | a ∈ A}.

Definition 2.2.2. The unary short-circuit evaluation function seu: SAU → T U
A is defined

as follows, where a ∈ A:

seu(T) = T seu(¬P) = seu(P)[T7→ F, F 7→ T]
seu(F) = F seu(P ∧qa Q) = seu(P)[T7→ seu(Q)]
seu(U) = U seu(P ∨qa Q) = seu(P)[F 7→ seu(Q)]
seu(a) = TE a D F

Examples: seu(P ∨qa Q) where P = a and Q = U. This can be rewritten to seu(a)[F 7→ seu(U)]=
T E a D U and seu((a ∧qa b)∨qa U) = (T E b D U) E a D U the pictural representation for this is:

a

T U

a

b

T U

U

For duality of EqFSCLU we cite [2, p.22]: ”Defining Udl = U implies that EqMSCLU satisfies
the duality principle”. This also implies that EqFSCLU satisfies the duality principle.

11

2.3 Axioms, for short-circuit logic with undefinedness

In this thesis we have chosen to extend EqFSCL by three axioms:

¬U = U (FU1)

U ∧qa x = U (FU2)

U ∨qa x = U (FU3)

Table 2.2: Additional axioms for EqFSCL

While CP-U also implies F ∧qa U = F we have chosen not to extend the axioms with this axiom,
because (F6) already implies that F ∧qa x = F. It is also possible to rewrite the additional axioms
to the single axiom U ∧qa x = ¬U. We will use (FU1), (FU2) and (FU3) a number of times in
this thesis, for that reason we have chosen to include all three of these axioms. Because we have
chosen to include these three axioms instead of one the extra axioms will not be independent.
Together with the axioms of EqFSCL these axioms form the axioms for FSCLU:

F = ¬T (F1)

x ∨qa y = ¬(¬x ∧qa ¬y) (F2)

¬¬x = x (F3)

T ∧qa x = x (F4)

x ∨qa F = x (F5)

F ∧qa x = F (F6)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (F7)

¬x ∧qa F = x ∧qa F (F8)

(x ∧qa F) ∨qa y = (x ∨qa T) ∧qa y (F9)

(x ∧qa y) ∨qa (z ∧qa F) = (x ∨qa (z ∧qa F)) ∧qa (y ∨qa (z ∧qa F)) (F10)

¬U = U (FU1)

U ∧qa x = U (FU2)

U ∨qa x = U (FU3)

Table 2.3: EqFSCLU, a set of axioms for FSCLU

12

CHAPTER 3

Normal forms for three-valued logic

In this chapter, we define the SCL Normal Forms and the normalisation function. The normali-
sation function will be defined with the use of auxiliary functions.

3.1 Normal forms

When considering a tree from SAU, we note that some trees only have T-leaves, some only
F-leaves, some only U-leaves and some a combination of these.

Definition 3.1.1. A term P ∈ SAU is said to be in SCL Normal Form (SNF) if it is
generated by the following grammar:

P ::= PT | P F | PU | PT ∧qa P a (SNF -terms)

PT ::= T | (a ∧qa PT) ∨qa PT (T-terms)

P F ::= F | (a ∨qa P F) ∧qa P F (F-terms)

PU ::= U | (a ∨qa PU) ∧qa PU (U-terms)

P a ::= P ∗ | Pn∗ | Pw∗ | P b∗ (a-terms)

P ∗ ::= P c | P d (∗-terms)

P c ::= P ` | P ∗ ∧qa P d

P d ::= P ` | P ∗ ∨qa P c

P ` ::= (a ∧qa PT) ∨qa P F | (¬a ∧qa PT) ∨qa P F (`-terms)

Pn∗ ::= Pn` | Pw∗ ∧qa Pn∗ | P ∗ ∧qa Pn∗ | P b∗ ∧qa Pn∗ (n∗-terms)

Pn` ::= (a ∧qa PU) ∨qa P F | (¬a ∧qa PU) ∨qa P F (n`-terms)

Pw∗ ::= Pw` | P ∗ ∨qa Pw∗ | Pn∗ ∨qa Pw∗ | P b∗ ∨qa Pw∗ (w∗-terms)

Pw` ::= (a ∧qa PT) ∨qa PU | (¬a ∧qa PT) ∨qa PU (w`-terms)

P b∗ ::= P b` | P ∗ ∧qa Pw∗ | P ∗ ∧qa P b∗ | P b∗ ∧qa P ∗ | P b∗ ∧qa P b∗ | (b∗-terms)

Pw∗ ∧qa P ∗ | Pw∗ ∧qa P b∗ | P b∗ ∧qa Pw∗ | P b∗ ∨qa P ∗ |
P ∗ ∨qa Pn∗ | P ∗ ∨qa P b∗ | P b∗ ∨qa Pn∗ | P b∗ ∨qa P b∗

P b` ::= P ` ∧qa Pw` | Pw` ∧qa P ` | P ` ∨qa Pn` (b`-terms)

where a ∈ A. We refer to PT-forms as T-terms, to P F-forms as F-terms, to PU-forms as U-
terms, to P `-forms as `-terms (the name refers to literal terms), to P ∗-forms as ∗-terms, to
Pn`-forms as n`-terms, to Pn∗ as n∗-terms, to Pw`-forms as w`-terms, to Pw∗ as w∗-terms,

13

to P b`-forms as b`-terms, to P b∗ as b∗-terms and to P a-forms as a-terms. A term of the form
PT ∧qa P a is referred to as a T-a-term. A term of the form PT ∧qa P ∗ is referred to as a T-∗-term.
A term of the form PT ∧qa Pn∗ is referred to as a T-n∗-term. A term of the form PT ∧qa Pw∗ is
referred to as a T-w∗-term. A term of the form PT ∧qa P b∗ is referred to as a T-b∗-term.

An `-term has one node (its root) that has paths to both T and F. An n`-term has one node
(its root) that has paths to both U and F. A w`-term has one node (its root) that has paths to
both T and U. An b`-term has one node (its root) that has paths to an n`-term and an `-term,
w`-term and an `-term, or an n`-term and a w`-term.

The term a ∧qa (b ∨qa U) has the seu-image:

a

b

T U

F

This seu-image can evaluate as T, F or U, and can only be represented by one term from the
normal forms: the b`-term P ` ∧qa Qw`, this term can be written as ((a ∧qa T) ∨qa F) ∧qa ((b ∧qa T) ∨qa U).

The term (a ∨qa (b ∨qa T)) ∧qa (c ∧qa U) has the seu-image:

a

c

U F

b

c

U F

c

U F

This seu-image is represented by a T-n∗-term, the term ((a∧qa T)∨qa ((b∧qa T)∨qa T))∧qa ((c∧qa U)∨qa F).
The atoms a and b are not relevant for the evaluation results, while their side effects can be
relevant for subsequent atomic evaluations. For this reason we need the T’s in a T-n∗-term. For
T-∗-term, T-b∗-term and T-w∗-term we use T’s for the same reasons.

The term (a ∨qa U) ∧qa b where the left side of the conjunct can evaluate as T and U and the
right side of the conjunct can evaluate as T and F has the seu-image:

a

b

T F

U

We chose to represent this seu-image by the b`-term Pw` ∧qa P `, which can be written as
((a ∧qa T) ∨qa U) ∧qa ((b ∧qa T) ∨qa F), while it is also possible to represent this seu-image by the term
Pn` ∨qa P `, which can be written as ((¬a ∧qa U) ∨qa F) ∨qa ((b ∧qa T) ∨qa F), because in [7] the T-terms
and conjunction for T-∗-terms are used instead of F-terms and disjunction.

14

3.2 Defining normal forms using recursive functions

In this section, we will define the normalisation function f and the auxiliary functions to define the
normalisation function recursively. We will use these auxiliary functions to prove the correctness
of the normalisation function.

f : SAU → SNF .

f is defined recursively using the functions

fn : SNF → SNF and f c : SNF × SNF → SNF .

The function fn will be used to rewrite SNF -terms that are negated to SNF -terms. The function
f c will be used to rewrite a conjunction of two SNF -terms. We have no need for a function
dedicated to the disjunction of two SNF -terms, because this can be rewritten to a disjunction
with (F2) and fn.

f(a) = T ∧qa ((a ∧qa T) ∨qa F) (3.1)

f(T) = T (3.2)

f(F) = F (3.3)

f(U) = U (3.4)

f(¬P) = fn(f(P)) (3.5)

f(P ∧qa Q) = f c(f(P), f(Q)) (3.6)

f(P ∨qa Q) = fn(f c(fn(f(P)), fn(f(Q)))). (3.7)

3.2.1 Definition of f using fn

Analysing the behaviour of T-terms and F-terms together with the definition of seu on nega-
tions, it becomes clear that fn must turn T-terms into F-terms and vice versa. Analysing the
behaviour of U-terms with the definition of seu on negations, it becomes clear that fn must turn
U-terms into U-terms. Any SNF -term is in exactly one of the grammatical categories identified
in Definition 3.1.1.

fn(T) = F (3.8)

fn((a ∧qa PT) ∨qa QT) = (a ∨qa fn(QT)) ∧qa fn(PT) (3.9)

fn(F) = T (3.10)

fn((a ∨qa P F) ∧qa QF) = (a ∧qa fn(QF)) ∨qa fn(P F) (3.11)

fn(U) = U (3.12)

fn((a ∨qa PU) ∧qa QU) = (a ∨qa PU) ∧qa QU (3.13)

To define fn we have to distinguish between the following cases:

(1) The fn of ∗-terms

(2) The fn of n∗-terms

(3) The fn of w∗-terms

(4) The fn of b∗-terms

In case (1) we proceed by defining fn for ∗-terms. We define fn : SNF → SNF as follows,
using the auxiliary function fn

1 : P ∗ → P ∗ to push in the negation symbols when negating a
T-∗-term.

15

fn(PT ∧qa Q∗) = PT ∧qa fn
1 (Q∗) (3.14)

fn
1 ((a ∧qa PT) ∨qa QF) = (¬a ∧qa fn(QF)) ∨qa fn(PT) (3.15)

fn
1 ((¬a ∧qa PT) ∨qa QF) = (a ∧qa fn(QF)) ∨qa fn(PT) (3.16)

fn
1 (P ∗ ∧qa Qd) = fn

1 (P ∗) ∨qa fn
1 (Qd) (3.17)

fn
1 (P ∗ ∨qa Qc) = fn

1 (P ∗) ∧qa fn
1 (Qc). (3.18)

In case (2) we proceed by defining fn for n∗-terms. We note that the negation on an n∗-term
will provide us with a w∗-term, because fn(U) = U and fn(F) = T. We define fn : SNF → SNF
as follows, using the auxiliary function fn

2 : Pn∗ → Pw∗ to push in the negation symbols when
negating a T-n∗-term.

fn(PT ∧qa Qn∗) = PT ∧qa fn
2 (Qn∗) (3.19)

fn
2 (P ∗ ∧qa Qn∗) = fn

1 (P ∗) ∨qa fn
2 (Qn∗) (3.20)

fn
2 (Pw∗ ∧qa Qn∗) = fn

3 (Pw∗) ∨qa fn
2 (Qn∗). (3.21)

fn
2 (P b∗ ∧qa Qn∗) = fn

4 (P b∗) ∨qa fn
2 (Qn∗) (3.22)

fn
2 ((a ∧qa PU) ∨qa QF) = (¬a ∧qa fn(QF)) ∨qa PU (3.23)

fn
2 ((¬a ∧qa PU) ∨qa QF) = (a ∧qa fn(QF)) ∨qa PU (3.24)

In case (3) we proceed by defining fn for w∗-terms. We note that the negation on a w∗-term
will provide us with a n∗-term, because fn(U) = U and fn(T) = F. We define fn : SNF → SNF
as follows, using the auxiliary function fn

3 : Pw∗ → Pn∗ to push in the negation symbols when
negating a T-w∗-term.

fn(PT ∧qa Qw∗) = PT ∧qa fn
3 (Qw∗) (3.25)

fn
3 (P ∗ ∨qa Qw∗) = fn

1 (P ∗) ∧qa fn
3 (Qw∗) (3.26)

fn
3 (Pn∗ ∨qa Qw∗) = fn

2 (Pn∗) ∧qa fn
3 (Qw∗). (3.27)

fn
3 (P b∗ ∨qa Qw∗) = fn

4 (P b∗) ∧qa fn
3 (Qw∗) (3.28)

fn
3 ((a ∧qa PT) ∨qa QU) = (¬a ∧qa QU) ∨qa fn(PT) (3.29)

fn
3 ((¬a ∧qa PT) ∨qa QU) = (a ∧qa QU) ∨qa fn(PT) (3.30)

In case (4) we proceed by defining fn for b∗-terms. We note that the negation on a b∗-term
will provide us with a b∗-term. We define fn : SNF → SNF as follows, using the auxiliary
function fn

4 : P b∗ → P b∗ to push in the negation symbols when negating a T-b∗-term.

