One-Counter Threads
Reachability and Action Forecasting

Alban Ponse

Section Software Engineering
Informatics Institute
University of Amsterdam

PAM - June 13, 2007

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007

1/28

Contents

@ Basics ol L R

@ Services and
one-counter threads

A MOST IMPRESSIVE
DEMORNSTRATION, COLLEAGUE...

© Action forecasting
. . . BUT will IT WORIK
(including risk iN THEORY ?
assessment)

@ Conclusion, digression
and discussion
(PAM’s future?)

avasnT

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 2/28

1. Basics

Given a set A of actions, basic thread algebra (BTA) has the following
constants and operators:

@ the termination constant S
@ the inaction or deadlock constant D

© for each a € A, a binary postconditional composition operator
Jdab

Execution of an action yields a reply value t rue or false.

The postconditional composition P < a> Q represents action a
followed by thread P if t rue was replied, and a followed by Q
otherwise.

Action prefix: ac PE P <a> P
Action prefix binds stronger than postconditional composition.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 3/28

The approximation operator 7,(_) gives the behavior of a thread up to
depth n (n € N).

Q (P da> Q) =mp(P)darm,(Q)

Example: mo(bocoS<da>S)=boD<dal>S

Every thread in BTA is finite: there is a finite upper bound to the
number of consecutive actions it can perform.
So, for every P € BTA there exists n € N such that

mn(P)=mp1(P)=---=P

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 4/28

Infinite threads

We define BTA®, the set of projective sequences of BTA terms:

We turn the set BTA* into an algebra by defining operations on it.
Overloading notation, let

@ D=(D,D,D,...)
Q@ s=(D,S,S,...)

Q (Pn)nen < @™ (Qn)nen = (Rn)neny With Ry =D
Rn+1 :PnﬁaE Qn

The elements of BTA are included in BTA* by a mapping following this
definition.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 5/28

Regular threads

Informally, a thread is regular if it has finitely many states.

The regular threads are exactly the threads that can be defined by a
finite linear recursive specification, i.e., a set of equations

Xi = t,'
for i € | with / some finite index set, variables x;, and all {; terms of the
form S, D, or x; < a> x, with j, k € /.

Fact

@ Variables in these specifications have unique solutions (fixed
points).

@ The finite threads form a proper subset of the regular threads,
which form a proper subset of BTA>.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 6/28

Convention

We shall identify variables in linear recursive specifications and their
fixed points.

For example, we say that P is the thread defined by P = ao P instead
of stating that P equals the fixed point for x in the specification
{x =ao x}.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 7/28

Convention
We shall identify variables in linear recursive specifications and their
fixed points.

For example, we say that P is the thread defined by P = ao P instead
of stating that P equals the fixed point for x in the specification
{x =ao x}.

Example
We define regular thread P by

P=QJa>R
Q=DboP
R=T<c>P
T=S

Note the finite graphical representation of P. [Draw on blackboard]

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 7/28

2. Services and one-counter threads

We have assumed that a thread is executed in an environment that
supplies reply values for actions.
We can model (part of) this environment as one or more services.

A typical example of such a service is a stack: forne N, S, is a
service that

@ holds a value in {0, ...,n}*,
@ and is controlled by 2n + 3 methods (i < n):

push:i pushes i onto the stack and yields t rue,
fopeq:i tests whether i is on top of the stack,
pop pops the stack with reply t rue if it is non-empty, and
yields false otherwise (while the stack contents is
preserved).

We write S,(«) for a stack with contents « € {0, ..., n}*, and initially
the stack is empty (S, = Sn(¢) with € the empty sequence).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 8/28

Formally:

A service H is a pair (M, F) consisting of
@ a set M of so-called methods, and
@ areply function F.

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input my ... mk. 1, function F gives the reply for my_ ¢ if mq,... mg
(the history) were called before.
Write H,, for H with history v.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9/28

Formally:

A service H is a pair (M, F) consisting of
@ a set M of so-called methods, and
@ areply function F.

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input my ... mk. 1, function F gives the reply for my_ ¢ if mq,... mg
(the history) were called before.
Write H,, for H with history v.

The notation Sy(«) is convenient and adequate, but not history-based.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9/28

Formally:

A service H is a pair (M, F) consisting of
@ a set M of so-called methods, and
@ areply function F.

