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Abstract

Testing of software systems is an essential aspect of the software development process. In
recent years, focus has shifted from manual to automated testing and especially automated
test generation. Model-based testing is a technique that automatically creates a test suite for
a Software Under Test (SUT) by creating a model based on formal methods that describes
the behavior. One approach to model-based testing is with a transition based system,
where constraints over input and environment variables dictate whether a transition can
take place or not. The generation of test cases is done by selecting paths within the system
and verifying whether this path can be taken based on the constraints that are part of
this path. If this is possible, the next step is to find suitable value assignments for all
free variables (e.g. the variables that depend on external input) in the given constraints.
There are a number of different approaches to solving such Constraint Satisfaction Problems
(CSPs). In this thesis, we explore the usability of SMT solvers in a model-based testing
context. We evaluate our approach by analyzing the main considerations that need to be
accounted for when implementing an SMT solver in a model-based testing context, as well
as compare it to an already-existing approach that uses a Prolog-based constraint solver.
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CHAPTER 1

Introduction

Testing of software systems is an essential aspect of the software development process. Insufficient
test coverage could lead to unforeseen bugs or side effects that in some critical systems could
have fatal consequences. However, developing tests is often seen as an expensive and tedious
process and when the development of those tests is done manually, the risk of overlooking crucial
parts is higher. This can, in turn, lead to high maintenance costs and in some cases, high societal
impact.

In recent years, focus has shifted from manual to automated testing [22] and especially au-
tomated test generation. One method of automatically generating software tests is through
model-based testing. Here, instead of writing software based on a specification given by the
domain expert, a formal model that describes the behavior of the Software Under Test (SUT)
is created. This model is then used to generate a set of suitable tests. There are several differ-
ent approaches to employing model-based testing [32]. One of these approaches is by using a
transition-based system, where transitions between different states describe different actions the
system can take, based on a given input. These transitions can contain constraints that have
to be met to be able to traverse to the next state. These constraints can, for example, be a
numerical value that is required to lie within a certain numerical or a string that has to match
a given regular expression.

The generation of test cases is done by selecting paths within the system and verifying whether
this path can be taken based on the constraints that are part of this path. If this is possible,
the next step is to find suitable value assignments for all free variables (e.g. the variables that
depend on external input) in the given constraints. There are different approaches to solving
such Constraint Satisfaction Problems (CSPs). A classical method is by using backtracking and
constraint propagation [19]. These techniques are typically used in logic programming languages
like Prolog [15]. Another approach that has increased in popularity over recent years is by
using Satisfiability Modulo Theory (SMT) solvers [20]. These solvers are extensions of the classic
boolean satisfiability solvers or SAT solvers for short, and offer support to a wide variety of
theories and data types, including integers, floating-point numbers, arrays, and strings.

In this thesis, we explore the usability of SMT solvers in a model-based testing context.
We achieve this by exploring the ways an SMT solver can be used to generate test data, and
implementing an existing SMT solver into a model-based testing context. We evaluate our
approach by analyzing the main considerations that need to be accounted for when implementing
an SMT solver in a model-based testing context, as well as compare it to an already-existing
approach that uses a Prolog-based constraint solver. We primarily base our comparison on
performance, as this is an important aspect to consider when using model-based testing in real-
world applications. The central question we aim to answer is as follows:

How can we use SMT solvers in a model-based testing context?
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We divide this research question into the following sub-questions:

1. How is constraint solving used in model-based testing?

2. What is the state-of-the-art in SMT solvers?

3. How can we use SMT solvers to generate test case data?

4. How can we implement an SMT solver in an existing model-based testing tool?

5. How does an SMT solver compare to other types of constraint solvers?

1.1 Justification

This bachelor’s thesis was hosted at Axini. Axini is a company based in Amsterdam specialized
in model-based testing for real-world applications. Axini provides the Axini Modeling Suite, a
model-based testing environment based on formally defined transition methods. For this thesis,
we were able to use their resources, including the Prolog-based constraint solver that is currently
used to generate test case data to compare to the implementation presented in this thesis.

1.2 Ethical considerations

As mentioned in the introduction, testing is an essential aspect of the software engineering cycle.
Having a set of tests that covers all essential parts of a codebase is of great importance in
critical systems, but is difficult to achieve manually. Furthermore, improperly tested systems
can have real-world consequences when a bug arises, for example in railway systems 1. Applying
formally proven methods such as model-based testing takes an important step toward fault-free
systems. For industrial model-based testing tools, it is crucial that these tools achieve high
testing coverage in a reasonable amount of time. While constraint solving plays only a small
part in this landscape, having an efficient solver implementation can contribute to the efficacy
and real-world employability of such model-based testing systems.

1.3 Outline

In Chapter 2, we will give a theoretical background of model-based testing using transition
systems and the role constraint solving plays in generating test cases. Furthermore, we will give
an overview of both Prolog-based constraint solvers as well as SMT solvers. In Chapter 3, we
will discuss the SMT solver we will use in our implementation and how we plan to generate test
data using this solver. Chapter 4 will then address how this SMT solver will be implemented
in practice, and how we will compare our implementation to an already-existing solver based on
Prolog. We will furthermore discuss how our implementation can be integrated into a model-
based testing context in this chapter. In Chapter 5, we will provide the results to our comparison
and analysis, which we will discuss in Chapter 6. In this chapter, we will also reflect on our
research questions and give recommendations for future research.

1https://www.prorail.nl/nieuws/oorzaak-computerstoring-treinverkeersleiding-gevonden

8

https://www.prorail.nl/nieuws/oorzaak-computerstoring-treinverkeersleiding-gevonden


CHAPTER 2

Model-based testing

In this chapter, we will discuss model-based testing in general, and give a theoretical background
to a model-based testing technique that uses transition systems. Furthermore, we will discuss
constraint solving in general and how it is used in model-based testing.