16

fn(PT ∧qa Qb∗) = PT ∧qa fn
4 (Qb∗) (3.31)

fn
4 (P ∗ ∧qa Qw∗) = fn

1 (P ∗) ∨qa fn
3 (Qw∗) (3.32)

fn
4 (P ∗ ∨qa Qn∗) = fn

1 (P ∗) ∧qa fn
2 (Qn∗) (3.33)

fn
4 (Pw∗ ∧qa Q∗) = Pw∗ ∧qa fn

1 (Q∗) (3.34)

fn
4 (P b∗ ∨qa Q∗) = fn

4 (P b∗) ∧qa fn
1 (Q∗) (3.35)

fn
4 (P b∗ ∧qa Q∗) = fn

4 (P b∗) ∨qa fn
1 (Q∗) (3.36)

fn
4 (P b∗ ∨qa Qn∗) = fn

4 (P b∗) ∧qa fn
2 (Qn∗) (3.37)

fn
4 (P b∗ ∧qa Qb∗) = fn

4 (P b∗) ∨qa fn
4 (Qb∗) (3.38)

fn
4 (P b∗ ∨qa Qb∗) = fn

4 (P b∗) ∧qa fn
4 (Qb∗) (3.39)

fn
4 (Pw∗ ∧qa Qb∗) = Pw∗ ∧qa fn

4 (Qb∗) (3.40)

fn
4 (P ∗ ∨qa Qb∗) = fn

1 (P ∗) ∧qa fn
4 (Qb∗) (3.41)

fn
4 (P ∗ ∧qa Qb∗) = fn

1 (P ∗) ∨qa fn
4 (Qb∗) (3.42)

fn
4 (P b∗ ∧qa Qw∗) = fn

2 (P b∗) ∨qa fn
3 (Qw∗) (3.43)

3.2.2 Definition of f using f c

To define f c we distinguish the following cases:

(1) f c(PT, Q)

(2) f c(P F, Q)

(3) f c(PU, Q)

(4) f c(PT ∧qa P a, Q)

For case (1)

f c(T, P) = P (3.44)

f c((a ∧qa PT) ∨qa QT, RT) = (a ∧qa f c(PT, RT)) ∨qa f c(QT, RT) (3.45)

f c((a ∧qa PT) ∨qa QT, RF) = (a ∨qa f c(QT, RF)) ∧qa f c(PT, RF) (3.46)

f c((a ∧qa PT) ∨qa QT, RU) = (a ∨qa f c(QT, RU)) ∧qa f c(PT, RU) (3.47)

f c((a ∧qa PT) ∨qa QT, RT ∧qa Sa) = f c((a ∧qa PT) ∨qa QT, RT) ∧qa Sa. (3.48)

For case (2) we make use of (F6). This implies that the conjunction of F with another term
yields the evaluation F. For this reason we can write:

f c(P F, Q) = P F (3.49)

For case (3) the only possible evaluation of the U-term is U. By making use of (FU2) we can
write:

f c(PU, Q) = PU (3.50)

For the remaining case (4) (the first argument is a T-a-term) we distinguish four sub-cases:

(4.1) The a-term is a ∗-term,

(4.2) The a-term is an n∗-term,

(4.3) The a-term is a w∗-term,

(4.4) The a-term is a b∗-term.

For case (4.1) (The a-term is a ∗-term) there are seven possible sub-cases for the second
argument. We distinguish these seven sub-cases:

(4.1.a) The second argument is a T-term,

17

(4.1.b) The second argument is an F-term,
(4.1.c) The second argument is an U-term,
(4.1.d) The second argument is a T-∗-term,
(4.1.e) The second argument is a T-n∗-term,
(4.1.f) The second argument is a T-w∗-term,
(4.1.g) The second argument is a T-b∗-term

For case (4.1.a) (the second argument is a T-term), we will use an auxiliary function f c
1a :

P ∗ × PT → P ∗ to turn conjunctions of a ∗-term with a T-term into ∗-terms. We define f c
1a

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

1a

are ∗-terms.

f c(PT ∧qa Q∗, RT) = PT ∧qa f c
1a(Q∗, RT) (3.51)

f c
1a((a ∧qa PT) ∨qa QF, RT) = (a ∧qa f c(PT, RT)) ∨qa QF (3.52)

f c
1a((¬a ∧qa PT) ∨qa QF, RT) = (¬a ∧qa f c(PT, RT)) ∨qa QF (3.53)

f c
1a(P ∗ ∧qa Qd, RT) = P ∗ ∧qa f c

1a(Qd, RT) (3.54)

f c
1a(P ∗ ∨qa Qc, RT) = f c

1a(P ∗, RT) ∨qa f c
1a(Qc, RT). (3.55)

For case (4.1.b) we need to define f c(PT ∧qa Q∗, RF), which will be an F-term. Using (F7)
we reduce this problem to converting Q∗ to an F-term, for which we use the auxiliary function
f c
1b : P ∗×P F → P F that we define recursively by a case distinction on its first argument. Observe

that the right-hand sides of the clauses defining f c
1b are all F-terms.

f c(PT ∧qa Q∗, RF) = f c(PT, f c
1b(Q

∗, RF)) (3.56)

f c
1b((a ∧qa PT) ∨qa QF, RF) = (a ∨qa QF) ∧qa f c(PT, RF) (3.57)

f c
1b((¬a ∧qa PT) ∨qa QF, RF) = (a ∨qa f c(PT, RF)) ∧qa QF (3.58)

f c
1b(P

∗ ∧qa Qd, RF) = f c
1b(P

∗, f c
1b(Q

d, RF)) (3.59)

f c
1b(P

∗ ∨qa Qc, RF) = f c
1b(f

n
1 (f c

1a(P ∗, fn(RF))), f c
1b(Q

c, RF)). (3.60)

For case (4.1.c) we need to define f c(PT ∧qa Q∗, RU), which will be an n∗-term. Using (F7)
we reduce this problem to converting Q∗ to an n∗-term, for which we use the auxiliary function
f c
1c : P ∗ × PU → Pn∗ that we define recursively by a case distinction on its first argument.

Observe that the right-hand sides of the clauses defining f c
1c are all n∗-term.

f c(PT ∧qa Q∗, RU) = PT ∧qa f c
1c(Q

∗, RU) (3.61)

f c
1c((a ∧qa PT) ∨qa QF, RU) = (a ∧qa f c(PT, RU)) ∨qa QF (3.62)

f c
1c((¬a ∧qa PT) ∨qa QF, RU) = (¬a ∧qa f c(PT, RU)) ∨qa QF (3.63)

f c
1c(P

∗ ∧qa Qd, RU) = P ∗ ∧qa f c
1c(Q

d, RU) (3.64)

f c
1c(P

∗ ∨qa Qc, RU) = fn
2 (f c

1c(P
∗, RU)) ∧qa f c

1c(Q
c, RU). (3.65)

For case (4.1.d) we need to define f c(PT ∧qa Q∗, RT ∧qa S∗). We use the auxiliary function
f c
1d : P ∗ × (PT ∧qa P ∗)→ P ∗ to ensure that the result is a T-∗-term, and we define f c

1d by a case
distinction on its second argument. Observe that the right-hand sides of the clauses defining f c

1d

are all ∗-terms.

f c(PT ∧qa Q∗, RT ∧qa S∗) = PT ∧qa f c
1d(Q∗, RT ∧qa S∗) (3.66)

f c
1d(P ∗, QT ∧qa R`) = f c

1a(P ∗, QT) ∧qa R` (3.67)

f c
1d(P ∗, QT ∧qa (R∗ ∧qa Sd)) = f c

1d(P ∗, QT ∧qa R∗) ∧qa Sd (3.68)

f c
1d(P ∗, QT ∧qa (R∗ ∨qa Sc)) = f c

1a(P ∗, QT) ∧qa (R∗ ∨qa Sc). (3.69)

18

For case (4.1.e) we need to define f c(PT ∧qa Q∗, RT ∧qa Sn∗). We use the auxiliary function
f c
1e : P ∗ × (PT ∧qa Pn∗) → Pn∗ to ensure that the result is a T-n∗-term, and we define f c

1e by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
1e are all n∗-terms.

f c(PT ∧qa Q∗, RT ∧qa Sn∗) = PT ∧qa f c
1e(Q

∗, RT ∧qa Sn∗) (3.70)

f c
1e(P

∗, QT ∧qa Rn`) = f c
1a(P ∗, QT) ∧qa Rn` (3.71)

f c
1e(P

∗, QT ∧qa (R∗ ∧qa Sn∗)) = f c
1d(P ∗, QT ∧qa R∗) ∧qa Sn∗ (3.72)

f c
1e(P

∗, QT ∧qa (Rw∗ ∧qa Sn∗)) = f c
1f (P ∗, QT ∧qa Rw∗) ∧qa Sn∗ (3.73)

f c
1e(P

∗, QT ∧qa (Rb∗ ∧qa Sn∗)) = f c
1g(P ∗, QT ∧qa Rb∗) ∧qa Sn∗ (3.74)

For case (4.1.f) we need to define f c(PT ∧qa Q∗, RT ∧qa Sw∗). We use the auxiliary function
f c
1f : P ∗ × (PT ∧qa Pw∗) → P b∗ to ensure that the result is a T-b∗-term, and we define f c

1f by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
1f are all b∗-terms.

f c(PT ∧qa Q∗, RT ∧qa Sw∗) = PT ∧qa f c
1f (Q∗, RT ∧qa Sw∗) (3.75)

f c
1f (P ∗, QT ∧qa Sw∗) = f c

1a(P ∗, QT) ∧qa Sw∗ (3.76)

For case (4.1.g) we need to define f c(PT ∧qa Q∗, RT ∧qa Sb∗). We use the auxiliary function
f c
1g : P ∗× (PT ∧qa P b∗)→ P b∗ to ensure that the result is a T-b∗-term, and we define f c

1g by a case
distinction on its second argument. Observe that the right-hand sides of the clauses defining f c

1g

are all b∗-terms.

f c(PT ∧qa Q∗, RT ∧qa Sb∗) = PT ∧qa f c
1g(Q∗, RT ∧qa Sb∗) (3.77)

f c
1g(P ∗, QT ∧qa (R∗ ∧qa Sw∗)) = f c

1d(P ∗, QT ∧qa R∗) ∧qa Sw∗ (3.78)

f c
1g(P ∗, QT ∧qa (R∗ ∨qa Sn∗)) = f c

1a(P ∗, QT) ∧qa (R∗ ∨qa Sn∗) (3.79)

f c
1g(P ∗, QT ∧qa (Rw∗ ∧qa S∗)) = f c

1f (P ∗, QT ∧qa Rw∗) ∧qa S∗ (3.80)

f c
1g(P ∗, QT ∧qa (Rb∗ ∨qa S∗)) = f c

1a(P ∗, QT) ∧qa (Rb∗ ∨qa S∗) (3.81)

f c
1g(P ∗, QT ∧qa (Rb∗ ∧qa S∗)) = f c

1g(P ∗, QT ∧qa Rb∗) ∧qa S∗ (3.82)

f c
1g(P ∗, QT ∧qa (Rb∗ ∨qa Sn∗)) = f c

1a(P ∗, QT) ∧qa (Rb∗ ∨qa Sn∗) (3.83)

f c
1g(P ∗, QT ∧qa (Rb∗ ∧qa Sb∗)) = f c

1g(P ∗, QT ∧qa Rb∗) ∧qa Sb∗ (3.84)

f c
1g(P ∗, QT ∧qa (Rb∗ ∨qa Sb∗)) = f c

1a(P ∗, QT) ∧qa (Rb∗ ∨qa Sb∗) (3.85)

f c
1g(P ∗, QT ∧qa (Rw∗ ∧qa Sb∗)) = f c

1f (P ∗, QT ∧qa Rw∗) ∧qa Sb∗ (3.86)

f c
1g(P ∗, QT ∧qa (R∗ ∨qa Sb∗)) = f c

1a(P ∗, QT) ∧qa (R∗ ∨qa Sb∗) (3.87)

f c
1g(P ∗, QT ∧qa (R∗ ∧qa Sb∗)) = f c

1d(P ∗, QT, ∧qa R∗) ∧qa Sb∗ (3.88)

f c
1g(P ∗, QT ∧qa (Rb∗ ∧qa Sw∗)) = f c

1g(P ∗, QT ∧qa Rb∗) ∧qa Sw∗ (3.89)

For case (4.2) (The a-term is a n∗-term) there are only two evaluations of the n∗-term. An
U-term or an F-term. In case the evaluation is an F-term we can ignore the conjunction (3.49
and F6). In case the evaluation is an U-term we can ignore the conjunction as well (3.50, FU2).
For this reason we define:

f c
2(Pn∗, Q) = Pn∗ (3.90)

For case (4.3) (The a-term is a w∗-term) there are seven possible sub-cases for the second
argument. We distinguish these seven sub-cases:

19

(4.3.a) The second argument is a T-term,

(4.3.b) The second argument is an F-term,

(4.3.c) The second argument is an U-term,

(4.3.d) The second argument is a T-∗-term,

(4.3.e) The second argument is a T-n∗-term,

(4.3.f) The second argument is a T-w∗-term,

(4.3.g) The second argument is a T-b∗-term

For case (4.3.a) (the second argument is a T-term), we will use an auxiliary function f c
3a :