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input my ... mk. 1, function F gives the reply for my_ ¢ if mq,... mg
(the history) were called before.
Write H,, for H with history v.

The notation Sy(«) is convenient and adequate, but not history-based.

Focus-method notation: Let actions be of the form f.m where f is the
focus, and m is the method.

E.g., st.pop denotes the action which pops a stack via focus st.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let H = (M, F). We define for threads in BTA:
Q@S//H, =S

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let H = (M, F). We define for threads in BTA:
Q@S//H, =S
@D/iH,=D

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let 7 = (M, F). We define for threads in BTA:

Q@ S/ H, =S

@Q@D//H,=D

Q@ (PIgm>Q)/iH,=(P/tH,)<g.m>(Q/rH,) fg#f

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let 7 = (M, F). We define for threads in BTA:

Q@ S/ H, =S

@Q@D//H,=D

Q@ (Pagm>Q)/iH,=(P/H,)2gm>(Q/iH,) fg#Tf
Q (P<fm>Q)/fH, =D ifmgM

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let 7 = (M, F). We define for threads in BTA:

Q@ S/ H, =S

Q@D/iH,=D

Q@ (Pigm>Q)/iH,=(P/tH,)1gm>(Q/tH,) ifg#f
Q (PIfm>Q)/fH, =D ifmgM

Q@ (PIfm>Q)/fH, =P/t Hum ifmeMand F(vm)=true

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let H = (M, F). We define for threads in BTA:

QS//H, =S

Q@D//H,=D

Q@ (Pigm>Q)/iH,=(P/tH,)1gm>(Q/tH,) ifg#f
QO (Pafm>Q)/fH, =D ifmgM

Q@ (PIfm>Q)/fH, =P/t Hum ifmeMand F(vm)=true
Q (P<fm>Q)/fH,=Q/tHym ifme Mand F(vm) = false

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

Use-operator
P /¢ H, models thread P using the service 7, via focus f.

Let 7 = (M, F). We define for threads in BTA:

Q@S//H, =S

@D/iH,=D

Q@ (Pigm>Q)/iH,=(P/iH,)Igm>(Q/tH,) ifg#f
Q (P<fm>Q)/fH,=D ifmgM

Q@ (P<Ifm>Q)/fH, =P/t Hum ifme Mand F(vm) = true
Q (P<fm>Q)/fH,=Q/tHum ifme Mand F(vm) = false

The use operator is expanded to infinite threads in BTA> by defining
(Pn)neN/fHu: |_| Pn/ny
neN

(For P defined by a linear specification, /¢, works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10/28

One-counter threads

A counter service C holds a value in N (determined by its history) and
is controlled by 2 methods:
inc increases the value of the counter and yields t rue,

dec decreases the value of the counter with reply t rue if itis
positive, and yields false otherwise (while the counter
value remains 0).

We write C(n) for a counter with value n, and initially the counter has
value 0 (C = C(0)).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 11/28

One-counter threads

A counter service C holds a value in N (determined by its history) and
is controlled by 2 methods:

inc increases the value of the counter and yields t rue,

dec decreases the value of the counter with reply t rue if itis

positive, and yields false otherwise (while the counter
value remains 0).

We write C(n) for a counter with value n, and initially the counter has
value 0 (C = C(0)).
A one-counter thread is a regular thread that uses a single counter.
Examples

Q (cincoP)/cC(n)=P /:C(n+1)

Q@ (PJcdec>S)/.C(0)=S

©Q (PJcdec>S) /.C(n+1) =P /cC(n)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 11/28

Obtaining non-regularity using a counter
Consider the regular thread
Q=cincoQ<ar>R, R=boR<dc.decl>S,

where actions a and b do not use focus c.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12/28

Obtaining non-regularity using a counter
Consider the regular thread

Q=cincoQ<ar>R, R=boR<c.decl>S,
where actions a and b do not use focus c. Then, for all n € N,

Q/cC(n) = (cincoQ<a>R) /.C(n)
=(Q/cC(n+1))dak (R /:C(n))

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007

12/28

Obtaining non-regularity using a counter
Consider the regular thread

Q=cincoQ<ar>R, R=boR<c.decl>S,
where actions a and b do not use focus c. Then, for all n € N,

Q/cC(n) = (cincoQ<a>R) /.C(n)
=(Q/cC(n+1))dak (R /:C(n))

boR/cC(n—1) ifn>0
S otherwise.