The concept of model-based testing, or MBT for short, was first introduced in the seventies [5,
16] and was based on finite-state machines. Since then, different approaches have been proposed
that can be classified using the taxonomy proposed in [32]. A widely used approach to model-
based testing uses transition systems, which have been introduced as Labeled Transition Systems
by Jan Tretmans [31] and have been extended to Symbolic Transition Systems [13].

2.1 Labeled Transition Systems

A Labeled Transition System describes a system consisting of states with transitions. The
transitions contain labels that describe the actions the system can take. Formally, a Labeled
Transition System is defined as follows:

Definition 2.1.1. A Labeled Transition System (LTS) is a 4-tuple L = 〈S, s0,Σ,→〉, where

• S is a countable, non-empty set of states;

• s0 ∈ S is the initial state;

• Σ is a countable set of observable action labels;

• → is the transition relation from one state to another.

Generally, applications communicate through inputs and outputs. By dividing the labels in
L into input labels Σin and output labels Σout, where Σin ∩ Σout = ∅. When such systems are
visualized, input labels are usually denoted with ‘?’ and output labels with ‘!’. The action label
τ denotes an unobservable (internal) action. For brevity, the union of Σ and {τ} is often denoted
as Στ . Furthermore, the notion of quiescence is introduced. A quiescent state is a state that
does not perform any output actions [31]. A quiescent state s in an LTS is denoted by δ(s).
Additionally, we can define a quiet action δ /∈ Στ . The union of Σ and {δ} is denoted as Σδ.

To further clarify the concept of Labeled Transition Systems, we introduce the following
example. Consider a food vending machine. A customer can purchase food from this machine
by inserting coins into a slot and pressing a button next to the food item of their choice. When
the correct amount of money has been inserted and the button has been pressed, a mechanism
unlocks the door the food is kept behind and the customer can take their order.

Suppose the food in our vending machine costs e2.00 and only e0.50, e1.00 and e2.00 coins
are accepted. The resulting LTS is shown in Figure 2.1. Because the order in which the coins
are inserted matters, we have to take into account every permutation of the sequences of coins
that sum to e2.00, which are six permutations in total. As can be seen in Figure 2.1, we need 15
states to represent this system. If we were to also allow, for example, e0.20 coins, the number
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of permutations then becomes 34, which leads to a total of 180 states. This phenomenon, where
even a small increase of a system exponentially increases its number of states is called state space
explosion [8].

? 0.50

? 0.50
? 0.50 ? 1

? 1

? 2

? 0.50

? 0.50

? 0.50

? 0.50

? 0.50

? 0.50

? 0.50

? 1

? 1 ? 1

!button

!snack

τ (unlocking mechanism)

Figure 2.1: Example of a Labeled Transition System, illustrating the process of purchasing food
from a food vending machine.

2.2 Symbolic Transition Systems

A solution to the state space explosion problem with Labeled Transition Systems, is to introduce
the notion of data and variables. This results in Symbolic Transition Systems.

Definition 2.2.1. A Symbolic Transition System (STS) is a 7-tuple S = 〈L, l0,V, ι, I,Λ,→〉,
where

• L is a countable set of locations;

• l0 ∈ L is the initial location;

• V is a countable set of location variables. These variables are accessible through the whole
system;

• ι is an initialization of the location variables;

• I is a set of interaction parameters, where V ∪ I = ∅. These parameters are only acces-
sible by the switch in which they appear. To distinguish these parameters from location
variables, we denote them with an underscore;

• Λ is a countable set of observable gates. The unobservable gate is τ . For brevity, the union
of Λ and τ is often denoted as Λτ ;

• → is the switch relation. This relation contains a constraint ϕ that contains variables from
V and I. This constraint has to be evaluated as true to be able to transition to the next
location. It furthermore contains an update mapping ρ that updates the values in V.
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An STS based on the example discussed in Section 2.1 is shown in Figure 2.2. To ensure
that only coins of e0.50, e1.00, and e2.00 are accepted, the constraint for coin from the second
location back to the first one has been set to coin ≥ 0.50. To expand this to also accept e0.20
coins, we can simply modify this constraint, without having to add extra locations.

!button

τ (unlocking mechanism)

!snack
credit −= 2

?input
_coin ≥ 0.50
credit += _coin

credit < 2

Figure 2.2: Example of a Symbolic Transition System, illustrating the process of purchasing
food from a vending machine.

2.3 Input-output conformance

To verify whether a certain implementation conforms to the specified model, the implementation
relation ioco [31] is applied. Before we give the definition of the ioco relation, we need to
introduce some additional definitions relevant to ioco. These definitions are taken from [31]:

Definition 2.3.1. Let p = 〈S, s0,Σ,→〉 be a labeled transition system, then Σ∗
δ is the set of all

finite sequences over Σδ and σ ∈ Σ∗
δ is called a trace that may contain quiescence. The set of

traces of p that may contain quiescence is denoted as Straces(p). Lastly, the set of states that
are reachable from a state s through trace σ is denoted by s after σ.

Definition 2.3.2. Let s be a state in a labeled transition, then out(s after σ) gives all possible
outputs occurring after having performed the trace σ ∈ Σ∗

δ .

Using Definitions 2.3.1 and 2.3.2, we can define the ioco relation. Again, this definition is taken
from [31]:

Definition 2.3.3. Given a set of input labels Σin and a set of output labels Σout, the relation
ioco between a specification s and an implementation i is defined as follows:

i ioco s⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

To support symbolic transition systems, the sioco [12] relation is introduced. This relation does
not change ioco, but rather lifts its definition to allow the notion of data and variables.
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?a
_y > 10
x = _y + 1

?b
_y < x
x = _y − 1

τ
x = x + 2

!c
x > 10 ∧ x < 20

Figure 2.3: Example of a trace for some symbolic transition system.