Pw∗×PT → Pw∗ to turn conjunctions of a w∗-term with a T-term into w∗-terms. We define f c
3a

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

3a

are w∗-terms.

f c(PT ∧qa Qw∗, RT) = PT ∧qa f c
3a(Qw∗, RT) (3.91)

f c
3a((a ∧qa PT) ∨qa QU, RT) = (a ∧qa f c(PT, RT)) ∨qa QU (3.92)

f c
3a((¬a ∧qa PT) ∨qa QU, RT) = (¬a ∧qa f c(PT, RT)) ∨qa QU (3.93)

f c
3a(P ∗ ∨qa Qw∗, RT) = f c

1a(P ∗, RT) ∨qa f c
3a(Qw∗, RT) (3.94)

f c
3a(Pn∗ ∨qa Qw∗, RT) = Pn∗ ∨qa f c

3a(Qw∗, RT) (3.95)

f c
3a(P b∗ ∨qa Qw∗, RT) = f c

4a(P b∗, RT) ∨qa f c
3a(Qw∗, RT) (3.96)

For case (4.3.b) (the second argument is an F-term), we will use an auxiliary function f c
3b :

Pw∗ × P F → Pn∗ to turn conjunctions of a w∗-term with an F-term into n∗-terms. We define
f c
3b recursively by a case distinction on its first argument. Together with (F7) (associativity) this

allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c
3b

are n∗-terms.

f c(PT ∧qa Qw∗, RF) = PT ∧qa f c
3b(Q

w∗, RF) (3.97)

f c
3b((a ∧qa PT) ∨qa QU, RF) = (a ∨qa QU) ∧qa f c(PT, RF) (3.98)

f c
3b((¬a ∧qa PT) ∨qa QU, RF) = (¬a ∨qa QU) ∧qa f c(PT, RF)) (3.99)

f c
3b(P

∗ ∨qa Qw∗, RF) = fn
1 (f c

1a(P ∗, fn(RF))) ∧qa f c
3b(Q

w∗, RF) (3.100)

f c
3b(P

n∗ ∨qa Qw∗, RF) = fn
2 (Pn∗) ∧qa f c

3b(Q
w∗, RF) (3.101)

f c
3b(P

b∗ ∨qa Qw∗, RF) = fn
4 (f c

4a(P b∗, fn(RF))) ∧qa f c
3b(Q

w∗, RF) (3.102)

For case (4.3.c) (the second argument is an U-term), we will use an auxiliary function f c
3c :

Pw∗ × PU → PU to turn conjunctions of a w∗-term with a U-term into U-terms. We define f c
3c

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

3c

are U-terms.

f c(PT ∧qa Qw∗, RU) = f c(PT, f c
3c(Q

w∗, RU)) (3.103)

f c
3c((a ∧qa PT) ∨qa QU, RU) = (a ∨qa QU) ∧qa f c(PT, RU) (3.104)

f c
3c((¬a ∧qa PT) ∨qa QU, RU) = (¬a ∨qa QU) ∧qa f c(PT, RU) (3.105)

f c
3c(P

∗ ∨qa Qw∗, RU) = f c
3c(f

n
2 (f c

1c(P
∗, RU)), f c

3c(Q
w∗, RU)) (3.106)

f c
3c(P

n∗ ∨qa Qw∗, RU) = f c
3c(f

n
2 (Pn∗), f c

3c(Q
w∗, RU)) (3.107)

f c
3c(P

b∗ ∨qa Qw∗, RU) = f c
3c(f

n
2 (f c

4c(P
b∗, RU)), fc

3c(Q
w∗, RU)) (3.108)

20

For case (4.3.d) we need to define f c(PT ∧qa Qw∗, RT ∧qa S∗). We use the auxiliary function
f c
3d : Pw∗ × (PT ∧qa P ∗) → P b∗ to ensure that the result is a T-b∗-term, and we define f c

3d by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
3d are all b∗-terms.

f c(PT ∧qa Qw∗, RT ∧qa S∗) = PT ∧qa f c
3d(Qw∗, RT ∧qa S∗) (3.109)

f c
3d(Pw∗, QT ∧qa R`) = f c

3a(Pw∗, QT) ∧qa R` (3.110)

f c
3d(Pw∗, QT ∧qa (R∗ ∧qa Sd)) = f c

3d(Pw∗, QT ∧qa R∗) ∧qa Sd (3.111)

f c
3d(Pw∗, QT ∧qa (R∗ ∨qa Sc)) = f c

3a(Pw∗, QT) ∧qa (R∗ ∨qa Sc). (3.112)

For case (4.3.e) we need to define f c(PT ∧qa Qw∗, RT ∧qa Sn∗). We use the auxiliary function
f c
3e : Pw∗ × (PT ∧qa Pn∗)→ Pn∗ to ensure that the result is a T-n∗-term, and we define f c

3e by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
3e are all n∗-terms.

f c(PT ∧qa Qw∗, RT ∧qa Sn∗) = PT ∧qa f c
3e(Q

w∗, RT ∧qa Sn∗) (3.113)

f c
3e(P

w∗, QT ∧qa Rn`) = f c
3a(Pw∗, QT) ∧qa Rn` (3.114)

f c
3e(P

w∗, QT ∧qa (R∗ ∧qa Sn∗)) = f c
3d(Pw∗, QT ∧qa R∗) ∧qa Sn∗ (3.115)

f c
3e(P

w∗, QT ∧qa (Rw∗ ∧qa Sn∗)) = f c
3f (Pw∗, QT ∧qa Rw∗) ∧qa Sn∗ (3.116)

f c
3e(P

w∗, QT ∧qa (Rb∗ ∧qa Sn∗)) = f c
3g(Pw∗, QT ∧qa Rb∗) ∧qa Sn∗ (3.117)

For case (4.3.f) we need to define f c(PT ∧qa Qw∗, RT ∧qa Sw∗). We use the auxiliary function
f c
3f : Pw∗ × (PT ∧qa Pw∗) → Pw∗ to ensure that the result is a T-w∗-term, and we define f c

3f

by a case distinction on its second argument. Observe that the right-hand sides of the clauses
defining f c

3f are all w∗-terms.

f c(PT ∧qa Qw∗, RT ∧qa Sw∗) = PT ∧qa f c
3f (Qw∗, RT ∧qa Sw∗) (3.118)

f c
3f (Pw∗, QT ∧qa Rw∗) = fn

3 (f c
3a(Pw∗, QT)) ∨qa Rw∗ (3.119)

For case (4.3.g) we need to define f c(PT ∧qa Qw∗, RT ∧qa Sb∗). We use the auxiliary function
f c
3g : Pw∗ × (PT ∧qa P b∗)→ P b∗ to ensure that the result is a T-b∗-term, and we define f c

3g by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
3g are all b∗-terms.

f c(PT ∧qa Qw∗, RT ∧qa Sb∗) = PT ∧qa f c
3g(Qw∗, RT ∧qa Sb∗) (3.120)

f c
3g(Pw∗, QT ∧qa (R∗ ∧qa Sw∗)) = f c

3d(Pw∗, QT ∧qa R∗) ∧qa Sw∗ (3.121)

f c
3g(Pw∗, QT ∧qa (R∗ ∨qa Sn∗)) = f c

3a(Pw∗, QT) ∧qa (R∗ ∨qa Sn∗) (3.122)

f c
3g(Pw∗, QT ∧qa (Rw∗ ∧qa S∗)) = f c

3f (Pw∗, QT ∧qa Rw∗) ∧qa S∗ (3.123)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∨qa S∗)) = f c

3a(Pw∗, QT) ∧qa (Rb∗ ∨qa S∗) (3.124)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∧qa S∗)) = f c

3g(Pw∗, QT ∧qa Rb∗) ∧qa S∗ (3.125)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∨qa Sn∗)) = f c

3a(Pw∗, QT) ∧qa (Rb∗ ∨qa Sn∗) (3.126)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∧qa Sb∗)) = f c

3g(Pw∗, QT ∧qa Rb∗) ∧qa Sb∗ (3.127)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∨qa Sb∗)) = f c

3a(Pw∗, QT) ∧qa (Rb∗ ∨qa Sb∗) (3.128)

f c
3g(Pw∗, QT ∧qa (Rw∗ ∧qa Sb∗)) = f c

3f (Pw∗, QT ∧qa Rw∗) ∧qa Sb∗ (3.129)

f c
3g(Pw∗, QT ∧qa (R∗ ∨qa Sb∗)) = f c

3a(Pw∗, QT) ∧qa (R∗ ∨qa Sb∗) (3.130)

f c
3g(Pw∗, QT ∧qa (R∗ ∧qa Sb∗)) = f c

3d(Pw∗, QT, ∧qa R∗) ∧qa Sb∗ (3.131)

f c
3g(Pw∗, QT ∧qa (Rb∗ ∧qa Sw∗)) = f c

3g(Pw∗, QT ∧qa Rb∗) ∧qa Sw∗ (3.132)

21

For case (4.4) (The a-term is a b∗-term) there are seven possible sub-cases for the second
argument. We distinguish these seven sub-cases:

(4.4.a) The second argument is a T-term,

(4.4.b) The second argument is an F-term,

(4.4.c) The second argument is an U-term,

(4.4.d) The second argument is a T-∗-term,

(4.4.e) The second argument is a T-n∗-term,

(4.4.f) The second argument is a T-w∗-term,

(4.4.g) The second argument is a T-b∗-term

For case (4.4.a) (the second argument is a T-term), we will use an auxiliary function f c
4a :

P b∗ × PT → P b∗ to turn conjunctions of a b∗-term with a T-term into b∗-terms. We define f c
4a

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

4a

are b∗-terms.

f c(PT ∧qa Qb∗, RT) = PT ∧qa f c
4a(Qb∗, RT) (3.133)

f c
4a(P ∗ ∧qa Qw∗, RT) = P ∗ ∧qa f c

3a(Qw∗, RT) (3.134)

f c
4a(P ∗ ∨qa Qn∗, RT) = f c

1a(P ∗, RT) ∨qa Qn∗ (3.135)

f c
4a(Pw∗ ∧qa Q∗, RT) = Pw∗ ∧qa f c

1a(Q∗, RT) (3.136)

f c
4a(P b∗ ∨qa Q∗, RT) = f c

4a(P b∗, RT) ∨qa f c
1a(Q∗, RT) (3.137)

f c
4a(P b∗ ∧qa Q∗, RT) = P b∗ ∧qa f c

1a(Q∗, RT) (3.138)

f c
4a(P b∗ ∨qa Qn∗, RT) = f c

4a(P b∗, RT) ∨qa Qn∗ (3.139)

f c
4a(P b∗ ∧qa Qb∗, RT) = P b∗ ∧qa f c

4a(Qb∗, RT) (3.140)

f c
4a(P b∗ ∨qa Qb∗, RT) = f c

4a(P b∗, RT) ∨qa f c
4a(P b∗, RT) (3.141)

f c
4a(Pw∗ ∧qa Qb∗, RT) = Pw∗ ∧qa f c

4a(Qb∗, RT) (3.142)

f c
4a(P ∗ ∨qa Qb∗, RT) = f c

1a(P ∗, RT) ∨qa f c
4a(P b∗, RT) (3.143)

f c
4a(P ∗ ∧qa Qb∗, RT) = P ∗ ∧qa f c

4a(P b∗, RT) (3.144)

f c
4a(P b∗ ∧qa Qw∗, RT) = P b∗ ∧qa f c

3a(Pw∗, RT) (3.145)

For case (4.4.b) (the second argument is an F-term), we will use an auxiliary function f c
4b :

P b∗ × P F → Pn∗ to turn conjunctions of a b∗-term with a T-term into n∗-terms. We define f c
4b

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

4b

are n∗-terms.

