Evaluation Trees for Proposition Algebra

Alban Ponse -
joined work with Jan A. Bergstra
section Theory of Computer Science
Informatics Institute, University of Amsterdam
https://staff.fnwi.uva.nl/a.ponse/

ERO'60 - September 9, 2015

1. Introduction

Short-circuit evaluation (SE) in imperative programming:

$$
\text { if }(\operatorname{not}(j==0) \& \&(i / j>17)) \text { then (..) else (..) }
$$

Clearly, SE is sequential and $\& \&$ (Logical and) is not commutative...

Questions:
Q1. For conditions as above: which are the logical laws that characterize SE?

Q2. As Q1, but restricting to atoms that evaluate to either true or false (either exclude atoms as (i/j > 17), or require such evalutions)

Q3. As Q2, but involving constants T and F for true and false

An example that falsifies idempotency of $\& \&$ (programmable in Perl):

1) For program variable i, atom ($i==k$) with $k \in \mathbb{Z}$ is a test, and
2) Boolean evaluation of assignment ($i=e$) yields false iff e's value is 0 .

Then, if i has initial value 2 ,
$(i=i+1) \& \&(i==3)$ evaluates to true, and
$((i=i+1) \& \&(i=i+1)) \& \&(i==3)$ evaluates to false

Wrt. Q2 and Q3, some logical laws that are not valid: (equational)

- Idempotency, thus $x \& \& x=x$ and $x|\mid x=x$, where || represents "Logical or"
- Distributivity, e.g. $x \& \&(y|\mid z)=(x \& \& y)| |(x \& \& z)$
- Absorption, e.g. $x \& \&(x|\mid y)=x$

Towards a systematic answer of Q2 and Q3:

- Involve Hoare's conditional (1985), a ternary connective characterized by

$$
P \triangleleft Q \triangleright R \approx \text { if } Q \text { then } P \text { else } R
$$

With the conditional, one can define negation and the (binary) propositional connectives that prescribe SE:

$$
\begin{aligned}
\neg x & =F \triangleleft x \triangleright T \\
x \& \& y & =y \triangleleft x \triangleright F \\
x \| y & =T \triangleleft x \triangleright y
\end{aligned}
$$

Fact: basic equational axioms for the conditional imply $\neg \neg x=x$ (DNS), associativity of the propositional connectives, and De Morgan's laws.

2. Evaluation trees

$\operatorname{CProp}(A)$, Conditional Propositions with atoms in A :

$$
P::=a|T| F \mid P \triangleleft P \triangleright P \quad(a \in A) .
$$

\mathcal{T}_{A}, Evaluation trees over A, provide a simple semantics for $\operatorname{CProp}(A)$:

$$
X::=T|F| X \unlhd a \unrhd X \quad(a \in A)
$$

Pictorial representation:

Thus: binary trees with leaves in $\{T, F\}$ and internal nodes in A, e.g.

Idea: For $(i=i+1) \& \&(i==3)$, thus for $(i==3) \triangleleft(i=i+1) \triangleright F$, an evaluation is a complete path in the evaluation tree

where

- the evaluation starts in the root node (i=i+1), and continues in the left branch if ($i=i+1$) evaluates to true, and otherwise in the right branch
- evaluation in the internal node (i==3) proceeds likewise
- leaves represent the final evaluation value

Leaf replacement in $X \in \mathcal{T}_{A}$, notation

$$
X[T \mapsto Y, F \mapsto Z]
$$

is defined by

$$
\begin{aligned}
& T[T \mapsto Y, F \mapsto Z]=Y \\
& F[T \mapsto Y, F \mapsto Z]=Z
\end{aligned}
$$

$\left(X_{1} \unlhd a \unrhd X_{2}\right)[T \mapsto Y, F \mapsto Z]=$

$$
X_{1}[T \mapsto Y, F \mapsto Z] \quad X_{2}[T \mapsto Y, F \mapsto Z]
$$

The short-circuit interpretation function se : $\operatorname{CProp}(A) \rightarrow \mathcal{T}_{A}$ is defined by

$$
\begin{aligned}
\operatorname{se}(T) & =T \\
\operatorname{se}(F) & =F \\
\operatorname{se}(a) & =T \unlhd a \unrhd F \\
\operatorname{se}(P \triangleleft Q \triangleright R) & =\operatorname{se}(Q)[T \mapsto \operatorname{se}(P), F \mapsto \operatorname{se}(R)]
\end{aligned}
$$