2.4 Test case generation

A challenge in generating test cases is ensuring that the SUT has been tested thoroughly within
some finite amount of time. Certain coverage criteria can be used to verify whether a SUT
has been sufficiently tested. A possible approach to this problem is by using a Trace Coverage
Strategy [14]. Here, a finite set of traces from the model is constructed. For each trace, a
trace-constraint is constructed. For each transition in the trace, this trace-constraint takes into
account both its update mapping and its constraint.

By executing the algorithm given by [14], a trace-constraint is constructed by traversing the
transitions in the trace and building a tree-like structure that represents the trace-constraint.
The constraint structure corresponding to the trace given in Figure 2.3 is shown in Figure 2.4.
This tree corresponds to the trace-constraint

(((( y1 − 1) + 2 > 10) ∧ (( y1 − 1) + 2 < 20)) ∧ ( y1 < y0 + 1)) ∧ y0 > 10.

Here, y0 refers to the first interaction parameter y and y1 to the second parameter. Keep
in mind that these parameters are local to their transition, so they are renamed to distinguish
between different parameters of the same name.
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−

_y1 1

2

_y1 +

_y0 1

Figure 2.4: Tree representation of the trace-constraint corresponding to the trace given in
Figure 2.3

By treating the trace-constraint as a Constraint Satisfaction Problem (CSP) [4], we can
determine if a trace can take place at all by determining whether a solution exists for the given
constraint. A CSP is defined as follows:

Definition 2.4.1. An instance of a CSP is a triple (V,A, C), where

• V is a set of variables;

• A is a domain of values;

• C is a set of constraints {C1, . . . , Cn}. Each constraint Ci ∈ C is a pair 〈si, ρi〉, where

– si is a tuple of variables of length mi, called the constraint scope;

– ρi is an mi-ary relation of A, called the constraint relation.

The question that we want to answer then becomes:
Does there exist a solution, i.e. a function f , from V to A, such that for each constraint 〈si, ρi〉 ∈
C, with si = (xi1 , . . . , xim), the tuple (f(xi1), . . . , f(xim)) belongs to ρi?

If no solution exists for the given trace-constraint, the trace can be omitted from the test
suite. If a trace can take place, we can use a constraint solver to find a set of values for each of
the interaction parameters for which the constraint is satisfiable. From each set, the minimum,
maximum, and a random value is chosen [24]. These values are then used to generate test
cases. Preferably, a test case consists of the boundary values of a variable (either minimum or
maximum), as using boundary values of a test set has proven to generally be most effective [26].
However, it is not always possible to assign a boundary value to all variables in a constraint and
have it still be satisfiable. In that case, a random value is assigned to one or more variables to
make the constraint satisfiable again.

2.5 Constraint solving

A constraint solver is needed to evaluate the trace-constraints and generate suitable test data.
While there are many approaches to solving given sets of constraints, each with their own types
of applications, model-based testing tools typically use Constraint Logic Programming (CLP) or
SMT solving to generate test cases.
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2.5.1 Constraint Logic Programming

Constraint solvers using CLP initially got their origin in artificial intelligence, but quickly found
popularity in other fields, including test model-based testing [17]. Typically, constraints solvers
using CLP solve constraints over finite domains. The first methods of solving a set of constraints
meant simply generating every possible set of solutions and checking if it satisfied all constraints
[19]. Over the years, these methods have become more and more sophisticated, which has
greatly improved the performance of these solvers. Modern constraint solvers use a technique
called constraint propagation. Here, the domains of constraints and the constraints itself are
repeatedly reduced until ultimately a set of possible solutions is found that satisfy the original
set of constraints. To achieve this, a primitive constraint X ∈ r, where X is a variable and r
a (non-empty) finite set of natural numbers is used as a starting point [9]. This automatically
implies that the values of the given solution have to lie within r, and that the constraints have
to be over natural numbers.

2.5.2 SMT solving

Another approach to solving CSPs is by using satisfiability modulo theory (SMT) solvers. These
solvers are an extension of boolean satisfiability (SAT) solvers and support a number of the-
ories, including integers, reals, arrays, and strings [20]. While SAT (and by extension SMT)
problems are typically NP-complete, state-of-the-art algorithms have been developed that make
it possible to handle such problems in an industrial context [23]. Most modern SAT solvers
employ some variation of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, and early
SMT solvers employed a technique called ‘bit-blasting’, where every constraint would be trans-
lated to a boolean expression and passed along to a classical SAT solver. More modern solvers,
however, use a more general variant of the DPLL algorithm, called DPLL(T ) [23]. Furthermore,
most state-of-the-art SMT solvers combine different methods to increase performance [2, 11, 21].
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CHAPTER 3

Designing a constraint solver for
model-based testing

In this chapter, we will discuss the features required for a constraint solver to be used for model-
based testing. Using these requirements, we will choose an SMT solver and explain how we will
use the capabilities of our chosen solver to meet these requirements.

3.1 Main requirements

For the generation of data for test cases as described in Section 2.4, the constraint solver does
not need to be able to return all solutions to a set of constraints. Rather, it should at least be
able to find the boundary values as well as random values that satisfy the given constraints. In
a finite domain solver such as GNU Prolog, it is trivial to find the boundary values, because the
constraint solver returns the whole range of values that satisfy the given constraint. We then
only need to select the smallest and largest value in that range. Finding boundary values using
an SMT solver is generally more difficult, as they were initially meant to only determine whether
a constraint is solvable in the first place. However, with the growing number of applications
requiring the free variables in a constraint to be assigned non-arbitrary values, research into
achieving this has increased in the last few years. An extension to SMT, Optimization Modulo
Theories (OMT), deals with optimizing solutions to constraints [29]. The constraint solver we
will use therefore has to support optimization.