22

f c(PT ∧qa Qb∗, RF) = PT ∧qa f c
4b(Q

b∗, RF) (3.146)

f c
4b(P

∗ ∧qa Qw∗, RF) = P ∗ ∧qa f c
3b(Q

w∗, RF) (3.147)

f c
4b(P

∗ ∨qa Qn∗, RF) = fn
1 (f c

1a(P ∗, fn(RF))) ∧qa Qn∗ (3.148)

f c
4b(P

w∗ ∧qa Q∗, RF) = f c
3b(P

w∗, fc
1b(Q

∗, RF)) (3.149)

f c
4b(P

b∗ ∨qa Q∗, RF) = f c
4b(f

n
4 (f c

4a(P b∗, fn(RF))), fc
1b(Q

∗, RF)) (3.150)

f c
4b(P

b∗ ∧qa Q∗, RF) = f c
4b(P

b∗, f c
1a(Q∗, RF)) (3.151)

f c
4b(P

b∗ ∨qa Qn∗, RF) = fn
4 (f c

4a(P b∗, fn(RF))) ∧qa Qn∗ (3.152)

f c
4b(P

b∗ ∧qa Qb∗, RF) = P b∗ ∧qa f c
4b(Q

b∗, RF) (3.153)

f c
4b(P

b∗ ∨qa Qb∗, RF) = fn
4 (f c

4a(P b∗, fn(RF))) ∧qa f c
4b(P

b∗, RF) (3.154)

f c
4b(P

w∗ ∧qa Qb∗, RF) = Pw∗ ∧qa f c
4b(Q

b∗, RF) (3.155)

f c
4b(P

∗ ∨qa Qb∗, RF) = fn
1 (f c

1a(P ∗, fn(RF))) ∧qa f c
4b(P

b∗, RF) (3.156)

f c
4b(P

∗ ∧qa Qb∗, RF) = P ∗ ∧qa f c
4b(P

b∗, RF) (3.157)

f c
4b(P

b∗ ∧qa Qw∗, RF) = P b∗ ∧qa f c
3b(P

w∗, RF) (3.158)

For case (4.4.c) (the second argument is an U-term), we will use an auxiliary function f c
4c :

P b∗×PU → Pn∗ to turn conjunctions of a b∗-term with an U-term into n∗-terms. We define f c
4c

recursively by a case distinction on its first argument. Together with (F7) (associativity) this
allows us to define f c for this case. Observe that the right-hand sides of the clauses defining f c

4c

are n∗-terms.

f c(PT ∧qa Qb∗, RU) = PT ∧qa f c
4c(Q

b∗, RU) (3.159)

f c
4c(P

∗ ∧qa Qw∗, RU) = f c
1c(P

∗, f c
3c(Q

w∗, RU)) (3.160)

f c
4c(P

∗ ∨qa Qn∗, RU) = fn
2 (f c

1a(P ∗, RU)) ∧qa Qn∗ (3.161)

f c
4c(P

w∗ ∧qa Q∗, RU) = Pw∗ ∧qa f c
1c(Q

∗, RU) (3.162)

f c
4c(P

b∗ ∨qa Q∗, RU) = fn
2 (f c

4c(P
b∗, RU)) ∧qa f c

1c(Q
∗, RU) (3.163)

f c
4c(P

b∗ ∧qa Q∗, RU) = P b∗ ∧qa f c
1c(Q

∗, RU) (3.164)

f c
4c(P

b∗ ∨qa Qn∗, RU) = fn
2 (f c

4c(P
b∗, RU)) ∧qa Qn∗ (3.165)

f c
4c(P

b∗ ∧qa Qb∗, RU) = P b∗ ∧qa f c
4c(Q

b∗, RU) (3.166)

f c
4c(P

b∗ ∨qa Qb∗, RU) = fn
2 (f c

4c(P
b∗, RU)) ∧qa f c

4c(P
b∗, RU) (3.167)

f c
4c(P

w∗ ∧qa Qb∗, RU) = Pw∗ ∧qa f c
4c(Q

b∗, RU) (3.168)

f c
4c(P

∗ ∨qa Qb∗, RU) = fn
2 (f c

1c(P
∗, RU)) ∧qa f c

4c(P
b∗, RU) (3.169)

f c
4c(P

∗ ∧qa Qb∗, RU) = P ∗ ∧qa f c
4c(P

b∗, RU) (3.170)

f c
4c(P

b∗ ∧qa Qw∗, RU) = f c
4c(P

b∗, f c
3c(P

w∗, RU)) (3.171)

For case (4.4.d) we need to define f c(PT ∧qa Qb∗, RT ∧qa S∗). We use the auxiliary function
f c
4d : P b∗× (PT ∧qa P ∗)→ P b∗ to ensure that the result is a T-b∗-term, and we define f c

4d by a case
distinction on its second argument. Observe that the right-hand sides of the clauses defining f c

4d

are all b∗-terms.

f c(PT ∧qa Qb∗, RT ∧qa S∗) = PT ∧qa f c
4d(Qb∗, RT ∧qa S∗) (3.172)

f c
4d(P b∗, QT ∧qa R`) = f c

4a(P b∗, QT) ∧qa R` (3.173)

f c
4d(P b∗, QT ∧qa (R∗ ∧qa Sd)) = f c

4d(P b∗, QT ∧qa R∗) ∧qa Sd (3.174)

f c
4d(P b∗, QT ∧qa (R∗ ∨qa Sc)) = f c

4a(P b∗, QT) ∧qa (R∗ ∨qa Sc). (3.175)

23

For case (4.4.e) we need to define f c(PT ∧qa Qb∗, RT ∧qa Sn∗). We use the auxiliary function
f c
4e : P b∗ × (PT ∧qa Pn∗)→ Pn∗ to ensure that the result is a T-n∗-term, and we define f c

4e by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
4e are all n∗-terms.

f c(PT ∧qa Qb∗, RT ∧qa Sn∗) = PT ∧qa f c
4e(Q

b∗, RT ∧qa Sn∗) (3.176)

f c
4e(P

b∗, QT ∧qa Rn`) = f c
4a(P b∗, QT) ∧qa Rn` (3.177)

f c
4e(P

b∗, QT ∧qa (R∗ ∧qa Sn∗)) = f c
4d(P b∗, QT ∧qa R∗) ∧qa Sn∗ (3.178)

f c
4e(P

b∗, QT ∧qa (Rw∗ ∧qa Sn∗)) = f c
4f (P b∗, QT ∧qa Rw∗) ∧qa Sn∗ (3.179)

f c
4e(P

b∗, QT ∧qa (Rb∗ ∧qa Sn∗)) = f c
4g(P b∗, QT ∧qa Rb∗) ∧qa Sn∗ (3.180)

For case (4.4.f) we need to define f c(PT ∧qa Qb∗, RT ∧qa Sw∗). We use the auxiliary function
f c
4f : P b∗ × (PT ∧qa Pw∗)→ P b∗ to ensure that the result is a T-b∗-term, and we define f c

4f by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
4f are all b∗-terms.

f c(PT ∧qa Qb∗, RT ∧qa Sw∗) = PT ∧qa f c
4f (Qb∗, RT ∧qa Sw∗) (3.181)

f c
4f (P b∗, QT ∧qa Sw∗) = f c

4a(P b∗, QT) ∧qa Sw∗ (3.182)

(3.183)

For case (4.4.g) we need to define f c(PT ∧qa Qb∗, RT ∧qa Sb∗). We use the auxiliary function
f c
4g : P b∗ × (PT ∧qa P b∗) → P b∗ to ensure that the result is a T-b∗-term, and we define f c

4g by a
case distinction on its second argument. Observe that the right-hand sides of the clauses defining
f c
4g are all b∗-terms.

f c(PT ∧qa Qb∗, RT ∧qa Sb∗) = PT ∧qa f c
4g(Qb∗, RT ∧qa Sb∗) (3.184)

f c
4g(P b∗, QT ∧qa (R∗ ∧qa Sw∗)) = f c

4d(P b∗, QT ∧qa R∗) ∧qa Sw∗ (3.185)

f c
4g(P b∗, QT ∧qa (R∗ ∨qa Sn∗)) = f c

4a(P b∗, QT) ∧qa (R∗ ∨qa Sn∗) (3.186)

f c
4g(P b∗, QT ∧qa (Rw∗ ∧qa S∗)) = f c

4f (P b∗, QT ∧qa Rw∗) ∧qa S∗ (3.187)

f c
4g(P b∗, QT ∧qa (Rb∗ ∨qa S∗)) = f c

4a(P b∗, QT) ∧qa (Rb∗ ∨qa S∗) (3.188)

f c
4g(P b∗, QT ∧qa (Rb∗ ∧qa S∗)) = f c

4g(P b∗, QT ∧qa Rb∗) ∧qa S∗ (3.189)

f c
4g(P b∗, QT ∧qa (Rb∗ ∨qa Sn∗)) = f c

4a(P b∗, QT) ∧qa (Rb∗ ∨qa Sn∗) (3.190)

f c
4g(P b∗, QT ∧qa (Rb∗ ∧qa Sb∗)) = f c

4g(P b∗, QT ∧qa Rb∗) ∧qa Sb∗ (3.191)

f c
4g(P b∗, QT ∧qa (Rb∗ ∨qa Sb∗)) = f c

4a(P b∗, QT) ∧qa (Rb∗ ∨qa Sb∗) (3.192)

f c
4g(P b∗, QT ∧qa (Rw∗ ∧qa Sb∗)) = f c

4f (P b∗, QT ∧qa Rw∗) ∧qa Sb∗ (3.193)

f c
4g(P b∗, QT ∧qa (R∗ ∨qa Sb∗)) = f c

4a(P b∗, QT) ∧qa (R∗ ∨qa Sb∗) (3.194)

f c
4g(P b∗, QT ∧qa (R∗ ∧qa Sb∗)) = f c

4d(P b∗, QT, ∧qa R∗) ∧qa Sb∗ (3.195)

f c
4g(P b∗, QT ∧qa (Rb∗ ∧qa Sw∗)) = f c

4g(P b∗, QT ∧qa Rb∗) ∧qa Sw∗ (3.196)

Theorem 3.2.1 (Normal forms). For any P ∈ SAU , f(P) terminates, f(P) ∈ SNF and

EqFSCLU ` f(P) = P.

Proof. See Appendix A.1.

24

CHAPTER 4

Conclusion

4.1 Discussion

There are multiple ways to define the normal forms (a subset of SNF defined in Chapter 3, as
explained in Chapter 2) for FSCLU, as discussed in Chapter 3. This thesis project aimed to
provide the minimal normal forms needed to represent all terms in FSCLU. However, it could
be potential that there is a more optimal definition of the normal forms.

A potential approach for the proof of completeness of EqFSCLU for closed terms is a gener-
alization of the proof in [7, Section 3], which is based on normal forms. This proof is also the
motivation for the research question of this thesis project.

Future studies need to reevaluate the use of normal forms for this proof, as the normal forms
were more complex than we initially expected. Therefore, how the completeness of EqFSCLU

for closed terms can be proven and whether the normal forms are helpful for the proof remains
an open question.

4.2 Conclusion

We defined and used auxiliary functions for the negation and conjunction of terms to prove the
correctness of the normalisation function.

Thus far, the completeness of EqFSCLU is unproven. This thesis does not change that.
However, it does define normal forms that potentially can be used to prove that EqFSCLU is
indeed complete.

25

26

Bibliography

1. Bergstra, J., Bethke, I. & Rodenburg, P. A propositional logic with 4 values: true, false,
divergent and meaningless. Journal of Applied Non-Classical Logics 5, 199–217 (1995).

2. Bergstra, J., Ponse, A. & Staudt, D. Non-commutative propositional logic with short-circuit
evaluation Available at https://staff.fnwi.uva.nl/a.ponse/MSCL2.pdf. 2021.

3. Bergstra, J., Ponse, A. & Staudt, D. Short-circuit logic (v.4). arXiv preprint arXiv:1010.3674
(2013).

4. Gries, D. The Science of Programming 68–71 (Springer-Verlag, 1981).

5. Hoare, C. A couple of novelties in the propositional calculus (1985).

6. McCune, W. The GUI: Prover9 and Mace4 with a Graphical User Interface. Prover9-Mace4-
v05B.zip https://www.cs.unm.edu/ mccune/prover9/. 2008.

7. Ponse, A. & Staudt, D. An independent axiomatisation for free short-circuit logic. Journal
of Applied Non-Classical Logics 28, 35–71 (2018).

27

28

APPENDIX A

Correctness of the normalisation function

A.1 General results

Lemma A.1.1. For all P ∈ P F and Q ∈ PT, EqFSCL ` P = P ∧qa x and EqFSCL ` Q = Q ∨qa x.

Proof. See [7, La.A.2.1].

Lemma A.1.2. The following equations can all be derived from EqFSCL.

1. (x ∨qa (y ∧qa F)) ∧qa (z ∧qa F) = (¬x ∨qa (z ∧qa F)) ∧qa (y ∧qa F),

2. (x ∧qa (y ∨qa T)) ∨qa (z ∧qa F) = (x ∨qa (z ∧qa F)) ∧qa (y ∨qa T),

3. (x ∨qa T) ∧qa ¬y = ¬((x ∨qa T) ∧qa y),

4. (x ∧qa (y ∧qa (z ∨qa T))) ∨qa (w ∧qa (z ∨qa T)) = ((x ∧qa y) ∨qa w) ∧qa (z ∨qa T),

5. (x ∨qa ((y ∨qa T) ∧qa (z ∧qa F))) ∧qa ((w ∨qa T) ∧qa (z ∧qa F)) = ((x ∧qa (w ∨qa T)) ∨qa (y ∨qa T)) ∧qa (z ∧qa F),

6. (x ∨qa ((y ∨qa T) ∧qa (z ∧qa F))) ∧qa (w ∧qa F) = ((¬x ∧qa (y ∨qa T)) ∨qa (w ∧qa F)) ∧qa (z ∧qa F).

Proof. These equations stem from [7] and have been checked with the theorem Prover9 [6].

Lemma A.1.3. For all P ∈ PU, EqFSCLU ` P = P ∧qa x, EqFSCLU ` P = ¬P and EqFSCLU `
P = P ∨qa x.

Proof. We prove these claims simultaneously by induction. In the base case we have U ∧qa x =
U ∨qa x = ¬U = U by (FU1), (FU2) and (FU3). For the inductive step we assume the result holds
for all U-terms with lesser complexity than (a ∨qa PU) ∧qa QU.

