Evaluation Trees for Proposition Algebra

Alban Ponse

joined work with Jan A. Bergstra

section Theory of Computer Science Informatics Institute, University of Amsterdam https://staff.fnwi.uva.nl/a.ponse/

ERO'60 - September 9, 2015

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions
● ○ ○	000000	0000	000

1. Introduction

Short-circuit evaluation (SE) in imperative programming:

if (not(j==0) & & (i/j > 17)) then (..) else (..)

Clearly, SE is sequential and && (Logical and) is not commutative...

Questions:

Q1. For conditions as above: which are the logical laws that characterize SE?

Q2. As Q1, but restricting to atoms that evaluate to either true or false (either exclude atoms as (i/j > 17), or **require** such evalutions)

Q3. As Q2, but involving constants T and F for true and false

1. Introduction
o = 02. Evaluation trees
o = 03. Valuation congruences
o = 04. Remarks and conclusions
o = 0An example that falsifies idempotency of && (programmable in Perl):
1) For program variable i, atom (i==k) with $k \in \mathbb{Z}$ is a test, and
2) Boolean evaluation of assignment (i=e) yields false iff e's value is 0.
Then, if i has initial value 2,
(i=i+1) && (i==3) evaluates to true, and
((i=i+1) && (i=i+1)) && (i==3) evaluates to false

Wrt. Q2 and Q3, some logical laws that are not valid: (equational)

- ► Idempotency, thus x & & x = x and x | | x = x, where | | represents "Logical or"
- ► Distributivity, e.g. x & & (y | | z) = (x & & y) | | (x & & z)
- Absorption, e.g. x & & (x | | y) = x

1. Introduction	2. Evaluation trees	3. Valuation congruence
000	0000000	0000

Towards a systematic answer of Q2 and Q3:

 Involve Hoare's conditional (1985), a ternary connective characterized by

 $P \triangleleft Q \triangleright R \approx if Q$ then P else R

With the conditional, one can define negation and the (binary) propositional connectives that prescribe SE:

 $\neg x = F \triangleleft x \triangleright T$ $x \& \& y = y \triangleleft x \triangleright F$ $x \mid | y = T \triangleleft x \triangleright y$

Fact: basic equational axioms for the conditional imply $\neg \neg x = x$ (DNS), associativity of the propositional connectives, and De Morgan's laws.

1. Introduction	Evaluation trees	Valuation congruences	4. Remarks and conclusions
000	●000000	0000	000

2. Evaluation trees

CProp(*A*), Conditional Propositions with atoms in *A*:

 $P ::= a \mid T \mid F \mid P \triangleleft P \triangleright P \quad (a \in A).$

 \mathcal{T}_A , Evaluation trees over A, provide a simple semantics for CProp(A):

 $X ::= T \mid F \mid X \trianglelefteq a \trianglerighteq X \quad (a \in A).$

Pictorial representation: $X \leq a \geq Y$ $X \leq Y$ for $X \leq a \geq Y$

Thus: binary trees with leaves in $\{T, F\}$ and internal nodes in A, e.g.

$$\mathsf{OR} \quad (T \trianglelefteq b \trianglerighteq F) \trianglelefteq a \trianglerighteq F$$

Idea: For (i=i+1) && (i==3), thus for $(i==3) \triangleleft (i=i+1) \triangleright F$, an evaluation is a complete path in the evaluation tree

where

- the evaluation starts in the root node (i=i+1), and continues in the left branch if (i=i+1) evaluates to true, and otherwise in the right branch
- ► evaluation in the internal node (i==3) proceeds likewise
- ► leaves represent the final evaluation value

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions
000	000000	0000	000

Leaf replacement in $X \in T_A$, notation

 $X[T \mapsto Y, F \mapsto Z]$

is defined by

1. Introduction	Evaluation trees	Valuation congruences	4. Remarks and conclusions
000	000000	0000	000

The short-circuit interpretation function se : $CProp(A) \rightarrow T_A$ is defined by

se(T) = T se(F) = F $se(a) = T \trianglelefteq a \trianglerighteq F$ $se(P \triangleleft Q \bowtie R) = se(Q) [T \mapsto se(P), F \mapsto se(R)]$

Example:

 $se(F \triangleleft a \triangleright T) = (T \trianglelefteq a \trianglerighteq F)[T \mapsto F, F \mapsto T] = F \trianglelefteq a \trianglerighteq T = \swarrow F$