Since model-based applications for industrial systems often support different data types and
structures, the solver should be capable of supporting and combining different theories. Another
point of importance, which we only touched upon in the introduction of this thesis, is the
performance of the solver. Since model-based testing in practice is generally used in large-scale
and critical applications [22], it is of importance that tests are generated as fast as possible,
and using a fast constraint solver can contribute to this. Ideally, it should be able to match or
outperform existing implementations, but at best it should be able to solve a constraint and get
the desired solutions within a tenth of a second.

3.2 Selecting an SMT solver

While there are several SMT solvers currently being developed and maintained, only two solvers
are available that support optimization: Z3 [20, 3] and OptiMathSAT [30], which is an extension
to the general SMT solver MathSAT 5 [7]. These solvers share a number of similarities. They both
offer bindings several programming languages as well as a stand-alone command line interface.
Both interfaces support SMT-LIB as an input format. SMT-LIB [1] is a standardized language
for SMT solvers that represents constraints and expressions as Common-Lisp S-expressions.
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The main difference between Z3 and OptiMathSAT (and MathSAT in general) is its exten-
siveness. Z3 offers support for far more theories and data types, including strings and user-defined
data structures. This makes Z3 more versatile for different applications and more suitable for
model-based testing systems with custom data types. Considering this, we will use Z3 in our
implementation. For the remainder of this chapter, we will explain how we will use Z3 to meet
the requirements as stated in the section above. Throughout the chapter, we will give examples
using the SMT-LIB syntax. An example of a constraint expressed using SMT-LIB is given in
Figure 3.1. Here (check-sat) command verifies whether the given constraint can be satisfied,
after which (get-value (X)) returns a value that satisfies the constraint. Keep in mind that
this does not yet use the optimization features; we will touch on that in the next section.

1 (declare-const X Int)

2

3 (assert (and (> X 0) (< X 12)))

4

5 (check-sat)

6 (get-value (X))

Output:

sat

((X 11))

Figure 3.1: SMT-LIB representation of the constraint 0 < X < 12.

3.3 Adapting Z3 to model-based testing

There are a few requirements that need to be met for Z3 to be usable as a constraint solver
within AMS. In this section, we discuss what those requirements are and how we plan to meet
them.

3.3.1 Support for different valuation methods

As mentioned previously, to generate test cases we need the boundary (minimum and maximum)
values of the variables in a constraint for which it can be satisfied, as well as random values.
Finding the boundary values and a random value requires different approaches, so we will discuss
them separately.

Finding boundary values

As mentioned in the previous section, Z3 offers support for such optimizations [3]. Using either
the minimize or maximize command, we can find the optimal solution for the given variables.
An example using minimize is given in Figure 3.2.

Z3 offers different priority options for optimizing constraints containing multiple variables [3].
By default, it uses a lexicographical priority. This means that it will solve the objectives in the
order of declaration. For example, in Figure 3.2, X is minimized first, which yields the result
X = 0. After that, Y is minimized. To satisfy the given constraint, Y is evaluated to Y = 10.
If we were to minimize Y first, the results would be inverted. To optimize every variable in a
constraint independent from each other, we can use the box option. This would result in X and
Y both being assigned 0. Lastly, optimization objectives can be prioritized using Pareto fronts,
where every variable is optimized as best as possible. Note that this will initially lead to the
same solution as with the lexicographical priority. However, if we check the assertions again, X
and Y are assigned 1 and 9, respectively, whereas the lexicographical priority will always result
in the same objectives. In theory, we could use the Pareto prioritization to obtain all possible
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1 (declare-const X Int)

2 (declare-const Y Int)

3

4 (assert (= (+ X Y) 10))

5 (assert (>= X 0))

6 (assert (>= Y 0))

7

8 (minimize X)

9 (minimize Y)

10

11 (check-sat)

12 (get-objectives)

Output:

sat

(objectives

(X 0)

(Y 10)

)

Figure 3.2: Finding the minimum X and Y that satisfy the constraint
X + Y ≥ 10 ∧X ≥ 0 ∧ Y ≥ 0 using Z3’s optimization feature.

combinations of objectives that satisfy a given constraint. However, this would require a call to
the solver for every possible combination. This is not viable for constraints with a large number
of free variables or variables with a large solution space. Furthermore, this is unnecessary for
the method of test case generation discussed in this thesis.

Considering the different prioritization methods, the default lexicographical priority seems
most suitable for the method of test case generation as discussed, because it ensures that at least
one variable gets optimized. Furthermore, often the majority of variables in the constraints in
an STS are independent of each other. This means that lexicographic optimization is sufficient
most of the time.

Finding random values

In contrast to finding boundary values, Z3 does not offer native support for finding randomized
solutions to given constraints. There are two possible methods we can implement to still be able
to do so. The first one is to use the Pareto front as discussed above to generate a set of solutions
from which we randomly pick one set. This would not be ideal, since it requires multiple calls
to solver by default. Therefore, we propose a second option where we utilize Z3’s optimization
feature. By minimizing and maximizing a variable at the same time, we can find the complete
range of each variable in the constraint. For each variable, we then pick a random value between
that range and add a constraint assigning that value to the variable and check the satisfiability
of these constraints. If the solver returns sat, it means we’ve found valid random values for each
variable. If the solver returns unsat, we repeat the above steps until we find a set of variable
assignments that does satisfy the given constraints. To prevent repeating this loop with sets of
assignments from which we already know are unsatisfiable, we keep track of these sets so we can
exclude them when finding new random assignments. See Algorithm 1 for the full algorithm.
By using this algorithm we will make two calls to the solver in the best case, and 1 + n calls
in the worst case, where n is the number of possible combinations of random assignments. For
unbounded constraints, this means that this algorithm can run infinitely long. However, as we
mentioned before, most variables in the constraints of an STS are unrelated which makes the
chance of this occurring relatively slim.
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Algorithm 1 Finding random solutions for a set of variables V in a set of constraints C.