For PU ∧qa x we get:

((a ∨qa PU) ∧qa QU) ∧qa x = (a ∨qa PU) ∧qa (QU ∧qa x) by (F7)

= (a ∨qa PU) ∧qa QU by IH

For the inductive case for ¬PU we get:

¬((a ∨qa PU) ∧qa QU) = ¬(a ∨qa (PU ∨qa T)) ∧qa QU by IH

= ¬((a ∨qa PU) ∨qa T) ∧qa QU by (F7)’

= ((a ∨qa PU) ∨qa T) ∧qa ¬QU by La.A.1.2.3

= (a ∨qa (PU ∨qa T)) ∧qa ¬QU by (F7)’

= (a ∨qa PU) ∧qa QU by IH

For the inductive case for PU ∨qa x we get:

29

((a ∨qa PU) ∧qa QU) ∨qa x = ((a ∨qa (PU ∧qa F)) ∧qa (QU ∨qa T)) ∨qa x by IH

= ((a ∧qa (QU ∨qa T)) ∨qa (PU ∧qa F)) ∨qa x by La.A.1.2.2

= (a ∧qa (QU ∨qa T)) ∨qa ((PU ∧qa F) ∨qa x) by (F7)’

= (a ∧qa (QU ∨qa T)) ∨qa (PU ∨qa x) by IH

= (a ∧qa (QU ∨qa T)) ∨qa PU by IH

= (a ∧qa (QU ∨qa T)) ∨qa (PU ∧qa F) by IH

= (a ∨qa (PU ∧qa F)) ∧qa (QU ∨qa T) by La.A.1.2.2

= (a ∨qa PU) ∧qa QU by IH

Lemma A.1.4. For all P ∈ Pn∗ and Q ∈ Pw∗ EqFSCLU ` P = P ∧qa x and EqFSCLU ` Q =
Q ∨qa x

Proof. We prove these claims by induction on the structure of Pn∗ and Qw∗.
In the base case for n∗-terms, in the case of an n`-term of the form (a ∧qa PU) ∨qa QF we get:

((a ∧qa PU) ∨qa QF) ∧qa x = ((a ∧qa PU) ∨qa (QF ∧qa F)) ∧qa x by La.A.1.1

= ((a ∨qa (QF ∧qa F)) ∧qa (PU ∨qa (QF ∧qa F))) ∧qa x by (F10)

= ((a ∨qa QF) ∧qa PU) ∧qa x by La.A.1.1 and La.A.1.3

= (a ∨qa QF) ∧qa (PU ∧qa x) by (F7)

= (a ∨qa QF) ∧qa PU by La.A.1.3

= (a ∨qa (QF ∧qa F)) ∧qa (PU ∨qa (QF ∧qa F)) by La.A.1.1 and La.A.1.3

= (a ∧qa PU) ∨qa (QF ∧qa F) by (F10)

= (a ∧qa PU) ∨qa QF by La.A.1.1

In the case of ¬a, the proof proceeds the same. For the inductive step we assume the result
holds for all n∗-terms of lesser complexity than P ∗ ∧qa Pn∗, P b∗ ∧qa Pn∗ and Pw∗ ∧qa Pn∗. The proof
for these cases follows directly from (F7)’ and the induction hypothesis.

In the base case for w∗-terms, in the case of a w`-term of the form (a ∧qa PT) ∨qa QU we get:

((a ∧qa PT) ∨qa QU) ∨qa x = (a ∧qa PT) ∨qa (QU ∨qa x) by (F7)’

= (a ∧qa PT) ∨qa QU by La.A.1.3

In case of ¬a the proof proceeds the same. For the inductive step we assume the result holds
for all w∗-terms of lesser complexity than P ∗ ∨qa Pn∗, P b∗ ∨qa Pn∗ and Pw∗ ∨qa Pn∗. The proof for
these cases follows directly from (F7) and the induction hypothesis.

A.1.1 Correctness of the negation function

Lemma A.1.5. For all P ∈ SNF , if P is a T-term then fn(P) is an F-term, if it is an F-term
then fn(P) is a T-term, if it is an U-term then so is fn(P), and

EqFSCLU ` fn(P) = ¬P.

Proof. For T-terms and F-terms see [7, La.A.2.3]. For U-terms this follows from (3.12), (3.13)
and La.A.1.3.

Lemma A.1.6. For all P ∈ SNF , if P is a T-∗-term then so is fn(P), if it is a T-n∗-term then
fn(P) is a T-w∗-term, if it is a T-w∗-term then fn(P) is a T-n∗-term, if it is a T-b∗-term then
so is fn(P), and

EqFSCLU ` fn(P) = ¬P.

30

Proof. For the proof of the lemma for T-∗-terms with (3.14)-(3.18) see [7, La.A.2.3]. We define
a literal as an element of Pn`, Pw` or P b`. We will prove fn(P) = ¬P for Pn∗, Pw∗ and P b∗ by
induction on the number of literals.

In the case of an n`-term of the form (a ∧qa PU) ∨qa QF we get:

fn
2 ((a ∧qa PU) ∨qa QF) = (¬a ∧qa fn(QF)) ∨qa PU by (3.23) Note: This is a w`-term

= (¬a ∧qa (fn(QF) ∨qa T)) ∨qa PU by La.A.1.1

= (¬a ∧qa (fn(QF) ∨qa T)) ∨qa (PU ∧qa F) by La.A.1.3

= (¬a ∨qa (PU ∧qa F)) ∧qa (fn(QF) ∨qa T) by La.A.1.2.2

= (¬a ∨qa PU) ∧qa fn(QF) by La.A.1.3 and La.A.1.1

= (¬a ∨qa ¬PU) ∧qa ¬QF by La.A.1.3 and La.A.1.5

= ¬((a ∧qa PU) ∨qa QF). by (F2) and its dual

fn
2 ((a ∧qa PU) ∨qa QF) = (¬a ∧qa fn(QF)) ∨qa PU by (3.23), where fn(QF) is a T-term, so this is

a w`-term. In the case of an n`-term of the form (¬a ∧qa PU) ∨qa QF the proof proceeds the same,
substituting ¬a for a and applying (3.24) and (F3) where needed.

In the case of a w`-term of the form (a ∧qa PT) ∨qa QU we have:

fn
3 ((a ∧qa PT) ∨qa QU) = (¬a ∧qa QU) ∨qa fn(PT) by (3.29) Note: This is an n`-term

= (¬a ∧qa (QU ∨qa T)) ∨qa fn(PT) by La.A.1.3

= (¬a ∧qa (QU ∨qa T)) ∨qa (fn(PT) ∧qa F) by La.A.1.1

= (¬a ∨qa (fn(PT) ∧qa F)) ∧qa (QU ∨qa T) by La.A.1.2.2

= (¬a ∨qa fn(PT)) ∧qa ¬QU by La.A.1.3 and La.A.1.1

= (¬a ∨qa ¬PT) ∧qa ¬QU by La.A.1.5

= ¬((a ∧qa PT) ∨qa QU). by (F2) and its dual

fn
3 ((a ∧qa PT) ∨qa QU) = (¬a ∧qa QU) ∨qa fn(PT) by (3.29), where fn(PT) is an F-term, so this is

an n`-term. In the case of a w`-term of the form (¬a ∧qa PT) ∨qa QU the proof proceeds the same,
substituting ¬a for a and applying (3.30) and (F3) where needed.

In the case of a b`-term of the form (P ` ∧qa Qw`) we have:

fn
4 (P ` ∧qa Qw`) = fn

1 (P `) ∨qa fn
3 (Qw`) by (3.32) Note: This is a b`-term

= ¬P ` ∨qa ¬Qw` see above and [7, La.A.2.3]

= ¬(P ` ∧qa Qw`) by (F2)

In the case of a b`-term of the form (P ` ∨qa Qn`) :

fn
4 (P ` ∨qa Qn`) = fn

1 (P `) ∧qa fn
2 (Qn`) by (3.33) Note: This is a b`-term

= ¬P ` ∧qa ¬Qn` see above and [7, La.A.2.3]

= ¬(P ` ∨qa Qn`) by (F2)

In the case of a b`-term of the form (Pw` ∧qa Q`) we first need to proof that Pw` = (Pw` ∨qa T):

31

fn
4 (Pw` ∧qa Q`) = Pw` ∧qa fn

1 (Q`) by (3.34) Note: This is a b`-term

= Pw` ∧qa ¬Q` by [7, La.A.2.3]

= (Pw` ∨qa T) ∧qa ¬Q` by La.A.1.4

= ¬((Pw` ∨qa T) ∧qa Q`) by La.A.1.2.3

= ¬(Pw` ∧qa Q`) by La.A.1.4

For the inductive step we assume the result holds for all n∗-terms with fewer literals than:
P ∗ ∧qa Qn∗, Pw∗ ∧qa Qn∗ and P b∗ ∧qa Qn∗, for all w∗-terms with fewer literals than: P ∗ ∨qa Qw∗,
Pn∗ ∨qa Qw∗ and P b∗ ∨qa Qw∗ and for all b∗-terms with fewer literals than: P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa
Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa P ∗, P ∗ ∨qa P b∗, P b∗ ∨qa Pn∗

and P b∗ ∨qa P b∗.
In the case of an n∗-term of the form P ∗ ∧qa Qn∗ we get:

fn
2 (P ∗ ∧qa Qn∗) = fn

1 (P ∗) ∨qa fn
2 (Qn∗) by (3.20) Note: This is a w∗-term

= ¬P ∗ ∨qa ¬Qn∗ by IH

= ¬(P ∗ ∧qa Qn∗) by dual of (F2)

The proof for Pw∗ ∧qa Qn∗ and P b∗ ∧qa Qn∗ follows the same pattern using (3.21) and (3.22) instead
of (3.20).

In the case of a w∗-term of the form P ∗ ∨qa Qw∗

fn
3 (P ∗ ∨qa Qw∗) = fn

1 (P ∗) ∧qa fn
3 (Qw∗) by (3.26) Note: This is an n∗-term

= ¬P ∗ ∧qa ¬Qw∗ by IH

= ¬(P ∗ ∨qa Qw∗) by (F2)

The proof for Pn∗ ∨qa Qw∗ and P b∗ ∨qa Qw∗ follows the same pattern using (3.27) and (3.28) instead
of (3.26).

In the case of a b∗-term of the form (P b∗ ∨qa Qn∗) :

fn
4 (P b∗ ∨qa Qn∗) = fn

4 (P b∗) ∧qa fn
2 (Qn∗) by (3.37) Note: This is a b∗-term

= ¬P b∗ ∧qa ¬Qn∗ by IH

= ¬(P b∗ ∨qa Qn∗) by (F2)

The proof for P ∗ ∨qa Qn∗, P b∗ ∨qa Q∗, P ∗ ∨qa Qb∗ and P b∗ ∨qa Qb∗ follows the same pattern using(3.33),
(3.35), (3.41) and (3.39) instead of (3.37).

In the case of a b∗-term of the form (P b∗ ∧qa Qw∗) we get:

fn
4 (P b∗ ∧qa Qw∗) = fn

4 (P b∗) ∨qa fn
3 (Qw∗) by (3.43) Note: This is a b∗-term

= ¬P b∗ ∨qa ¬Qw∗ By IH

= ¬(P b∗ ∧qa Qw∗) by dual of (F2)

The proof for P ∗ ∧qa Qw∗, P b∗ ∧qa Q∗, P ∗ ∧qa P b∗ and P b∗ ∧qa P b∗ follows the same pattern (3.32),
(3.36), (3.42) and (3.38) instead of (3.43).

In the case of a b∗-term of the form (Pw∗ ∧qa Qb∗) we get:

fn
4 (Pw∗ ∧qa Qb∗) = Pw∗ ∧qa fn

4 (Qb∗) by (3.40) Note: This is a b∗-term

= Pw∗ ∧qa ¬Qb∗ by IH

= (Pw∗ ∨qa T) ∧qa ¬Qb∗ by La.A.1.4

= ¬((Pw∗ ∨qa T) ∧qa Qb∗) by La.A.1.2.3

= ¬(Pw∗ ∧qa Qb∗) by La.A.1.4

32

The proof for Pw∗ ∧qa Q∗ follows the same pattern using (3.34) instead of (3.40).
For T-n∗-terms:

fn(PT ∧qa Qn∗) = PT ∧qa fn
2 (Qn∗) by (3.19)

= PT ∧qa ¬Qn∗ by IH

= (PT ∨qa T) ∧qa ¬Qn∗ by La.A.1.1

= ¬((PT ∨qa T) ∧qa Qn∗) by La.A.1.2.3

= ¬(PT ∧qa ¬Qn∗) by La.A.1.1

The proof of T-w∗-terms and T-b∗-terms follows the same pattern using (3.25) and (3.31)
instead of (3.19). So fn on each T-a-term will return a T-a-term.

Hence, for all P ∈ SNF , EqFSCLU ` fn(P) = ¬P .

