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Summary

1. Integral projectionmodels (IPMs) provide a powerful approach to investigate ecological and rapid evolution-

ary change in quantitative life-history characteristics and population dynamics. IPMs are constructed from func-

tions that describe the demographic rates – survival, growth and reproduction – in relation to the characteristics

of individuals and their environment. Currently, however, demographic rates are estimated using phenomeno-

logical regression models that lack a mechanistic representation of the biological processes that give rise to

observed demographic variation. This lack of mechanistic underpinning limits the ability of the model to predict

future dynamics under novel environmental conditions because themodel ingredients pertain to current environ-

mental conditions only.

2. Here, we use dynamic energy budget (DEB) theory to construct DEB-IPMs based on a mechanistic represen-

tation of individual life-history trajectories. We derive the demographic functions describing growth and repro-

duction from a simple DEB growth model. The functions describing mortality and the association between

parent and offspring characteristics do not follow DEB theory and hence are estimated from individual-level

observations.

3. We apply theDEB-IPM to two contrasting systems: the small, fast-reproducing bulbmiteRhizoglyphus robini

and the large, slow-reproducing reef manta ray Manta alfredi. In both cases, predictions of population growth

rate, lifetime reproductive success and generation time agree with empirical observations. In case of the bulb

mite, predictions and observations even agree across different feeding conditions.

4. If the DEB energetics model is accepted as describing growth and reproduction, DEB-IPMs can be parame-

terised using easy-to-collect life cycle information (growth rate, length at birth, maturation and old age) making

them suitable for data-deficient species. Because species differ only in theseDEBparameters, comparative studies

of character and population dynamics between species are straightforward, particularly since DEB-IPMs can be

extended to include population feedback on resources, of which we give an example. Most crucially, because

DEB theory specifies growth and reproduction rates as explicitly dependent on environmental conditions such as

food availability or temperature, DEB-IPMs provide a mechanistic platform to investigate the biological pro-

cesses that determine joint change in phenotypic characters, life-history traits, population size and community

structure.

Key-words: add-my-pet, cohort generation time, competition, consumer-resource dynamics, vital

rates, von Bertalanffy growth rate, j-rule growthmodel

Introduction

Biologists increasingly face the challenge of accurately predict-

ing how individuals, populations and communities respond to

the ever greater changes in the environment. One way of tack-

ling this challenge is to use an approach based on the character-

istics of individuals and examine how the environment affects

the change of individuals in these characteristics, thereby gen-

erating the dynamics of population structure (Webb et al.

2010). Different types of such approaches exist, including

physiologically structured population models (PSPMs; Metz

&Diekmann 1986), delay-differential equation models (Nisbet

& Gurney 2003), individual-based models (IBMs; Grimm &

Railsback 2005), Matrix Population Models (MPMs; Caswell

2001), and Integral Projection Models (IPMs) (Easterling, Ell-

ner & Dixon 2000). These approaches differ less in conceptual

structure than in their mathematical details. MPMs and IPMs

are closely and easily linked to data, but, whereas MPMs

assume that individuals occupy discrete stages, IPMs accom-

modate both discrete and continuous state variables (e.g.

Smallegange, Deere&Coulson 2014). IPMs have emerged as a

powerful tool to investigate population-level processes from an*Correspondence author. E-mail: i.smallegange@uva.nl
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individual-level perspective, partly because the demographic

processes of growth, survival and reproduction are estimated

using flexible and easy-to-use phenomenological methods such

as regression models (Ellner, Childs & Rees 2016). The down-

side of these regression models, however, is that they lack a

mechanistic representation of the biological processes that give

rise to observed survival, growth and reproduction. In this arti-

cle, we discuss an alternative, more mechanistic approach to

parameterisation, which explicitly incorporates an energetic

description of growth and reproduction into IPMs. This will

allow researchers who are not comfortable using the more

mathematically challenging PSPMs, to investigate ecological

and evolutionary patterns such as population dynamics, geo-

graphic distributions or evolution of life-history strategies,

from an energy budget perspective on demographic rates,

which has traditionally been tackled by using the mathemati-

callymore challenging PSPMs.

The character that is most commonly used to describe indi-

viduals in IPMs is body size (Ellner, Childs & Rees 2016).

However, body size is determined by the process of growth,

which is critically affected by food availability: the more energy

is allocated to growth, the less will be available to allocate to

other processes such as reproduction. When estimating demo-

graphic rates for growth and reproduction using phenomeno-

logical models, these processes are modelled independently

from each other so that the latter trade-off (and hence the prin-

ciple of energy conservation) is ignored. Because of the central

importance of growth to any model structured by body size, it

is attractive to base the model on a mechanistic representation

of the individual energy budget. Dynamic energy budget

(DEB) theory (Kooijman 2000) provides a well-tested frame-

work for modelling the acquisition and use of energy for

organisms during the entire life cycle. DEB models have

mainly been incorporated as mechanisms in PSPMs to study

density-dependent feedback effects between a population and

its environment, and resulting patterns of life-history evolution

(de Roos & Persson 2013). However, the analysis of PSPMs

requires rather complicated methodology and PSPMs typically

are more mathematical representations of biological systems.