1: function FindRandomValues(V , C)
2: for var ∈ V do
3: Minimize(var)
4: Maximize(var)
5: end for
6: FindRanges(V , C) . Find the range for every variable.
7: if unsat then
8: return
9: end if

10: repeat
11: for var ∈ V do
12: a := Rand(min,max) . Find a random value in the range of v.
13: C.Add(v = a) . Add a constraint that equals v to a to the existing constraints.
14: end for
15: if A ∈ E then . Continue if the set of assignments has been checked already.
16: continue
17: end if
18: CheckSat(V , C) . Check if C is satisfiable with the random assignments.
19: if unsat then
20: E.Add(A) . Exclude this set of assignments in next iterations.
21: end if
22: until sat
23: end function

3.3.2 Support for different data types

Z3 offers a wide range of theories and data types. Modern applications rely on in- and output
other than boolean and numerical values, such as strings [25], and more complex data structures
[33]. Thus, besides boolean constraints and numerical constraints (e.g. constraints over integers
and real numbers), our implementation should be able to at least support constraints over strings
and data structures such as arrays, structs, and hashes.

Boolean and numerical constraints

Since SMT solvers are an extension of SAT solvers, a classical SAT solver is used to solve
constraints over boolean variables. As for numerical variables, Z3 supports constraints over both
integers and real numbers, along with a number of relational, logical and arithmetic operators
[34]. In Z3, expressions are represented as nodes in an abstract syntax tree. Because trace-
constraints are constructed as a tree structure, these constraints can be constructed in Z3 by
traversing this tree.

An important thing to take into account are constraints using non-linear arithmetic. Although
steps are being made into being able to solve these types of constraints over integers as well as real
numbers [6], Z3 does not yet support non-linear integer arithmetic and only supports non-linear
polynomial real arithmetic [18]. A method of handling constraints containing non-linear integer
arithmetic could be to add a pre-processing step that rewrites these constraints to constraints
over real numbers. Non-linear transcendental arithmetic can furthermore be approximated by
taking their k-th Taylor polynomial instead. However, as this is beyond the scope of this thesis,
for now, we will restrict our implementation to linear arithmetic only.

Constraints over strings

Z3 offers a specialized built-in solver for string constraints, Z3-str [35]. Contrary to single-purpose
string solvers, Z3-str allows string constraints to be combined with other data types, which makes
it highly suitable for model-based testing purposes. Besides checking string equality, Z3-str also
supports more complicated string operations, such as sub-strings, regular expressions, and string
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1 (declare-const S String)

2 (declare-const X Real)

3

4 (assert (= S "Hello, world!"))

5 (assert (and (>= X 3.14) (<= X 9.81)))

6

7 (maximize X)

8 (check-sat)

9 (get-value (S X)

Output:

sat

((S "Hello, world!")

(X (/ 981.0 100.0)))

Figure 3.3: Example of combining different data types in Z3.

concatenation. For this thesis, we will limit ourselves to solving string constraints that check
equality of a given string literal, as these comparisons are most common in model-based testing.

Constraints over data structures

While the implementation of constraints over (multi-dimensional) data types such as arrays,
structs, and hashes are beyond the scope of this thesis, it is worthwhile to mention that Z3 does
offer support for such data structures. Whereas arrays are natively supported by Z3, a datatype
feature is offered to let users define their own (recursive) data types [34]. This feature can be
used to create an abstraction layer for other data types, such as the ones mentioned here.

19



20



CHAPTER 4

Experimental design and setup

In this chapter, we will describe how we implemented the design proposed in the previous chapter.
First, we will discuss the architecture of the model-based testing platform offered at Axini. Then,
we will explain how we will implement Z3 to be able to integrate with the existing platform.
Lastly, we will describe how we will compare our implemented constraint solver to the constraint
solver that is currently deployed at Axini.

4.1 The Axini Modeling Suite AML

STS-engine

Dumont

treeSolver
(GNU Prolog)

Figure 4.1: Structure of
the Axini Modeling

Suite.

The Axini Modeling Suite offers a Domain Specific Language (DSL)
called the Axini Modeling Language (AML). It is used to describe
the desired behavior of a system that handles observable input and
output. AML supports different data types for both interaction pa-
rameters and location variables. The set of data types AML currently
supports consists of integers, decimal numbers, strings (including reg-
ular expressions), dates, and times. Furthermore, it is possible to store
these data types in (nested) lists, hashes, and structs. Lastly, a special
void data type is supported to denote the absence of a value.

Based on the models specified using AML, test cases are gener-
ated for the Software Under Test (SUT). A schematic overview of the
structure in the AMS with regard to constraint solving is shown in
Figure 4.1. When a model has been specified in the Axini Modeling
Language, a symbolic transition system is generated from this model
using the STS-engine. The constraints in this system are represented
by Axini’s constraint language Dumont. Dumont internally represents
the defined constraints as a parse-trees, which are solved using tree-
Solver, which creates a GNU Prolog query from the parse trees and
sends it to the constraint solver.

4.1.1 GNU Prolog

GNU Prolog is a Prolog compiler that includes a constraint solver over finite domains [10].
Solutions to the variables in a set of constraints can be represented in two ways [9]:

• MinMax, where only the minimum and the maximum value of r are stored. This represen-
tation is used for intervals. An example constraint for which this representation would be
used is 6 < X < 12, where the resulting range would be X ∈ {7 . . . 11}.

• Sparse, where each value of the range is stored in a bit-vector. This representation is used
when a ‘hole’ appears in the range, which for example is the case for the constraint X < 6∧
X > 12. The resulting range for this constraint would be X ∈ {0 . . . 5, 13 . . . vector max},
where vector max is the size of the bit-vector.
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Because GNU Prolog is a finite domain solver, it is only to solve constraints for values within
the range [0, . . . , 268435455].