A.1.2 Correctness of the conjunction function

Lemma A.1.7. For all P ∈ Pn∗ and Q ∈ Pw∗ EqFSCLU ` P ∨qa x = ¬P ∧qa x and EqFSCLU `
Q ∧qa x = ¬Q ∨qa x

Proof. In the case of Pn∗ ∨qa x the proof is as follows:

Pn∗ ∨qa x = ¬(¬Pn∗ ∧qa ¬x) by (F2)’

= ¬((¬Pn∗ ∨qa T) ∧qa ¬x) by La.A.1.6 and La.A.1.4

= (¬Pn∗ ∨qa T) ∧qa x by La.A.1.2.3 and (F3)

= ¬Pn∗ ∧qa x by La.A.1.6 and La.A.1.4

The proof for Pw∗ ∧qa x follows by duality.

Lemma A.1.8. For any T-term P and Q ∈ SNF , f c(P,Q) has the same grammatical category
as Q and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. We will prove this lemma by induction on the complexity of the T-term. For the base
case we see that f c(T, P) = P by (3.44), which is clearly of the same grammatical category as
P . Derivable equality can be done by using (F4). For the inductive step, we assume that the
result holds for all T-terms of lesser complexity than (a ∧qa PT) ∨qa QT. If the second argument is a
T-term or an F-term see [7, La.A.2.4]. If the second argument is an U-term, we prove derivable
equality as follows:

f c((a ∧qa PT) ∨qa QT, RU)

= (a ∨qa f c(QT, RU)) ∧qa f c(PT, RU) by (3.47) Note this is an U-term

= (a ∨qa (QT ∧qa RU)) ∧qa (PT ∧qa RU) by IH

= (a ∨qa ((QT ∨qa T) ∧qa RU))∧qa
((PT ∨qa T) ∧qa RU) by La.A.1.1

= (a ∨qa ((QT ∨qa T) ∧qa (RU ∧qa F)))∧qa
((PT ∨qa T) ∧qa (RU ∧qa F)) by La.A.1.3

= ((a ∧qa (PT ∨qa T)) ∨qa (QT ∨qa T)) ∧qa (RU ∧qa F) by La.A.1.2.5

= ((a ∧qa (PT ∨qa T)) ∨qa (QT ∨qa T)) ∧qa RU by La.A.1.3

= ((a ∧qa PT) ∨qa QT) ∧qa RU. by La.A.1.1

33

If the second argument is a T-a-term, we prove derivable equality as follows:

f c((a ∧qa PT) ∨qa QT, RT ∧qa Sa) = f c((a ∧qa PT) ∨qa QT, RT) ∧qa Sa. by (3.48)

= ((a ∧qa f c(PT, RT)) ∨qa f c(QT, RT)) ∧qa Sa by (3.45)

= ((a ∧qa (PT ∧qa RT)) ∨qa (QT ∧qa RT)) ∧qa Sa by IH

= ((a ∧qa (PT ∧qa (RT ∨qa T)))∨qa
(QT ∧qa (RT ∨qa T))) ∧qa Sa by La.A.1.1

= (((a ∧qa PT) ∨qa QT) ∧qa (RT ∨qa T)) ∧qa Sa by La.A.1.2.4

= (((a ∧qa PT) ∨qa QT) ∧qa RT) ∧qa Sa. by La.A.1.1

= ((a ∧qa PT) ∨qa QT) ∧qa (RT ∧qa Sa). by (F7)

Lemma A.1.9. For any F-term P and Q ∈ SNF , f c(P,Q) is an F-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. The grammatical result is immediate by (3.49) and the claim about derivable equality
follows from Lemma A.1.1, (F7) and (F6)

Lemma A.1.10. For any U-term P and Q ∈ SNF , f c(P,Q) is an U-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. The grammatical result is immediate by (3.50) and the claim about derivable equality
follows from Lemma A.1.3, (F7) and (FU2)

Lemma A.1.11. For any T-∗-term P and T-term Q, f c(P,Q) is a T-∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. See [7, La.A.2.6]: f c
1a as defined in (3.52)-(3.55) is the same as f c

1 defined in that paper.

Lemma A.1.12. For any T-∗-term P and F-term Q, f c(P,Q) is an F-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. See [7, La.A.2.7]: f c
1b as defined in (3.57)-(3.60) is the same as f c

2 defined in that paper.

Lemma A.1.13. For any T-∗-term P and T-∗-term Q, f c(P,Q) is a T-∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. See [7, La.A.2.8]: f c
1d as defined in (3.67)-(3.69) is the same as f c

3 defined in that paper.

Lemma A.1.14. For any T-∗-term P and U-term Q, f c(P,Q) is a T-n∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.61), Lemma A.1.8 and (F7) it suffices to prove that f c
1c(P

∗, QU) is an n∗-term and
that EqFSCLU ` f c

1c(P
∗, QU) = (P ∗ ∧qa QU). This will be proven by induction on the number of

`-terms in P ∗.
In the case of an `-term of the form (â ∧qa PT) ∨qa QF with â ∈ {a,¬a} we get:

34

f c
1c((â ∧qa PT) ∨qa QF, RU)

= (â ∧qa f c(PT, RU)) ∨qa QF by (3.62), (3.63) Note: This is an n`-term

= (â ∧qa (PT ∧qa RU)) ∨qa QF by La.A.1.8

= ((â ∧qa PT) ∧qa RU) ∨qa QF by (F7)

= ((â ∧qa PT) ∧qa (RU ∨qa T)) ∨qa (QF ∧qa F) by La.A.1.3 and La.A.1.1

= ((â ∧qa PT) ∨qa (QF ∧qa F)) ∧qa (RU ∨qa T) by La.A.1.2.2

= ((â ∧qa PT) ∨qa QF) ∧qa RU. by La.A.1.3 and La.A.1.1

For the inductive step we assume the result holds for all ∗-terms with less ` terms than
P ∗ ∧qa P d and P ∗ ∨qa P c.

f c
1c(P

∗ ∨qa Qc, RU) = fn
2 (f c

1c(P
∗, RU)) ∧qa f c

1c(Q
c, RU) by (3.65) Note: This is an n∗-term

= f c
1c(P

∗, RU) ∨qa f c
1c(Q

c, RU) by La.A.1.6 and La.A.1.7

= (P ∗ ∧qa RU) ∨qa (Qc ∧qa RU) by IH

= (P ∗ ∧qa (RU ∨qa T)) ∨qa (Qc ∧qa (RU ∨qa T)) by La.A.1.3

= (P ∗ ∨qa Qc) ∧qa (RU ∨qa T) by (F10)’

= (P ∗ ∨qa Qc) ∧qa RU by La.A.1.3

For P ∗ ∧qa P d the proof follows directly from (3.64), the induction hypothesis and (F7).

Lemma A.1.15. For any T-n∗-term P and Q ∈ SNF , f c(P,Q) is a T-n∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. The gramatical result follows from (3.90) and the claim about derivable equality follows
from Lemma A.1.4 and (F7).

Lemma A.1.16. For any T-b∗-term and T-w∗-term P and T-term Q, f c(P,Q) has the same
grammatical category as P and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. For T-w∗-terms: By (3.91) and (F7) it suffices to prove that f c
3a(Pw∗, QT) is a w∗-term

and that EqFSCLU ` f c
3a(Pw∗, QT) = (Pw∗ ∧qa QT). For T-b∗-terms: By (3.133), Lemma A.1.8

and (F7) it suffices to prove that f c
4a(P b∗, QT) is a b∗-term and that EqFSCLU ` f c

4a(P b∗, QT) =
(P b∗ ∧qa QT). This will be proven by induction on the number of literals in Pw∗ and P b∗.

In the case of a w`-term of the form (â ∧qa PT) ∨qa QU with â ∈ {a,¬a} we get:

f c
3a((â ∧qa PT) ∨qa QU, RT)

= (â ∧qa f c(PT, RT)) ∨qa QU by (3.92), (3.93) Note: This is a w`-term

= (â ∧qa (PT ∧qa RT)) ∨qa QU by La.A.1.8

= ((â ∧qa PT) ∧qa RT) ∨qa QU by (F7)

= ((â ∧qa PT) ∧qa (RT ∨qa T)) ∨qa (QU ∧qa F) by La.A.1.3 and La.A.1.1

= ((â ∧qa PT) ∨qa (QU ∧qa F)) ∧qa (RT ∨qa T) by La.A.1.2.2

= ((â ∧qa PT) ∨qa QU) ∧qa RT. by La.A.1.3 and La.A.1.1

In the case of a b`-term of the form (P ` ∧qa Qw`) we get:

35

f c
4a(P ` ∧qa Qw`, V T) = P ` ∧qa f c

3a(Qw`, V T) by (3.134) Note: This is a b`-term

= P ` ∧qa (Qw` ∧qa V T) see w`-term above

= (P ` ∧qa Qw`) ∧qa V T by (F7)

In the case of a b`-term of the form (Pw` ∧qa Q`) the proof follows the same pattern using
(3.136) and Lemma A.1.11.

In the case of a b`-term of the form (P ` ∨qa Qn`) we get:

f c
4a(P ` ∨qa Qn`, V T)

= f c
1a(P `, V T) ∨qa Qn` by (3.135) Note: This is a b`-term

= (P ` ∧qa V T) ∨qa Qn` by La.A.1.11

= (P ` ∧qa V T) ∨qa (Qn` ∧qa F) by La.A.1.4

= (P ` ∨qa (Qn` ∧qa F)) ∧qa (V T ∨qa (Qn` ∧qa F)) by (F10)

= (P ` ∨qa Qn`) ∧qa V T by La.A.1.1 and La.A.1.4

For the inductive step we assume the result holds for all w∗-terms of lesser complexity than:
P ∗ ∨qa Qw∗, Pn∗ ∨qa Qw∗ and P b∗ ∨qa Qw∗ and for all b∗-terms of lesser complexity than:
P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗,
P b∗ ∨qa P ∗, P ∗ ∨qa P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗.

In the case of a w∗-term of the form P ∗ ∨qa Qw∗ we get:

f c
3a(P ∗ ∨qa Qw∗, RT)

= f c
1a(P ∗, RT) ∨qa f c

3a(Qw∗, RT) by (3.94) Note: This is a w∗-term

= (P ∗ ∧qa RT) ∨qa (Qw∗ ∧qa RT) by IH and La.A.1.11

= (P ∗ ∧qa (RT ∨qa T)) ∨qa (Qw∗ ∧qa (RT ∨qa T)) by La.A.1.1

= (P ∗ ∨qa Qw∗) ∧qa (RT ∨qa T) by (F10)’

= (P ∗ ∨qa Qw∗) ∧qa RT by La.A.1.1

The proof for a w∗-term of the form P b∗ ∨qa Qw∗ has a similar patter using (3.96) instead of
(3.94). The proof for the b∗-terms P b∗ ∨qa Qb∗, P b∗ ∨qa Q∗, P ∗ ∨qa Qb∗ also has a similar pattern
using (3.141), (3.137) and (3.143) instead of (3.94).

In the case of a w∗-term of the form Pn∗ ∨qa Qw∗

f c
3a(Pn∗ ∨qa Qw∗, RT)

= Pn∗ ∨qa f c
3a(Qw∗, RT) by (3.95) Note: This is a w∗-term

= Pn∗ ∨qa (Qw∗ ∧qa RT) by IH

= (Pn∗ ∧qa (RT ∨qa T)) ∨qa (Qw∗ ∧qa (RT ∨qa T)) By La.A.1.4 and La.A.1.1

= (Pn∗ ∨qa Qw∗) ∧qa (RT ∨qa T) By (F10)’

= (Pn∗ ∨qa Qw∗) ∧qa RT By La.A.1.1

In the case of a b∗-term of the form P ∗ ∨qa Qn∗ or P b∗ ∨qa Qn∗ the proof has the same pattern
using (3.135) and (3.139) instead of (3.95).The proof for P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P b∗ ∧qa P ∗, P b∗ ∧qa
P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗ and P ∗ ∧qa P b∗ follows directly from (3.134), (3.136), (3.138), (3.140),
(3.142), (3.144), (3.145) the induction hypothesis, A.1.11 and F7.

Lemma A.1.17. For any T-b∗-term or T-w∗-term P and F-term Q, f c(P,Q) is a T-n∗-term
and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

36

Proof. For T-w∗-terms: By (3.97) and (F7) it suffices to prove that f c
3b(P

w∗, QF) is an n∗-term

and that EqFSCLU ` f c
3b(P

w∗, QF) = (Pw∗ ∧qa QF). For T-b∗-terms: By (3.146) and (F7) it suffices

to prove that f c
4b(P

b∗, QF) is an n∗-term and that EqFSCLU ` f c
4b(P

b∗, QF) = (P b∗ ∧qa QF). This
will be proven by induction on the number of literals in Pw∗ and P b∗.