Example:
$\operatorname{se}(F \triangleleft a \triangleright T)=(T \unlhd a \unrhd F)[T \mapsto F, F \mapsto T]=F \unlhd a \unrhd T=F^{a}{ }^{\prime}{ }_{T}$
Thus, $\operatorname{se}(F \triangleleft a \triangleright T)$ models the evaluation of $\neg a$, and we can involve negation by

$$
\operatorname{se}(\neg P)=\operatorname{se}(P)[T \mapsto F, F \mapsto T]
$$

$C P$, a set of axioms for .. $\triangleleft . . \triangleright$.. (Proposition algebra [BP10]):

$$
\begin{aligned}
& x \triangleleft T \triangleright y=x \\
& x \triangleleft F \triangleright y=y \\
& T \triangleleft x \triangleright F=x \\
& x \triangleleft(y \triangleleft z \triangleright u) \triangleright v=(x \triangleleft y \triangleright v) \triangleleft z \triangleright(x \triangleleft u \triangleright v)
\end{aligned}
$$

Example: $C P \vdash F \triangleleft(F \triangleleft x \triangleright T) \triangleright T=(F \triangleleft F \triangleright T) \triangleleft x \triangleright(F \triangleleft T \triangleright T)$

$$
\begin{aligned}
& =T \triangleleft x \triangleright F \\
& =x
\end{aligned}
$$

and thus with $\neg x=F \triangleleft x \triangleright T$ we find DNS: $\neg \neg x=x$.

Theorem. $C P \vdash P=Q \Longleftrightarrow \operatorname{se}(P)=\operatorname{se}(Q)$
Proof. Easy (incl. se-equality is a congruence).
Note. se-equality is further called Free valuation congruence (FVC).

Evaluation trees for expressions with $\neg, \& \&$, and |।:

$$
\begin{aligned}
\operatorname{se}(\neg P) & =\operatorname{se}(P)[T \mapsto F, F \mapsto T] & & =\operatorname{se}(F \triangleleft P \triangleright T) \\
\operatorname{se}(P \& \& Q) & =\operatorname{se}(P)[T \mapsto \operatorname{se}(Q)] & & =\operatorname{se}(Q \triangleleft P \triangleright F) \\
\operatorname{se}(P|\mid Q) & =\operatorname{se}(P)[F \mapsto \operatorname{se}(Q)] & & =\operatorname{se}(T \triangleleft P \triangleright Q)
\end{aligned}
$$

Example: for $a, b, c \in A$ we find
$\operatorname{se}(a \& \&(b \& \& c))=\operatorname{se}((a \& \& b) \& \& c)=((T \unlhd c \unrhd F) \unlhd b \unrhd) \unlhd a \unrhd F$

FVC-axioms (thus, valid wrt. se-equality) not mentioned before:

$$
\begin{array}{rlrl}
F & =\neg T & F \& \& x & =F \\
T \& \& x & =x & x \& \& F & =\neg x \& \& F \\
x \& \& T & =x & (x \& \& F)|\mid y & =(x| | T) \& \& y \\
(x \& \& y)|\mid(z \& \& F)=(x| |(z \& \& F)) & \& \&(y|\mid(z \& \& F))
\end{array}
$$

Theorem (Staudt, 2012). "Short-circuit logic for Free VC"

For propositional formulae over $A, T, F, \neg, \& \&,| |$, FVC is axiomatized by the seven axioms listed on the previous slide, and

$$
\begin{align*}
\neg \neg x & =x & & \text { (DNS) } \tag{DNS}\\
x|\mid y & =\neg(\neg x \& \& \neg y) & & \text { (def. of }|\mid \text {, implying DM's laws) } \\
(x \& \& y) \& \& z & =x \& \&(y \& \& z) & & \text { (implying assoc. of }|\mid)
\end{align*}
$$

say E, thus $E \vdash P=Q \Longleftrightarrow \operatorname{se}(P)=\operatorname{se}(Q)$.
Proof. Soundness (incl. congruence property) is easy.
Completeness is non-trivial (20^{+}pages) and depends on:

- normal forms,
- decomposition properties of evaluation trees for \&\& and |।, and
- the existence of an inverse g of se for normal forms: $g(s e(P))=P$

3. Valuation Congruences

FVC (equationally axiomatized by CP)
\subseteq Repetition-proof VC: equationally axiomatized by $C P+$ two axiom schemes over A
\subseteq Contractive VC: equationally axiomatized by $C P+$ two axiom schemes over A
\subseteq Memorizing VC: equationally axiomatized by $C P+$ one axiom typical properties: $x \& \& x=x$

$$
x \triangleleft y \triangleright z=(y \& \& x) \mid ।(\neg y \& \& z)
$$

\subseteq Static VC \approx "sequential propositional logic": equationally axiomatized by $C P+$ two axioms

These VC's are defined by varieties of Valuation algebra's [BP10].
[BP15]: RpVC - MVC also have simple semantics: transformations on evaluation trees (cf. the use of truth tables in Propositional Logic).