There are a few drawbacks to the use of GNU Prolog within AMS. The main drawback is its
lack of support for values other than natural numbers. As mentioned, AMS supports different
data types as well as some data structures. Currently, this is solved by encoding every data type
into a positive integer. For example, a decimal number can be encoded by multiplying them
by 10d, where d is a set precision. While this makes it possible to solve constraints containing
different data types, it also introduces restrictions. Decimal numbers cannot be multiplied or
divided, because they cannot be decoded back to the correct value when those operations have
been performed. Another example is with time values. These are encoded into seconds. Because
of this, it is only possible to solve constraints for ranges within eleven days since ranges beyond
that will cause overflow, as they exceed the domain of GNU Prolog.

4.2 Implementation of Z3

The Axini Modeling Suite is implemented in the programming language Ruby, a dynamically
typed interpreted programming language [28]. Z3 itself does not offer Ruby bindings to the
solver. A third-party Ruby interface to Z3 exists1, but it is still in early stages of development.
Furthermore, it provides features of Z3 we do not immediately need for our implementation,
while at the same time it lacks some features we do need. Therefore, we decided to use Z3’s
native C API and the Ruby-FFI library [27] to implement our own Ruby interface to Z3, so
it can be tailored to be used in model-based testing, and specifically in the Axini Modeling
Suite. Our implementation, dubbed ‘SMTreeSolver’, creates a layer of abstraction around Z3’s
native C bindings and allows constraints to be built as abstract syntax trees, that can then be
solved with a single method call. This allows the solver to be implemented relatively easily into
the AMS environment, as the constraints are already represented as abstract syntax trees with
Dumont. An example of a constraint implemented in SMTreeSolver is shown in Figure 4.2, which
implements the constraint given in Figure 3.2.

4.3 Performance of SMTreeSolver

For our analysis of the SMTreeSolver, we will use Axini’s treeSolver as a reference. We will
compare both solvers on performance. For our implementation to be applicable in a real-world
model-based testing tool such as AMS, the performance of our implementation should at least
match that of treeSolver. To test this, we compiled a set of constraints and execute it on
both the treeSolver as well as the SMTreeSolver implementation. Table 4.1 shows the types of
constraints we will use in our comparison. The constant values will be randomly generated and
we will measure the time it takes to solve each constraint, using different valuation methods. We
will repeat this multiple times for each type of constraint, after which we will use the average
execution time for our final comparison.

4.3.1 Experimental environment

Both SMTreeSolver and treeSolver are implemented in Ruby. Therefore, we will use Ruby’s
built-in Time class to measure the time it takes to solve the given constraints. The experiments
are run on a machine running Ubuntu 18.04 with an Intel i7-6700HQ 8-core CPU and 16 GB
RAM.

1https://github.com/taw/z3
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1 # Create a new solver instance and an instance for

2 # creating expressions.

3 @solver = Smtreesolver::Solver.new

4 @expr = Smtreesolver::Expr.new

5

6 # Define the variables that need to be solved.

7 x = Smtreesolver::IntVar.new('X')

8 y = Smtreesolver::IntVar.new('Y')

9

10 # Define the constraint constants.

11 ten = Smtreesolver::Int.new(10)

12 zero = Smtreesolver::Int.new(0)

13

14 # Define the expressions that make up the constraints.

15 plus = @expr.add([x.ast_node, y.ast_node])

16 eq = @expr.eq(plus, ten.ast_node)

17

18 ge1 = @expr.ge(x.ast_node, zero.ast_node)

19 ge2 = @expr.ge(y.ast_node, zero.ast_node)

20

21 # Send the variables and expressions to the solver,

22 # along with the desired valuation method and print

23 # the results.

24 answer = @solver.solve([x, y], [eq, ge1, ge2], :min)

25 puts answer

Output:

{"X" => 0, "Y" => 10}

Figure 4.2: Ruby implementation of the constraint given in Figure 3.2.

23



Table 4.1: Types of constraints used in the performance comparison between SMTreeSolver and
treeSolver.

Category Description

Sparse domains
Constraints over integers and reals that contain ‘holes’, e.g. are of the
form a < x < b ∧ c < x < d, where x is a variable and a, b, c, and d are
constants, with a < b < c < d.

Variable addition
Arithmetic addition constraints over integers, e.g. constraints of the
form x + y = c, where x and y are variables and 0 < c < 5000 is a
constant.

Combined constraints

A set of constraints that combines different integers, real numbers and
strings. This set consists of the following constraints:

i1 > cmin ∧ i1 < cmax

i2 ≥ c1 + 1 ∧ i2 ≤ cmax
r1 > cmin ∧ r1 < cmax

r2 ≥ c2 + 1 ∧ r2 ≤ cmax
s = c3

Where i1, i2 are integer variables, r1, r2 are real variables, s is a string
variable, c1, c2, c3 are randomly generated constants, cmin = 0 and
cmax = 268435455 (the largest value possible in GNU Prolog).
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CHAPTER 5

Results

In this section, we present the results of our implementation. We will evaluate the suitability
of using Z3 in a model-based testing environment (in this case, the Axini Modeling Suite) using
the requirements specified in the previous chapter, and we compare our implementation to an
already-existing constraint solver for test case generation using GNU Prolog.

5.1 Support for different valuation methods

min max random
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Figure 5.1: Average execution time over 500 runs for constraints of the form
a < x < b ∧ c < x < d, where x is a variable and a, b, c, and d are randomly selected constants

between 0 and 5000, with a < b < c < d.