In the case of a w`-term of the form (â ∧qa PT) ∨qa QU with â ∈ {a,¬a} we get:

f c
3b((â ∧qa PT) ∨qa QU, RF) = (â ∨qa QU) ∧qa f c(PT, RF) by (3.98), (3.99) Note: This is an n`-term

= (â ∨qa QU) ∧qa (PT ∧qa RF) by La.A.1.8

= ((â ∨qa QU) ∧qa PT) ∧qa RF by (F7)

In the case of a b`-term of the form (P ` ∧qa Qw`) the equality follows directly from the w` term
above and (3.147). In the case of a b`-term of the form (Pw` ∧qa Q`) proof follows directly from
A.1.12, the w` term above and (3.149). In the case of a b`-term of the form (P ` ∨qa Qn`) we get:

f c
4b((P

` ∨qa Qn`), RF) = fn
1 (f c

1a(P `, fn(RF))) ∧qa Qn` by (3.148) Note: This is an n`-term

= fn
1 (P ` ∧qa fn(RF)) ∧qa Qn` by La.A.1.11

= (¬P ` ∨qa RF) ∧qa Qn` by La.A.1.5, La.A.1.6 and (F2)

= (¬P ` ∨qa (RF ∧qa F)) ∧qa (Qn` ∧qa F) by La.A.1.1 and La.A.1.4

= (P ` ∨qa (Qn` ∧qa F)) ∧qa (RF ∧qa F) by La.A.1.2.1

= (P ` ∨qa Qn`) ∧qa RF by La.A.1.1 and La.A.1.4

For the inductive step we assume the result holds for all w∗-terms of lesser complexity than:
P ∗ ∨qa Qw∗, Pn∗ ∨qa Qw∗ and P b∗ ∨qa Qw∗ and for all b∗-terms of lesser complexity than: P ∗ ∧qa
Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa P ∗, P ∗ ∨qa
P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗.

In the case of a w∗-term of the form P ∗ ∨qa Qw∗ we get:

f c
3b(P

∗ ∨qa Qw∗, RF)

= fn
1 (f c

1a(P ∗, fn(RF))) ∧qa f c
3b(Q

w∗, RF) by (3.100) Note: This is an n*-term

= fn
1 (P ∗ ∧qa fn(RF)) ∧qa (Qw∗ ∧qa RF) by IH and La.A.1.11

= (¬P ∗ ∨qa RF) ∧qa (Qw∗ ∧qa RF) by La.A.1.5, La.A.1.6 and (F2)

= (¬P ∗ ∨qa (RF ∧qa F)) ∧qa (Qw∗ ∧qa (RF ∧qa F)) by La.A.1.1

= (P ∗ ∨qa Qw∗) ∧qa (RF ∧qa F) by [7, La.2.1.6]

= (P ∗ ∨qa Qw∗) ∧qa RF by La.A.1.1

In the case of a w∗-term of the form P b∗ ∨qa Qw∗ the proof follows the same pattern, using
(3.102) instead of (3.100) and using Lemma A.1.16 instead of A.1.11.

In the case of a w∗-term of the form Pn∗ ∨qa Qw∗ we get:

f c
3b(P

n∗ ∨qa Qw∗, RF) = fn
2 (Pn∗) ∧qa f c

3b(Q
w∗, RF) by (3.101) Note: This is an n∗-term

= ¬Pn∗ ∧qa f c
3b(Q

w∗, RF) by La.A.1.6

= ¬Pn∗ ∧qa (Qw∗ ∧qa RF) by IH

= (¬Pn∗ ∧qa Qw∗) ∧qa RF by (F7)

= (Pn∗ ∨qa Qw∗) ∧qa RF by La.A.1.7

37

In the case of a b∗-term of the form P b∗ ∨qa Q∗ we get:

f c
4b(P

b∗ ∨qa Q∗, RF)

= f c
4b(f

n
4 (f c

4a(P b∗, fn(RF))), f c
1b(Q

∗, RF)) by (3.150) Note: This is an n∗-term

= f c
4b(f

n
4 (P b∗ ∧qa fn(RF)), (Q∗ ∧qa RF)) by La.A.1.16 and La.A.1.12

= fn
4 (P b∗ ∧qa fn(RF)) ∧qa (Q∗ ∧qa RF) by IH

= (¬P b∗ ∨qa RF) ∧qa (Q∗ ∧qa RF) by La.A.1.5, La.A.1.6 and (F2)

= (¬P b∗ ∨qa (RF ∧qa F)) ∧qa (Q∗ ∧qa (RF ∧qa F)) by La. A.1.1

= (P b∗ ∨qa Q∗) ∧qa (RF ∧qa F) by [7, La.2.1.6]

= (P b∗ ∨qa Q∗) ∧qa RF by La. A.1.1

The proof for P b∗ ∨qa P b∗ and P ∗ ∨qa P b∗ follows the same pattern using (3.154) and (3.156)
instead of (3.150). The proof for P b∗ ∨qa Pn∗ and P ∗ ∨qa Pn∗ also follows the same pattern using
(3.152) and (3.148) instead of (3.150) and using Lemma A.1.7. The proof for P ∗ ∧qa Pw∗, Pw∗ ∧qa
P ∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗ and P ∗ ∧qa P b∗ follows directly from (3.147),
(3.149), (3.151), (3.153), (3.155), (3.157), (3.158) the induction hypothesis, A.1.12 and F7.

Lemma A.1.18. For any T-b∗-term P and U-term Q, f c(P,Q) is a T-n∗-term and for any
T-w∗-term P and U-term Q, f c(P,Q) is an U-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. For T-w∗-terms: By (3.103), Lemma A.1.8 and (F7) it suffices to prove that f c
3c(P

w∗, QU)
is an U-term and that EqFSCLU ` f c

3c(P
w∗, QU) = (Pw∗ ∧qa QF). For T-b∗-terms: By (3.159) and

(F7) it suffices to prove that f c
4c(P

b∗, QU) is an n∗-term and that EqFSCLU ` f c
4c(P

b∗, QU) =
(P b∗ ∧qa QU). This will be proven by induction on the number of literals in Pw∗ and P b∗.

In the case of a w`-term of the form (â ∧qa PT) ∨qa QU with â ∈ {a,¬a} we get:

f c
3c((â ∧qa PT) ∨qa QU, RU)

= (â ∨qa QU) ∧qa f c(PT, RU) by (3.104), (3.105) Note: This is an U-term

= (â ∨qa QU) ∧qa (PT ∧qa RU) by Lemma A.1.8

= ((â ∨qa QU) ∧qa PT) ∧qa RU by (F7)

In the case of a b`-term of the form (P ` ∧qa Qw`) the equality follows directly from the proof
for the w`-term above, (F7) and (3.160). In the case of a b`-term of the form (Pw` ∧qa Q`) proof
follows directly from A.1.14, (F7) and (3.162).

In the case of a b`-term of the form (P ` ∨qa Qn`) we get:

f c
4c((P

` ∨qa Qn`), RU)

= fn
2 (f c

1c(P
`, RU)) ∧qa Qn` by (3.161) Note: This is an n∗-term

= fn
2 (P ` ∧qa RU) ∧qa Qn` by La.A.1.11

= (¬P ` ∨qa RU) ∧qa Qn` by La.A.1.5, La.A.1.6, (F2) and La.A.1.3

= (¬P ` ∨qa (RU ∧qa F)) ∧qa (Qn` ∧qa (RU ∧qa F)) by La.A.1.3 and La.A.1.4

= (¬P ` ∨qa (RU ∧qa F)) ∧qa ((Qn` ∧qa RU) ∧qa F) by (F6)

= (P ` ∨qa ((Qn` ∧qa RU) ∧qa F)) ∧qa (RU ∧qa F) by La. A.1.2.1

= (P ` ∨qa Qn`) ∧qa RU by La.A.1.3 and La.A.1.4

For the inductive step we assume the result holds for all w∗-terms of lesser complexity than:
P ∗ ∨qa Qw∗, Pn∗ ∨qa Qw∗ and P b∗ ∨qa Qw∗ and for all b∗-terms of lesser complexity than: P ∗ ∧qa

38

Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa P ∗, P ∗ ∨qa
P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗.

In the case of a w∗-term of the form P ∗ ∨qa Qw∗:

f c
3c(P

∗ ∨qa Qw∗, RU)

= f c
3c(f

n
2 (f c

1c(P
∗, RU)), f c

3c(Q
w∗, RU)) by (3.106) Note: This is an U-term

= fn
2 (f c

1c(P
∗, RU)) ∧qa (Qw∗ ∧qa RU) By IH

= fn
2 (P ∗ ∧qa RU) ∧qa (Qw∗ ∧qa RU) by La.A.1.14

= (¬P ∗ ∨qa RU) ∧qa (Qw∗ ∧qa RU) by La.A.1.6, F2 and La.A.1.3

= (¬P ∗ ∨qa (RU ∧qa F)) ∧qa (Qw∗ ∧qa (RU ∧qa F)) by La.A.1.3

= (P ∗ ∨qa Qw∗) ∧qa (RU ∧qa F) by [7, La.2.1.6]

= (P ∗ ∨qa Qw∗) ∧qa RU by La.A.1.3

In the case of a w∗-term of the form P b∗ ∨qa Qw∗ the proof proceeds in a similar manner, using
(3.108) instead of (3.106) and using the induction hypothesis instead of Lemma A.1.14.

In the case of a w∗-term of the form Pn∗ ∨qa Qw∗ we get:

f c
3c(P

n∗ ∨qa Qw∗, RU) = f c
3c(f

n
2 (Pn∗), fc

3c(Q
w∗, RU)) by (3.107) Note: This is an U-term

= fn
2 (Pn∗) ∧qa (Qw∗ ∧qa RU) By IH

= ¬Pn∗ ∧qa (Qw∗ ∧qa RU) by La.A.1.6

= (¬Pn∗ ∧qa Qw∗) ∧qa RU by (F7)

= (Pn∗ ∨qa Qw∗) ∧qa RU by La.A.1.7

In the case of a b∗-term of the form P b∗ ∨qa Q∗ we get:

f c
4c(P

b∗ ∨qa Q∗, RU)

= fn
4 (f c

4c(P
b∗, RU)) ∧qa f c

1c(Q
∗, RU) by (3.163) Note: This is an n∗-term

= fn
4 (P b∗ ∧qa RU) ∧qa (Q∗ ∧qa RU) by IH and La.A.1.14

= (¬P b∗ ∨qa RU) ∧qa (Q∗ ∧qa RU) by La.A.1.5, La.A.1.6, La.A.1.3 and (F2)

= (¬P b∗ ∨qa (RU ∧qa F)) ∧qa (Q∗ ∧qa (RU ∧qa F)) by La. A.1.3

= (P b∗ ∨qa Q∗) ∧qa (RU ∧qa F) by [7, La.2.1.6]

= (P b∗ ∨qa Q∗) ∧qa RU by La. A.1.3

The proof for P b∗ ∨qa P b∗ and P ∗ ∨qa P b∗ follows the same pattern using (3.167) and (3.169)
instead of (3.163). The proof for P b∗ ∨qa Pn∗ and P ∗ ∨qa Pn∗ also follows the same pattern
using (3.165) and (3.161) instead of (3.163) and using (A.1.7). The proof for P ∗ ∧qa Pw∗, Pw∗ ∧qa
P ∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗ and P ∗ ∧qa P b∗ follows directly from (3.160),
(3.162), (3.164), (3.166), (3.168), (3.170),(3.171) the induction hypothesis, A.1.14 and F7.

Lemma A.1.19. For any T-∗-term P and T-w∗-term Q, f c(P,Q) is a T-b∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.75) and (F7) it suffices to prove that f c
1f (P ∗, QT ∧qa Rw∗) is a b∗-term and that

EqFSCLU ` f c
1f (P ∗, QT ∧qa Rw∗) = P ∗ ∧qa QT ∧qa Rw∗). The proof follows directly from (3.76),

La.A.1.11 and (F7).

Lemma A.1.20. For any T-∗-term P and T-b∗-term Q, f c(P,Q) is a T-b∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

39

Proof. By (3.77) and (F7) it suffices to prove that f c
1g(P ∗, QT ∧qa Rb∗) is a b∗-term and that

EqFSCLU ` f c
1g(P ∗, QT ∧qa Rb∗) = (P ∗ ∧qa QT ∧qa Rb∗). In the case of a b∗-term of the form

R∗ ∨qa Sn∗, Rb∗ ∨qa S∗, Rb∗ ∨qa Sn∗, Rb∗ ∨qa Sb∗ or R∗ ∨qa Sb∗ the proof follows directly from (3.79),
(3.81), (3.83), (3.85), (3.87), Lemma A.1.11 and (F7). In the case of a b∗-term of the form
R∗ ∧qa Sw∗ or R∗ ∧qa Sb∗ the proof follows directly from (3.78), (3.88), Lemma A.1.13 and (F7).
In the case of a b∗-term of the form Rw∗ ∧qa S∗ and Rw∗ ∧qa Sb∗ the proof follows directly from
(3.80), (3.86), Lemma A.1.19 and (F7).

In the case of a b∗-term of the form Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ or Rb∗ ∧qa S∗ we need to use induction
on the number of b`-terms in b∗. For the base case we have R` ∨qa Sn`, Rw` ∧qa S`, R` ∧qa Sw`. We
can prove R` ∨qa Sn` with (3.79), Lemma A.1.11 and (F7). We can prove R` ∧qa Sw` with (3.78),
Lemma A.1.13 and (F7). We can prove Rw` ∧qa S` with (3.80), Lemma A.1.19 and (F7). For
the inductive step we need to assume the result holds for all b∗-terms of lesser complexity than:
P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa
P ∗, P ∗ ∨qa P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗. The proof of Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ and Rb∗ ∧qa S∗

follows directly from (3.82), (3.84), (3.89), the induction hypothesis and (F7).