R/cC(n)Z{

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007

12/28

Obtaining non-regularity using a counter
Consider the regular thread

Q=cincoQ<a>R, R=boR<cdecl>S,
where actions a and b do not use focus c. Then, for all n € N,

Q/cC(n) = (cincoQ<a>R) /.C(n)
=(Q/cC(n+1))dak (R /:C(n))

boR/cC(n—1) ifn>0
S otherwise.

R/CC(H)Z{

So Q /. C(0) is an infinite thread such that a trace of n+ 1 a's produced
by n positive and one negative reply on a is followed by b" o S.

This yields a non-regular thread: the one-counter thread Q /. C(0) is
not definable by a finite linear recursive specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12/28

3. Action forecasting

e FOKKE & SUKKE thought to

FOKKE & SUKKE Pt hertea

DACHTEN HAAR MOOI TUK TE HESBEN

TELL US WHIAT
You THINK,.,.

W ARE WE GOING
i TO DO THIS?
/ wouteH?
- / nie,
T 5€r
S

ReRB

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007

www.foksuk.nl

13/28

Risk assessment

Risk assessment is the forecast that a certain action that models risky
behavior (viruses etc.) will NOT be executed:

The test action s.ok in P < s.ok > Q yields t rue if the action risk is
not executed in P (its true-branch), and false otherwise

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 14/28

Risk assessment

Risk assessment is the forecast that a certain action that models risky
behavior (viruses etc.) will NOT be executed:

The test action s.ok in P < s.ok > Q yields t rue if the action risk is
not executed in P (its true-branch), and false otherwise

We shall model this as a thread-service composition
(P<s.ok> Q) /sS(E)

where the risk assessment service S(E)
@ has ok as its only method, and
@ is aware of both the specification E that defines P < s.ok > Q and
the current execution state.
Risk assessment is non-trivial if the test action s.ok occurs more than

once in P, the thread to be assessed.
Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 14/28

An example of risk assessment

Here the superscripts on states relate to a finite linear specification E:
Py =P, <dsokl>Pg,...,Pg =S, and

Py /sS(E)=T with T=boT Ja>co$S

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 15/28

Risk states

From risk states the execution of action risk cannot be avoided: for any
equation in a given finite linear spec. E,

if x=yJdrisk>z then x is a risk state,
if x=y<s.o0k>z and both y, z are risk states, then so is x,
if x=y<abz and y or z is a risk state, then so is x.

In the example, Pg is the only risk state:

(s.0k ! ~

/N
(a)? s
VR
(s.0k)3 (s.0k)*
PN RN
(6] [risk |6 [c]
N J

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 16/28

A risk assessment service for regular threads
From risk states the execution of risk cannot be avoided: a risk
assessment S(E) should reply t rue to s.0k in

x=y<ds.0k>z (1)

iff y is not a risk state. This can be resolved for any finite linear
specification E: annotate s.ok to s.ok:y for equations of form (1).
In the example, the crossed-out arrows illustrate this:

s.0k)1
o)_<—\
N\
58
s.0k)
N
[e]
J

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 17/28

Risk assessment and Cohen’s result

Observations:

@ The test action s.ok is interpreted in the context of a
postconditional composition (a thread specification £) and a
resolving risk assessment service S(E).

© Thereply falseto s.ok in P < s.0k > Q gives no clue about the
execution of risk in Q.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 18/28

Risk assessment and Cohen’s result

Observations:

@ The test action s.ok is interpreted in the context of a
postconditional composition (a thread specification £) and a
resolving risk assessment service S(E).

© Thereply falseto s.ok in P < s.0k > Q gives no clue about the
execution of risk in Q.

This brings us to a comparison with Cohen’s seminal impossibility
result on virus detection (1984), which in our setting reads:

There exists no predicate D on all programs (in a reasonable
class) that determines whether a virus (cf. our action risk) is
executed.