Because of its built-in optimization feature, Z3 is able to find the boundary value of a variable
within a reasonable time. However, as can be seen in Figure 5.1, the proposed method of finding
random values takes around 20 times as long compared to the boundary variables. Furthermore,
there is a significant discrepancy between the time it takes to find a random solution for different
constraints, which for sparse domains is illustrated in Table 5.1. In fact, in some cases (e.g. on
constraints with dependent variables over real numbers) the proposed method for finding takes
minutes or longer, even for simple constraints. The reason behind this is that our method does
not take into account these dependencies. This could be solved by detecting which variables
depend on each other and only assigning a random solution to one of these variables and letting
the solver pick solutions for the remaining variables using this random assignment. However, to
be able to do so, we would need to be able to recognize which variables depend on each other,
which is not possible in the current implementation of SMTreeSolver.
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Table 5.1: Execution times (average, minimum, and maximum) for constraints over sparse
domains.

Variable
type

Valuation
method

Average Standard
deviation

Minimum Maximum

Integer min 9.811 · 10−4 1.394 · 10−4 8.584 · 10−4 2.714 · 10−3

max 8.063 · 10−4 1.081 · 10−4 7.082 · 10−4 1.319 · 10−3

random 1.807 · 10−2 1.198 · 10−2 1.115 · 10−2 9.653 · 10−2

Float min 1.007 · 10−3 1.676 · 10−3 8.152 · 10−4 3.843 · 10−2

max 9.586 · 10−4 1.221 · 10−4 8.340 · 10−4 1.916 · 10−3

random 1.874 · 10−2 1.374 · 10−2 1.080 · 10−2 1.151 · 10−1

5.2 Support for different data types

As noted in Chapter 3.3.2, Z3 supports different data types and allows users to define their own
data types. Currently, SMTreeSolver supports boolean values, integers and reals, and limited
support for strings. Whereas the Prolog-based treeSolver requires an encoder that encodes in-
coming values into a finite (integer) domain, constraints in SMTreeSolver can largely be evaluated
‘as-is’. This solves the problem treeSolver currently has where certain values have to be within a
certain range to prevent their encodings from exceeding GNU Prolog’s domain. Moreover, more
complex constraints are possible by using Z3, because the restrictions that encoding the data
types introduced are taken away.

Whereas in GNU Prolog (and thus in treeSolver), a set of constraints is evaluated at once by
joining the individual constraints by logical ‘and’-expressions, Z3 (and therefore SMTreeSolver)
allows for independent assertions as well as joined assertions. We compared these two methods
of evaluating by using the constraint combining different data types as defined in Table 4.1
and solving it using SMTreeSolver, once by asserting sub-constraints over different data types
independently and once by asserting it as one big constraint. The results are shown in Figure
5.2. It is clear that asserting sub-constraints over different types independently reduces the time
it takes to solve a constraint by approximately 50%, which is a significant difference. A reason
for this could be that by asserting constraints over different data types independently, Z3 is able
to optimize the solver better for each sub-constraint.

5.3 Performance compared to treeSolver

One of the requirements of SMTreeSolver is that it should be able to solve the given constraints
within a reasonable time. Ideally, it should match or exceed the performance of Axini’s current
treeSolver implementation, but it should at least be able to solve commonly used constraints
within a tenth a of second. Figure 5.3 shows that although SMTreeSolver meets the latter
requirement, it is significantly slower than the treeSolver. Furthermore, depending on the type of
constraint, there seems to a larger difference in performance between the minimum and maximum
valuation methods with SMTreeSolver. This is less apparent in the treeSolver. For both solvers,
there is a significant deviation in the performance which applies to all types of constraints that
have been analyzed. This can be explained by the fact that the constant values are randomly
generated, where constraints with a larger ‘gap’ between different values generally take longer to
be solved.
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Figure 5.2: Comparison of performance when asserting each constraint independently versus as
one constraint joined by logical ‘and’-expressions (average over 500 runs).
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Figure 5.3: Performance of the treeSolver implementation using Prolog compared to the
SMTreeSolver implementation using Z3 (average over 500 runs, using the constraints given in

Table 4.1).
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CHAPTER 6

Discussion

This chapter will discuss the research questions presented in the introduction of this thesis and
will be answered based on our findings during our research. Furthermore, we will address some
threats that could reduce the validity of our research and discuss how we attempted to minimize
these threats.

6.1 Revisiting the research question

By composing the following research questions, we aimed to answer the central question of this
thesis, how can we use SMT solvers in a model-based testing context? :

1. How is constraint solving used in model-based testing?

2. What is the state-of-the-art in SMT solvers?

3. How can we use SMT solvers to generate test case data?

4. How can we implement an SMT solver in an existing model-based testing tool?

5. How does an SMT solver compare to other types of constraint solvers?

In this section, we will discuss each question and our corresponding findings separately.

6.1.1 How is constraint solving used in model-based testing?

The model-based testing approach that is central in this thesis is by using Symbolic Transition
Systems (STS) that describe the behavior of a system. Transitions can contain constraints that
depend on location variables and interaction parameters that determine whether a constraint
can take place or not. Test cases are generated by selecting a set of sequences from an STS (a
trace) and using the corresponding constraints to determine whether a trace can be traversed in
the first place and to generate test case data. This is done with a constraint solver. Two types of
constraint solvers that are typically used for this purpose are constraint solvers using Constraint
Logic Programming or SMT solvers. While both types of solvers ultimately achieve the same
objective, namely validating a set of constraints and generating a set of solutions, the approach
to achieving this differs.

6.1.2 What is the state-of-the-art in SMT solvers?

SMT solvers have improved significantly in recent years. Where classical approaches to SMT
solving essentially encompassed translating constraints to boolean formulas and solving them
using a SAT solver, modern SMT solvers offer a set of different approaches for different types
of constraints. Z3, one of the most versatile SMT solvers currently available, is able to solve
numerical constraints as well as constraints consisting of strings, arrays, and user-defined data
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types. Furthermore, by using its optimization features it is possible to obtain the boundary
values of a constraint variable.