Lemma A.1.21. For any T-w∗-term P and T-∗-term Q, f c(P,Q) is a T-b∗-term and:

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.109) and (F7) it suffices to prove that f c
3d(Pw∗, QT ∧qa R∗) is a b∗-term and that

EqFSCLU ` f c
3d(Pw∗, QT ∧qa R∗) = Pw∗ ∧qa (QT ∧qa R∗). We will prove this by induction on

the number of `-terms in R∗. For the base case we have f c
3d(Pw∗, QT ∧qa R`) the proof follows

from (3.110), (F7) and Lemma A.1.16. For the inductive step we assume the result holds for all
∗-terms of lesser complexity than R∗ ∧qa Sd and R∗ ∨qa Sc. In the case of R∗ ∨qa Sc the proof follows
directly from (3.112), (F7) and Lemma A.1.16. In the case of R∗ ∧qa Sd the proof follows directly
from (3.111), (F7) and the induction hypothesis.

Lemma A.1.22. For any T-b∗-term P and T-∗-term Q, f c(P,Q) is a T-b∗-term and:

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.172) and (F7) it suffices to prove that f c
4d(P b∗, QT ∧qa R∗) is a b∗-term and that

EqFSCLU ` f c
4d(P b∗, QT ∧qa R∗) = P b∗ ∧qa (QT ∧qa R∗). We will prove this by induction on the

number of `-terms in R∗. For the base case we have f c
4d(P b∗, QT ∧qa R`) the proof follows from

(3.173), (F7) and Lemma A.1.16. For the inductive step we assume the result holds for all ∗-
terms of lesser complexity than R∗ ∧qa Sd and R∗ ∨qa Sc. In the case of R∗ ∧qa Sd the proof follows
directly from (3.174), (F7) and the induction hypothesis. In the case of R∗ ∨qa Sc the proof follows
directly from (3.175), (F7) and Lemma A.1.16.

Lemma A.1.23. For any T-w∗-term P and T-w∗-term Q, f c(P,Q) is a T-w∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.118) and (F7) it suffices to prove that f c
3f (Pw∗, QT ∧qa Rw∗) is a w∗-term and that

EqFSCLU ` f c
3f (Pw∗, QT ∧qa Rw∗) = Pw∗ ∧qa (QT ∧qa Rw∗).

f c
3f (Pw∗, QT ∧qa Rw∗) = fn

3 (f c
3a(Pw∗, QT)) ∨qa Rw∗ by (3.119) Note: This is a w∗-term

= ¬f c
3a(Pw∗, QT) ∨qa Rw∗ by La.A.1.6

= f c
3a(Pw∗, QT) ∧qa Rw∗ by La.A.1.7

= (Pw∗ ∧qa QT) ∧qa Rw∗ by La.A.1.16

= Pw∗ ∧qa (QT ∧qa Rw∗) by (F7)

40

Lemma A.1.24. For any T-b∗-term P and T-w∗-term Q, f c(P,Q) is a T-b∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.181) and (F7) it suffices to prove that f c
4f (P b∗, QT ∧qa Rw∗) is a w∗-term and that

EqFSCLU ` f c
4f (P b∗, QT ∧qa Rw∗) = P b∗ ∧qa (QT ∧qa Rw∗).

The proof for f c
4f follows directly from:

f c
4f (P b∗, QT ∧qa Rw∗) = f c

4a(P b∗, QT) ∧qa Rw∗ by (3.182) Note: This is a b∗-term

= (P b∗ ∧qa QT) ∧qa Rw∗ by La.A.1.16

= P b∗ ∧qa (QT ∧qa Rw∗) by (F7)

Lemma A.1.25. For any T-∗-term P and T-n∗-term Q, f c(P,Q) is a T-n∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.70) and (F7) it suffices to prove that f c
1e(P

∗, QT ∧qa Rn∗) is an n∗-term and that
EqFSCLU ` f c

1e(P
∗, QT ∧qa Rn∗) = P ∗ ∧qa (QT ∧qa Rn∗). In the case of an n`-term the proof follows

from (F7), Lemma A.1.13 and (3.71). In the case of an n∗-term of the form R∗ ∧qa Sn∗ the proof
follows from (3.72), Lemma A.1.13 and (F7). In the case of an n∗-term of the form Rw∗ ∧qa Sn∗

the proof follows from (3.73), Lemma A.1.19 and (F7). Furthermore, in the case of an n∗-term
of the form Rb∗ ∧qa Sn∗ the proof follows from (3.74), Lemma A.1.20 and (F7).

Lemma A.1.26. For any T-w∗-term P and T-b∗-term Q, f c(P,Q) is a T-b∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.120) and (F7) it suffices to prove that f c
3g(Pw∗, QT ∧qa Rb∗) is a b∗-term and that

EqFSCLU ` f c
3g(Pw∗, QT ∧qa Rb∗) = Pw∗ ∧qa (QT ∧qa Rb∗). In the case of a b∗-term of the form

R∗ ∨qa Sn∗, Rb∗ ∨qa S∗, Rb∗ ∨qa Sn∗, Rb∗ ∨qa Sb∗ or R∗ ∨qa Sb∗ the proof follows directly from (3.122),
(3.124), (3.126), (3.128), (3.130), Lemma A.1.16 and (F7). In the case of a b∗-term of the form
R∗ ∧qa Sw∗ or R∗ ∧qa Sb∗ the proof follows directly from (3.121), (3.131), Lemma A.1.21 and (F7).
In the case of a b∗-term of the form Rw∗ ∧qa S∗ and Rw∗ ∧qa Sb∗ the proof follows directly from
(3.123), (3.129), Lemma A.1.23 and (F7).

In the case of a b∗-term of the form Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ or Rb∗ ∧qa S∗ we need to use induction
on the number of b`-terms in b∗. For the base case we have R` ∨qa Sn`, Rw` ∧qa S`, R` ∧qa Sw`. We
can prove R` ∨qa Sn` with (3.122), Lemma A.1.16 and (F7). We can prove R` ∧qa Sw` with (3.121),
Lemma A.1.21 and (F7). We can prove Rw` ∧qa S` with (3.123), Lemma A.1.23 and (F7). For
the inductive step we need to assume the result holds for all b∗-terms of lesser complexity than:
P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa
P ∗, P ∗ ∨qa P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗. The proof of Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ and Rb∗ ∧qa S∗

follows directly from (3.125), (3.127), (3.132), the induction hypothesis and (F7).

Lemma A.1.27. For any T-b∗-term P and T-b∗-term Q, f c(P,Q) is a T-b∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.184) and (F7) it suffices to prove that f c
4g(P b∗, QT ∧qa Rb∗) is a b∗-term and that

EqFSCLU ` f c
3g(P b∗, QT ∧qa Rb∗) = P b∗ ∧qa (QT ∧qa Rb∗). In the case of a b∗-term of the form

R∗ ∨qa Sn∗, Rb∗ ∨qa S∗, Rb∗ ∨qa Sn∗, Rb∗ ∨qa Sb∗ or R∗ ∨qa Sb∗ the proof follows directly from (3.186),
(3.188), (3.190), (3.192), (3.194), Lemma A.1.16 and (F7). In the case of a b∗-term of the form
R∗ ∧qa Sw∗ or R∗ ∧qa Sb∗ the proof follows directly from (3.185), (3.195), Lemma A.1.22 and (F7).
In the case of a b∗-term of the form Rw∗ ∧qa S∗ and Rw∗ ∧qa Sb∗ the proof follows directly from
(3.187), (3.193), Lemma A.1.24 and (F7).

41

In the case of a b∗-term of the form Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ or Rb∗ ∧qa S∗ we need to use induction
on the number of b`-terms in b∗. For the base case we have R` ∨qa Sn`, Rw` ∧qa S`, R` ∧qa Sw`. We
can prove R` ∨qa Sn` with (3.186), Lemma A.1.16 and (F7). We can prove R` ∧qa Sw` with (3.185),
Lemma A.1.22 and (F7). We can prove Rw` ∧qa S` with (3.187), Lemma A.1.24 and (F7). For
the inductive step we need to assume the result holds for all b∗-terms of lesser complexity than:
P ∗ ∧qa Pw∗, Pw∗ ∧qa P ∗, P ∗ ∨qa Pn∗, P ∗ ∧qa P b∗, P b∗ ∧qa P ∗, P b∗ ∧qa P b∗, Pw∗ ∧qa P b∗, P b∗ ∧qa Pw∗, P b∗ ∨qa
P ∗, P ∗ ∨qa P b∗, P b∗ ∨qa Pn∗ and P b∗ ∨qa P b∗. The proof of Rb∗ ∧qa Sw∗, Rb∗ ∧qa Sb∗ and Rb∗ ∧qa S∗

follows directly from (3.189), (3.191), (3.196), the induction hypothesis and (F7).

Lemma A.1.28. For any T-w∗-term P and T-n∗-term Q, f c(P,Q) is a T-n∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.113) and (F7) it suffices to prove that f c
3e(P

w∗, QT ∧qa Rn∗) is an n∗-term and that
EqFSCLU ` f c

3e(P
w∗, QT ∧qa Rn∗) = Pw∗ ∧qa (QT ∧qa Rn∗). If R is an n`-term the proof follows

from (3.114), Lemma (A.1.16) and (F7). In the case of an n∗-term of the form R∗ ∧qa Sn∗ the
proof follows from (3.115), Lemma A.1.21 and (F7). If R is an n∗-term of the form Rw∗ ∧qa Sn∗

the proof follows from (3.116), Lemma A.1.23 and (F7). Furthermore, if R is an n∗-term of the
form Rb∗ ∧qa Sn∗ the proof follows from (3.117), Lemma A.1.26 and (F7).

Lemma A.1.29. For any T-b∗-term P and T-n∗-term Q, f c(P,Q) is a T-n∗-term and

EqFSCLU ` f c(P,Q) = P ∧qa Q.

Proof. By (3.176) and (F7) it suffices to prove that f c
4e(P

b∗, QT ∧qa Rn∗) is an n∗-term and that
EqFSCLU ` f c

4e(P
b∗, QT ∧qa Rn∗) = P b∗ ∧qa (QT ∧qa Rn∗). In the case of an n`-term the proof follows

from (3.177), Lemma A.1.16 and (F7). In the case of an n∗-term of the form R∗ ∧qa Sn∗ the proof
follows from (3.178), Lemma A.1.22 and (F7). In the case of an n∗-term of the form Rw∗ ∧qa Sn∗

the proof follows from (3.179), Lemma A.1.24 and (F7). Furthermore, in the case of an n∗-term
of the form Rb∗ ∧qa Sn∗ the proof follows from (3.180), Lemma A.1.27 and (F7).

Lemma A.1.30. For any P ∈ SNF and Q ∈ SNF , fc(P,Q) is in SNF and EqFSCLU `
f c(P,Q) = P ∧qa Q.

Proof. Every term in SNF is either a T-term, a F-term, an U-term or an T-a-term. The proof for
fc in case P is a T-term, a F-term, an U-term and Q ∈ SNF follows from A.1.8, A.1.9, A.1.10.
In the case that P is a T-a-term and Q is a T-term the proof follows from A.1.11, A.1.16 and
A.1.15. In the case that Q is an F-term the proof follows from A.1.12, A.1.17 and A.1.15. In the
case that Q is an U-term the proof follows from A.1.14, A.1.18 and A.1.15. With this the claim
is proven for all terms except the combinations of T-a-terms.

In the case where P is a T-a-term and Q is a T-a-term the proof follows from A.1.13, A.1.15,
A.1.19, A.1.20, A.1.21, A.1.23, A.1.22, A.1.24, A.1.25, A.1.26, A.1.27, A.1.28 and A.1.29

Theorem 3.2.1 (from Chapter 3) For any P ∈ SAU , f(P) terminates, f(P) ∈ SNF and

EqFSCLU ` f(P) = P.

Proof. If P is an atom, the result follows from (3.1), (F4), (F5) and its dual. If P is T, F or U
the result follows from (3.2), (3.3) or (3.4). For the other terms we need to use induction on the
structure of P . For the inductive case we get the result from (3.5), (3.6), (3.7), (F2), Lemma
A.1.5, Lemma A.1.6 and Lemma A.1.30.

42

	Introduction
	Outline
	Ethical considerations

	Evaluation trees and axioms, for short-circuit logic with undefinedness
	Axioms and normal forms FSCL
	Axioms and evaluation trees FSCLU
	Axioms, for short-circuit logic with undefinedness

	Normal forms for three-valued logic
	Normal forms
	Defining normal forms using recursive functions
	Definition of f using fn
	Definition of f using fc

	Conclusion
	Discussion
	Conclusion

	Correctness of the normalisation function
	General results
	Correctness of the negation function
	Correctness of the conjunction function