In contrast, IPMs are data-driven, provide a way of synthesis-

ing complex life-history information and can be analysed using

more straightforward mathematical techniques (Smallegange

& Coulson 2013). What is more, work is in progress to develop

a more general approach for computing dynamic properties of

nonlinear IPMs (Day & Kalies 2013). This means that, in the

near future, as with PSPMs, it should be possible to analyse

complex dynamics, for example by conducting bifurcation

analyses of attractors (Ellner, Childs & Rees 2016).

Here, we use a simple version of the standard model of

Kooijman’s DEB theory, also known as the Kooijman–Metz

model (Kooijman & Metz 1984), to derive the demographic

functions that describe growth and reproduction. We parame-

terise the resulting DEB-IPM for two species that are oppo-

sites in terms of body size and life-history speed: the small,

fast-reproducing bulb mite Rhizoglyphus robini and the large,

slow-reproducing reef manta ray Manta alfredi. We use the

parameterised DEB-IPMs to examine for mites and rays how

population growth rate, lifetime reproductive success and gen-

eration time vary with feeding conditions, and assess model

performance by comparing the resulting predictions against

empirical observations.

Materials andmethods

GENERAL STRUCTURE OF THE DEB- IPM

The DEB-IPM, like any IPM, describes the dynamics of the length

number distributionN(L, t) from time t to t + 1, withN as the number

of females, by:

NðL0; tþ 1Þ¼
Z

X
½DðL0;LðtÞÞRðLðtÞÞþGðL0;LðtÞÞSðLðtÞÞ&NðL; tÞdL;

eqn 1

where the survival function S(L(t)) is the probability that an individual

of lengthL survives from time t to t + 1, andG(L0,L(t)) is the probabil-

ity that an individual of length L at time t grows to length L0 at t + 1,

conditional on survival. The reproduction function R(L(t)) gives the

number of offspring produced between time t and t + 1 by an individ-

ual of length L at time t. The probability density function D(L0, L(t))

gives the probability that the offspring of an individual of length L are

of length L0 at time t + 1, and hence describes the association between

parent and offspring character values. The closed interval Ω denotes

the length domain. The Kooijman–Metz model is a model for the

energy allocation and growth of an individual. It implies a structure for

the functionsG(L0,L(t)) andR(L(t)); when those functions are incorpo-

rated into the IPM, the resulting model describes the dynamics of a

population of individuals, each of which follows the energy budget

model. Below we describe how we derive the functions G(L0, L(t)) and

R(L(t)) from the Kooijman–Metz model. DEB theory does not

describe the rates S(L(t)) and D(L0, L(t)). Parameterisation of these

remaining parts of the DEB-IPM therefore in principle proceeds as in

the standard IPMs, namely through regression analysis of data on sur-

vival and offspring size as a function of (parent) body size.

Growth

We assume that an individual consumes a food resource X following a

scaled Holling type II functional response (Kooijman 2000), which we

indicate withY. The constant quantityY is also referred to as the expe-

rienced feeding level as it indicates the feeding rate as a fraction of the

maximum feeding rate of an individual of a particular size, ranging

from zero (no feeding when X = 0) to one (when feeding rate equals

maximum feeding rate at very high levels ofX). There is no population

feedback on the resource (the Supporting Information contains an

example consumer-resource DEB-IPM showing how feedback

between consumers and resource could be included). The Kooijman–
Metz model assumes that individual organisms are isomorphic (body

surface area and volume are proportional to squared and cubed length,

respectively). The rate at which individuals ingest food, I, is assumed to

be proportional to the maximum ingestion rate Imax, the current feed-

ing level Y and body surface area, and hence to the squared length of

an organism: I = ImaxYL
2. Ingested food is assimilated with a constant

efficiency e. A constant fraction j of assimilated energy is allocated to

respiration; this respiration energy equals jeImaxYL
2 and is used to first

cover maintenance costs, which are proportional to body volume fol-

lowing ξL3 (ξ is the proportionality constant relating maintenance

energy requirements to cubed length), while the remainder is allocated

to somatic growth. The remaining fraction 1 ' j of assimilated energy,
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the reproduction energy, is allocated to reproduction in case of adults

and to the development of reproductive organs in case of juveniles, and

equals (1 ' j)eImaxYL
2. From the above, the change in length L over

time can be derived as (Kooijman & Metz 1984; Supporting Informa-

tion):

dL

dt
¼ _rBðLm(Y' LÞ; eqn 2

where _rB is known as the von Bertalanffy growth rate and

Lm = jeImax/ξ is the maximum length under conditions of unlimited

resource. Both j and Imax are assumed to be constant across experi-

enced feeding levels, and therefore, Lm is also assumed constant. Inte-

grating the differential eqn 2 from time t to t + 1 results in the function

describing length at time t + 1 as a function of length at time t for a sin-

gle individual (Supporting Information):