Contractive VC: Subsequent occurrences of the same atom are contracted; equational axiomatization:

$$
\begin{aligned}
& C P_{c r}(A)=C P \cup\{(x \triangleleft a \triangleright y) \triangleleft a \triangleright z=x \triangleleft a \triangleright z, \\
& x \triangleleft a \triangleright(y \triangleleft a \triangleright z)=x \triangleleft a \triangleright z \mid a \in A\}
\end{aligned}
$$

Example: $a \& \&(a|\mid x)=(T \triangleleft a \triangleright x) \triangleleft a \triangleright F=T \triangleleft a \triangleright F=a$ $s e(a \& \&(a|\mid P))$ and its contracted evaluation tree:

The transformation $\mathrm{cr}: \mathcal{T}_{A} \rightarrow \mathcal{T}_{A}$ is the contraction function, and recursively traverses the tree.

A more concrete example for Contractive VC.

Programming with n Boolean registers. For $1 \leq i \leq n$ consider registers R_{i} with for $B \in\{\mathrm{~T}, \mathrm{~F}\}$,

- the atom (set: $i: B$) can have a side effect: it sets R_{i} to value B and evaluates in each state to true
- the atom (eq:i:B) has no side effect and evaluates to true if R_{i} has value B, and otherwise to false

Then all instances of $C P_{c r}(A)$ are valid, but not all instances of the stronger equation $x \& \& x=x$ (valid under MVC): Let

$$
t=(e q: 1: F) \& \&(\text { set }: 1: T)
$$

and assume R_{1} has initial value F, then $\begin{cases}t & \text { evaluates to true } \\ t \& \& t & \text { evaluates to false }\end{cases}$
Note. Not all valid eq's are derivable, e.g., (eq:1:F) $\& \& \neg(e q: 1: F)=F$.

Theorem [BP15, BP10]. $C P_{c r}(A) \vdash P=Q \Longleftrightarrow \operatorname{cr}(\operatorname{se}(P))=\operatorname{cr}(\operatorname{se}(Q))$
Corollary. "Short-circuit logic for Contractive VC"
For propositional formulae over $A, T, F, \neg, \& \&, \quad \mid ।$,

$$
\left\{\begin{array}{r}
\neg x=F \triangleleft x \triangleright T, \\
x \& \& y=y \triangleleft x \triangleright F, \\
x|\mid y=T \triangleleft x \triangleright y
\end{array}\right\} \cup C P_{c r}(A) \vdash P=Q \Longleftrightarrow \operatorname{cr}(\operatorname{se}(P))=\operatorname{cr}(\operatorname{se}(Q))
$$

Open question. Does a finite, equational axiomatization of CVC exist without the use of .. \triangleleft.. \triangleright..?
(An approach as in [Staudt12] seems not possible.)

Note. Wrt. Repetition-proof VC we have a similar Theorem, Corollary, and open question.

4. Remarks and conclusions

4.1 Hoare's conditional (1985):

- Original approach: characterization of Propositional Logic
- Original definition: $P \triangleleft Q \triangleright R=(P \wedge Q) \vee(\neg Q \wedge R)$ However, wrt. side effects the alternative, intuitive reading

$$
P \triangleleft Q \triangleright R \approx \text { if } Q \text { then } P \text { else } R,
$$

is preferable: it suggests/prescribes a sequential, short-circuited interpretation

With this intuition AND the naturalness of $s e()$ AND the definitions of

$$
\neg, \& \&,| |,
$$

it is evident that $C P$ is most basic.
4.2 Sequential, propositional connectives:
T, \neg, and $\& \&$ (and/or definable counterparts) seem primitive:

- For example, strict (complete) sequential evaluation of conjunction, notation \& , is defined by

$$
x \& y=(x| |(y \& \& F)) \& \& y
$$

(one more argument to include T (and F) in this setting)

- BUT, a sequential version of XOR , notation \oplus, is defined by

$$
x \oplus y=\neg y \triangleleft x \triangleright y
$$

and cannot be defined modulo Free, Repetition-proof, or Contractive VC with T, \neg, and $\& \&$ only

Hence: .. \triangleleft.. \triangleright.. is a convenient primitive, and the possible side effects of the atoms of interest determine an appropriate VC.
4.3 Transformations on Evaluation trees for more identifying VC's:

- Transformation to a Repetition-proof evaluation tree is natural and simple (cf. [ERO60]); semantics by term rewriting is not easy in this case, e.g. $(x \triangleleft a \triangleright F) \triangleleft a \triangleright F \rightarrow(x \triangleleft a \triangleright x) \triangleleft a \triangleright F$
- Transformation to a Contractive or Memorizing evaluation tree is also N\&S (see [BP15])
- Transformation to a static evaluation tree is more complicated and requires an ordering of the atoms [Hoare85 + BP15]
4.4 Extensions of .. \triangleleft.. \triangleright.. to many-valued logic's are easily defined (and seq. evaluation often provides good intuitions):
E.g., Belnap's 4VL [PZ07], or 5VL [BP99] = Belnap's 4VL + Bochvar's constant M which majorizes all truth values