6.1.3 How can we use SMT solvers to generate test case data?

To generate test case data, the constraint solver needs to be able to find the boundary values
of a variable for which the given set of constraints holds, as well as be able to generate random
solutions. As pointed out in the discussion of the previous research question, we can use Z3’s
optimization features to find these boundary values of a variable. Z3 does not offer a built-in
possibility for generating random solutions, but in some cases, we can use the boundary values
to generate a set of random solutions that satisfy the given constraints.

6.1.4 How can we implement an SMT solver in an existing model-based testing tool?

For this thesis, we were able to use the Axini Modeling Suite (AMS). This is a model-based
testing tool that uses Symbolic Transition Systems to generate test cases and GNU Prolog as
its constraint solver. The Axini Modeling Suite is implemented in Ruby. Because of this, we
implemented our interface to Z3, dubbed ‘SMTreeSolver’ after the already existing ‘treeSolver’, in
Ruby as well. Since Z3 itself does not provide bindings to Ruby, we used the Ruby-FFI library to
create bindings to the native C API. The constraints in AMS are represented as abstract syntax
trees, which can be used as input to the SMTreeSolver interface which will use Z3 to obtain the
requested values.

6.1.5 How does an SMT solver compare to other types of constraint solvers?

We compared our SMTreeSolver implementation using Z3 to the already existing treeSolver
implementation that uses the finite domain solver GNU Prolog. While we found that using Z3
instead of a finite domain solver is more suitable to handle constraints over different data types,
since most of these data types are natively supported by Z3, we did find that that there is a
decrease in performance compared to a Prolog-based solver. Nevertheless, the performance of
SMTreeSolver can still be considered ‘reasonable’, as it is capable of solving the constraints used
in our experiments within a hundredth of a second. Furthermore, the proposed solution for
finding random values that satisfy a given constraint proved to be insufficient for our purposes,
especially when there are dependencies between variables in a constraint.

6.2 Threats to validity

The largest threat to the validity of our findings is that, due to the scope of this research, we have
not yet been able to test our solution in a ‘real-world’ environment, e.g. by integrating it into the
Axini Modeling Suite and validating it against a verified model. Because the intent is to apply
our solution in the Axini Modeling Suite, we still have to do this outside of this thesis, along
with writing an elaborate set of tests in general to ensure the robustness of our implementation.

As for the validity of our experiments, we aimed to provide our results as reliably as possible
by repeating each of our experiments a sufficient amount of times. The results presented are
unfiltered, which may cause outliers to skew some of the results. However, we believe that because
of the nature of our research even the outliers are of importance because these can appear in
real-world scenarios as well.

Lastly, our aim was to make our experimental set-up for comparing the SMTreeSolver against
the treeSolver as identical as possible in an attempt to eliminate any outside factors that could
influence the results of the measurements. This was primarily done by using the programming
language Ruby for both implementations and using the same method of measuring performance.
However, it is still possible that during the execution of our experiments, some (background)
processes were using parts of the available resources. While we deem the chances of this influ-
encing our final results to be minimal, a repetition of our experiments on a dedicated server or
a virtual machine with dedicated resources might confirm that our measurements are reliable.
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CHAPTER 7

Conclusions

The central question of this thesis was

How can we use SMT solvers in a model-based testing context?

We answered this question by first providing a background to model-based testing using Symbolic
Transition Systems and by examining how constraint solvers, in general, are used in this context.
Using this background, we compiled a set of requirements and features that an SMT solver should
support to be usable for model-based testing. We found that the SMT solver Z3 best suits these
requirements. We then proceeded to create an interface (SMTreeSolver) to Z3 that can be used
in an already existing model-based testing tool, the Axini Modeling Suite (AMS) to be precise.
Because AMS already employs a constraint solver using GNU Prolog, our implementation would
ideally match or best the performance of this solver. While our implementation can solve given
constraints within a reasonable time (e.g. within a hundredth of a second), it is not able to
match the performance of the currently implemented solver. Since our implementation is able
to support different data types and structures without the intervention of an encoder like the
current implementation requires, more possibilities regarding the types of constraints to be solved
are introduced. For example, it would be possible to solve constraints over strings using regular
expressions or constraints over user-defined data types. Having these possibilities shows that the
use of SMT solvers is a valuable addition to the model-based testing landscape.

7.1 Further Work

While our research shows that SMT solvers are suitable to be used in model-based testing,
there are still some steps to be made before our implementation can be used in an industrial
setting like AMS. Assuming SMTreeSolver will eventually be used within AMS, we first of all
need to ensure that all data types the Axini Modeling Language supports are also supported
by SMTreeSolver. While most data types can be directly implemented because Z3 offers native
support for constraints with these data types, there some types that Z3 doesn’t immediately
recognize. One solution would be to use Z3’s support for user-defined data types. However, it
should be examined whether that would be the preferable solution over the encoding method
Axini currently uses for its Prolog-based solver.

In terms of real-world usability, the method proposed in this thesis for finding random solu-
tions has proven to be insufficient, especially for constraints where dependencies between variables
appear. We already touched upon possible solutions to this in Chapter 5.1, but an in-depth study
into finding random solutions to a given constraint could further enhance the use of SMT solvers
in model-based testing.

Another point of attention is the memory management of the SMTreeSolver. Because its
implementation in Ruby is bound directly to Z3’s native C API, we have to be extra careful in
terms of memory management. Examining the memory usage and especially potential memory
leaks was outside the scope of this research, should be tested thoroughly before being deployed
to a production environment.
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Lastly, we mentioned in Chapter 3.3.2 that Z3 (and SMT solvers in general) do not yet offer
support for nonlinear arithmetic, except nonlinear polynomial real arithmetic. Solving this issue
is far beyond trivial, and even impossible for integer arithmetic. However, for the specific purpose
of generating test cases, it might be possible to create a ‘best-effort’ algorithm that generates a
set of constraints that approximates the required test case data.
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