Proof. Existence is contradicted by the program P defined by
P=1if D(P) then (safe behavior) else (spread virus).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 18/28

First conclusions and a question

Some first conclusions:
@ While risk detection is impossible (a la Cohen), risk assessment is
possible for regular threads.
@ Risk assessment is defined in terms of a test s.ok (using ar.a.
service under focus s) that forecasts the absence of risk in its
true-branch, resisting the form of self-reference used by Cohen.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 19/28

First conclusions and a question

Some first conclusions:
@ While risk detection is impossible (a la Cohen), risk assessment is
possible for regular threads.
@ Risk assessment is defined in terms of a test s.ok (using ar.a.
service under focus s) that forecasts the absence of risk in its
true-branch, resisting the form of self-reference used by Cohen.

Question. Up to which class of threads is risk assessment decidable?

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 19/28

Risk assessment for one-counter threads

Ponse & van der Zwaag (2006): Risk assessment is decidable for
one-counter threads (to appear in ToCS).

This follows from a reachability result of Rosier and Yen (1987):
@ Let P be defined by finite linear specification E. If

P/cC(n) % Q/cC(m)

then, for some p, P /- C(n) 2 Q /. C(m) with
e labels(p) = labels(c), and
e every intermediate state R /. C(’) satisfies
n' < 3(4|Var(E)|)® + max(n, m).
© E can be adapted so that risk is only performed at counter value 0
(m=0).
© Then, wrt. risk assessment, P /. C(n) can be faithfully
approximated by a finite linear specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 20/28

Pushdown threads

Pushdown thread: a regular thread that uses a stack.

Example (a pd thread, not an oc thread)
X1 /st S1(e) with o € {0, 1}* the contens of S;(«) and ¢ the empty
sequence), and

Xy = st.push:0o x; <a> x», X3 = Cco St.popo x3 < st.topeq:1> Xy,
Xo = st.push:1oxo x3, x4 =dost.popo x4 < st.topeq:0>S.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 21/28

Pushdown threads

Pushdown thread: a regular thread that uses a stack.

Example (a pd thread, not an oc thread)

X1 /st S1(e) with o € {0, 1}* the contens of S;(«) and ¢ the empty
sequence), and

Xy = st.push:0o x; <a> x», X3 = Cco St.popo x3 < st.topeq:1> Xy,
Xo = St.push:1oxo Ab> x5, X4 = d o st.popo x4 < st.topeq:0> S.

Open question. Is risk assessment decidable for pushdown threads?

The proof for one-counter threads does not generalize: control
decisions may occur at any stack contents (tests on identity of top
value).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 21/28

Other forms of forecasting

@ Turing (1937): The Halting Problem, i.e.,

Undecidability (unsolvability) of the question whether a
Turing Machine halts on a certain input.

(This question can be modelled as a thread-service composition).
@ Bergstra & Ponse (J’nal of Appl. Logic 5, 2007):

o Forecasting Reactors: services that need a third truth value to
escape paradoxes and give preference to reply true.

o Rational Agents: services that intend to achieve an objective given
a thread to be executed (e.g., get another service in an “optimal
state”).

o Execution architectures (modelling threads & services) in which a
service may be a forecaster of another one (Example: Newcomb
Paradox).

@ Goal assessment (with Mark van der Zwaag): decidable for
one-counter threads.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 22/28

Other results

Computable threads:
@ Risk assessment is undecidable for computable
threads (cf. the Halting Problem).
Pushdown threads:
@ Equality is decidable.
@ In risk assessment, recurrence of s.ok is the difficult
issue: if this is not the case, s.ok yields t rue iff

(P<s.0k> Q) /st Sp(a) = (P <s.0k> Q) /st Sn(a)

with in P all occurrences of risk replaced by a
different action; this is decidable.
One-counter threads:
@ Inclusion (C) is undecidable.
@ State reachability is preserved under bounded
counter values.
@ State reachability is decidable.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 23/28

4. Conclusion, digression and discussion

@ Students like to program threads, also the secondary school ones
doing our Webklas Informatica Wat is een programma?
e The simple concepts in both program algebra and thread algebra
appear to be appealing
o Thread algebra (nice, compositional) can be seen/used as a
semantics for program algebra (non-compositional, common
programming constructs)

@ Risk assessment: we made it to VX Heavens (site on viruses,
on-line since Sept. 1999, some pictures on the next slides) in the
category Theory, models and definitions (25 papers).