Thus, $se(F \triangleleft a \triangleright T)$ models the evaluation of $\neg a$, and we can involve negation by

$$se(\neg P) = se(P) [T \mapsto F, F \mapsto T]$$

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions
000	0000000	0000	000

CP, a set of axioms for .. ⊲ .. ▷ .. (*Proposition algebra* [BP10]):

$$\begin{array}{cccc} x \triangleleft T \triangleright y = x \\ x \triangleleft F \triangleright y = y \\ T \triangleleft x \triangleright F = x \\ x \triangleleft (y \triangleleft z \triangleright u) \triangleright v = (x \triangleleft y \triangleright v) \triangleleft z \triangleright (x \triangleleft u \triangleright v) \end{array}$$

Example: $CP \vdash F \triangleleft (F \triangleleft x \triangleright T) \triangleright T = (F \triangleleft F \triangleright T) \triangleleft x \triangleright (F \triangleleft T \triangleright T)$ = $T \triangleleft x \triangleright F$ = x

and thus with $\neg x = F \triangleleft x \triangleright T$ we find DNS: $\neg \neg x = x$.

Theorem. $CP \vdash P = Q \iff se(P) = se(Q)$

Proof. Easy (incl. *se*-equality is a congruence).

Note. *se*-equality is further called **Free valuation congruence** (FVC).

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions	
Evaluation trees for expressions with \neg , $\&\&$, and $ $:				
$se(\neg P) = se(P) [T \mapsto F, F \mapsto T] = se(F \triangleleft P \triangleright T)$				
$se(P \& Q) = se(P) [T \mapsto se(Q)] = se(Q \triangleleft P \triangleright F)$				
$se(P \mid \mid Q) = se(P) [F \mapsto se(Q)] = se(T \triangleleft P \triangleright Q)$				
Example: for $a, b, c \in A$ we find				
$se(a \&\& (b \&\& c)) = se((a \&\& b) \&\& c) = ((T \trianglelefteq c \trianglerighteq F) \trianglelefteq b \trianglerighteq) \trianglelefteq a \trianglerighteq F$				

FVC-axioms (thus, valid wrt. se-equality) not mentioned before:

 $F = \neg T \qquad F \&\& x = F$ $T \&\& x = x \qquad x \&\& F = \neg x \&\& F$ $x \&\& T = x \qquad (x \&\& F) || y = (x || T) \&\& y$ (x && y) || (z && F) = (x || (z && F)) && (y || (z && F))

1. Introduction

Theorem (Staudt, 2012). "Short-circuit logic for Free VC"

For propositional formulae over *A*, *T*, *F*, \neg , && , || , FVC is axiomatized by the seven axioms listed on the previous slide, and

 $\neg \neg x = x$ (DNS) $x \mid \mid y = \neg (\neg x \& \& \neg y)$ (def. of $\mid \mid$, implying DM's laws) (x & & y) & & z = x & & (y & & z) (implying assoc. of $\mid \mid$)

say *E*, thus $E \vdash P = Q \iff se(P) = se(Q)$.

Proof. Soundness (incl. congruence property) is easy. Completeness is non-trivial (20⁺ pages) and depends on:

- ► normal forms,
- ► decomposition properties of evaluation trees for && and ||, and
- ▶ the existence of an inverse g of se for normal forms: g(se(P)) = P

1. Introduction	2. Evaluation trees	Valuation congruences	Remarks and conclusions
000	000000	●000	000

3. Valuation Congruences

FVC (equationally axiomatized by CP)

- ⊆ Repetition-proof VC: equationally axiomatized by CP + two axiom schemes over A
- ⊆ Contractive VC: equationally axiomatized by CP + two axiom schemes over A
- $\subseteq Memorizing VC: equationally axiomatized by CP + one axiom typical properties: <math>x \& \& x = x$

 $x \triangleleft y \triangleright z = (y \&\& x) \mid \mid (\neg y \&\& z)$

 \subseteq Static VC \approx "sequential propositional logic": equationally axiomatized by *CP* + two axioms

These VC's are defined by varieties of Valuation algebra's [BP10].

[BP15]: RpVC – MVC also have **simple semantics**: transformations on evaluation trees (cf. the use of truth tables in Propositional Logic).

000 000000 0000 000	1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions
	000	000000	0000	000

Contractive VC: Subsequent occurrences of the same atom are contracted; equational axiomatization:

$$CP_{cr}(A) = CP \cup \{ (x \triangleleft a \triangleright y) \triangleleft a \triangleright z = x \triangleleft a \triangleright z, \\ x \triangleleft a \triangleright (y \triangleleft a \triangleright z) = x \triangleleft a \triangleright z \mid a \in A \}$$

Example: $a \&\& (a | + x) = (T \triangleleft a \triangleright x) \triangleleft a \triangleright F = T \triangleleft a \triangleright F = a$

se(a & & (a | | P)) and its contracted evaluation tree:

The transformation $cr : T_A \to T_A$ is the contraction function, and recursively traverses the tree.

1. Introduction	2. Evaluatio
000	0000000

A more concrete example for Contractive VC.

Programming with *n* Boolean registers. For $1 \le i \le n$ consider registers R_i with for $B \in \{T, F\}$,

- the atom (set:i:B) can have a side effect: it sets R_i to value B and evaluates in each state to true
- the atom (eq:i:B) has no side effect and evaluates to true if R_i has value B, and otherwise to false

Then all instances of $CP_{cr}(A)$ are valid, but not all instances of the stronger equation x & & x = x (valid under MVC): Let

t = (eq:1:F) && (set:1:T)and assume R_1 has initial value F, then $\begin{cases} t & \text{evaluates to true} \\ t\&\& t & \text{evaluates to false} \end{cases}$ Note. Not all valid eq's are derivable, e.g., $(eq:1:F) \&\& \neg (eq:1:F) = F$.
Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO'60 - September 9.2015 14/18

1. Introduction	2. Evaluation trees	Valuation congruences	4. Remarks and conclusions
000	0000000	0000	000

Theorem [BP15, BP10]. $CP_{cr}(A) \vdash P = Q \iff cr(se(P)) = cr(se(Q))$

Corollary. "Short-circuit logic for Contractive VC" For propositional formulae over A, T, F, \neg , &&, ||,

 $\left\{\begin{array}{c} \neg x = F \triangleleft x \triangleright T, \\ x \& \& y = y \triangleleft x \triangleright F, \\ x \mid \mid y = T \triangleleft x \triangleright y\end{array}\right\} \cup CP_{cr}(A) \vdash P = Q \iff cr(se(P)) = cr(se(Q))$

Open question. Does a finite, equational axiomatization of CVC exist without the use of $\ldots \triangleleft \ldots \triangleright \ldots$?

(An approach as in [Staudt12] seems not possible.)

Note. Wrt. Repetition-proof VC we have a similar Theorem, Corollary, and open question.

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions ●○○

- 4. Remarks and conclusions
- 4.1 Hoare's conditional (1985):
 - Original approach: characterization of Propositional Logic
 - Original definition: $P \triangleleft Q \triangleright R = (P \land Q) \lor (\neg Q \land R)$ However, wrt, side effects the alternative, intuitive reading

 $P \triangleleft Q \triangleright R \approx if Q$ then P else R.

is preferable: it suggests/prescribes a sequential, short-circuited interpretation

With this intuition AND the naturalness of se() AND the definitions of

 \neg , & & , ||,

it is evident that CP is most basic.

1. Introduction	2. Evaluation trees	3. Valuation congruences	4. Remarks and conclusions
000	0000000	0000	000

4.2 Sequential, propositional connectives:

T, \neg , and && (and/or definable counterparts) seem primitive:

► For example, strict (complete) sequential evaluation of conjunction, notation & , is defined by

 $x \And y = (x \mid \mid (y \And F)) \And y$

(one more argument to include T (and F) in this setting)

BUT, a sequential version of XOR, notation \oplus , is defined by

 $x \oplus y = \neg y \triangleleft x \triangleright y$

and cannot be defined modulo Free, Repetition-proof, or Contractive VC with T, \neg , and && only

Hence: .. < .. > .. is a convenient primitive, and the possible side effects of the atoms of interest determine an appropriate VC.

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO'60 - September 9, 2015 17 / 18

- **4.3** Transformations on Evaluation trees for more identifying VC's:
 - ► Transformation to a Repetition-proof evaluation tree is **natural** and **simple** (cf. [ERO60]); semantics by term rewriting is not easy in this case, e.g. (x ⊲ a ⊳ F) ⊲ a ⊳ F → (x ⊲ a ⊳ x) ⊲ a ⊳ F
 - Transformation to a Contractive or Memorizing evaluation tree is also N&S (see [BP15])
 - Transformation to a static evaluation tree is more complicated and requires an ordering of the atoms [Hoare85 + BP15]

4.4 Extensions of ... < ... b ... to many-valued logic's are easily defined (and seq. evaluation often provides good intuitions):

E.g., Belnap's 4VL [PZ07], or 5VL [BP99] = Belnap's 4VL + Bochvar's constant M which majorizes all truth values