@ Some advanced work in program and thread algebra:

@ Micro grids (concurrent hardware)

o Tool set for PGA (including animation and multi-threading tools)

o Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics

o Maurer computers (finite computer models) with pipelined
instruction processing

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 24/28

NN

(< »] \z‘ \E\ [Mhttp:/ jvx.netlux.org/

Welcome! (VX heavens)

VX Heavens

Home Upload Library Collection Sources Engines Constructors Simulators Utilities Links Wanted! AV CheckP?

Welcome!

"Everyone has the right to freedom of opinion and expression;
this night includes freedom to hold opinions without interference
and to seek, receive and impart information and ideas througt
any media and regardless of frontiers."

Article 19 of "Universal Declaration of Human Rights"

Welcome to VX Heavens! This site is dedicated to providing
information about computer viruses (or virii, as some would prefer)
to anyone who is interested in this topic.

This site contains a massive, continuously updated collection of
magazines, virus samples, virus sources, polymorphic engines,
virus generators, virus writing tutorials, articles, books, news
archives etc.

Some of you might reasonably say that it is illegal to offer such
content on the net. Or that this information can be misused by
"malicious people". | only want to ask that person: "Is ignorance a
defence?"

What's new (Jun)

3 ! Online anti-virus check®l
1 +DL/SRC: Gaara
53 Site history

10 + LIB/EN: Eric Filiol "Metamorphism, Formal Grammars and Undecidable Code Mutation"®!

HIML 109/

Alban Ponse (SSE, UvA) One-Counter Threads

PAM - June 13, 2007

25/28

VX Heavens
Home Upload Library Collection Sources Engines Constructors Simulators Utilities Links Wanted! AV Check®

Library: Jan Bergstra

Jan Bergstra, Alban Ponse «A Bypass of Cohen's Impossibility Result» £ [Abstract] 36.66Kb

W3C BHTMLL.OV

VX Heavens
Home Upload Library Collection Sources Engines Constructors Simulators Utilities Links Wanted! AV CheckP

Library: Alban Ponse
Universiteit van Amsterdam

Jan Bergstra, Alban Ponse «A Bypass of Cohen's Impossibility Result» £ [Abstract] 36.66Kb
Homepage http://staff.science.uva.nl/~alban/

W3Z HHTHL1.0W/|

Alban Ponse (SSE, UvA) One-Counter Threads

PAM - June 13, 2007

26/28

VX Heavens
Home Upload Library Collection Sources Engines Constructors Simulators Utilities Links Wanted! AV Check®

A Bypass of Cohen's Impossibility Result

Jan Bergstra, Alban Ponse

Advances in Grid Computing - EGC 2005, LNCS 3470, pages 1097-1106. Springer-Verlag, 2005
ISBN 3-540-26918-5

FIDownload PDF file (106.73Kb)

Back to index]

0

Scale)

TgX size
Extended Version for SSN - 29 November 2004

Jan Bergstra, Alban Ponse

Unih ity of A g Re h Group, Kruislaan 403,
1098 SJ Amsterdam The Netherlands
www.science.uva.nl/research/prog/

Jan Bergstra

Utrecht Uni ity, Dep: of Phil Hei 18,
3584 CS Utrecht, The Netherlands

www.phil.uu.nl/en/

Abstract

Detecting illegal resource access in the setting of network communication or grid computing is similar to the problem of virus detection as put
forward by Fred Cohen in 1984. We disucuss Cohen's impossibility result on virus detection, and introduce "risk assessment of security hazards"
a notion that is decidable for a large class of program behaviors.

Keywords: Malcode, Program algebra, Polarized process algebra, Virus, Worm.

1 Introduction

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007

27/28

PAM’s future?

PAM’s future:
@ At UvA perhaps?
@ Which habitual audience?
@ More open presentations/discussions?
@ PhD-sessions?

Future work at CWI that might be of interest in this respect:
9o ...

Other work at UvA’s SSE that might be of interest in this respect:
@ Process algebra: continuation of research, tool development etc.

@ Algebraic specification (meadows, empty sorts & partial
operations)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 28/28