Lðtþ 1Þ ¼ LðtÞe' _rB þ ð1' e' _rB ÞLm(Y: eqn 3

Underlying eqn 3 is the assumption that growth in body length is

negative, that is L(t + 1) < L(t) and individuals shrink, when mainte-

nance requirement exceed respiration energy; that is when

ξL3 > jeImaxYL
2, which occurs when L > jeImax/ξ(Y ⇒ L > Lm(Y.

Shrinking in response to starvation conditions occurs in many soft-

bodied invertebrates and even in vertebrates (Wikelski & Thom 2000).

If organisms do not shrink under starvation conditions, additional con-

ditions are required for eqn 3 to incorporate the mechanism that, to

avoid shrinking, individuals rechannel energy from reproduction to

maintenance (Supporting Information):

Lðtþ 1Þ ¼
LðtÞe' _rB þ ð1' e' _rB ÞLm(Y forL)LmY

LðtÞ otherwise.

(

eqn 4

Individuals die from starvation at a length at which maintenance

requirements exceed the total amount of assimilated energy, that is the

sum of respiration and reproduction energy: ξL3 > jeImaxYL
2

+ (1 ' j)(eImaxYL
2, which occurs whenL > eImax/ξ(Y⇒L > Lm(Y/j.

Introducing interindividual variability in feeding: stochastic

growth

Growth of individuals as described by eqns 3 and 4 is deterministic; for

example, two individuals born at the same size will be of identical size

throughout their life. Implicitly underlying the population-level model

of eqn 1, however, is a stochastic, IBM, in which individuals follow

Markovian growth trajectories that depend on an individual’s current

state (Easterling, Ellner &Dixon 2000). This individual variability is in

standard IPMs modelled using a probability distribution, typically

Gaussian, where the mean length and variability (model residuals) are

regression functions of length (Easterling, Ellner & Dixon 2000).

Parameterizing such a distribution requires an extensive data set con-

taining pairs of body lengths measured on the same individual at time t

and t + 1. As we aim for users to be able to also apply theDEB-IPM to

data-deficient species, we take a data-independent approach. We intro-

duce variability as arising from how individuals experience the environ-

ment. We assume that the experienced feeding level Y follows a

probability distribution f(Y), which means that individuals within a

cohort of length L do not necessarily experience the same feeding level

due to demographic stochasticity (e.g. individuals, independently of

each other, have good or bad luck in their feeding experience). The

expectation of this probability distribution is related to the resource

density in the environment: E(Y) = X/(K + X) where X represents the

resource density in the environment and K is the half-saturation con-

stant. Because the growth rate of an individual is a linear function of its

experienced feeding level Y (eqn 3), our assumptions about the

interindividual variability in experienced feeding level imply that the

growth realised by a cohort of individuals with length L(t) equals (as-

suming individuals can shrink):

EðLðtþ 1ÞÞ ¼
Z

½LðtÞe' _rB þ ð1' e' _rB ÞLm(Y&(fðYÞdY

¼LðtÞe' _rB þ ð1' e' _rB ÞLm

Z
YfðYÞdY

¼LðtÞe' _rB þ ð1' e' _rB ÞLm ( EðYÞ: eqn 5

The variance in length at time t + 1 for a cohort of individuals of

lengthL is then given by:

r2ðLðtþ 1ÞÞ ¼ ð1' e' _rB Þ2L2
mr

2ðYÞ: eqn 6

If individuals cannot shrink, eqn 5 and eqn 6, respectively, become

(Supporting Information):

EðLðtþ 1ÞÞ ¼ LðtÞe' _rB þ ð1' e' _rB ÞLm(EðYÞ forL)LmEðYÞ
LðtÞ otherwise,

!

eqn 7

and

r2ðLðtþ 1ÞÞ ¼ ð1' e' _rB Þ2L2
mr

2ðYÞ forL)LmEðYÞ
0 otherwise.

!
eqn 8

We assume that the experienced feeding level Y follows a Gaussian

distribution with mean E(Y) = X/(K + X) and standard deviation r
(Y), which means that the probability density function describing

growth equals:

GðL0;LðtÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prLðLðtþ 1ÞÞ

p e
'ðL0'EðLðtþ1ÞÞÞ2

2r2
L
ðLðtþ1ÞÞ ; eqn 9

where E(L(t + 1)) is given by eqn 5 and r2
LðLðtþ 1ÞÞ by eqn 6 for

individuals that can shrink, and by eqn 7 and eqn 8, respectively, for

individuals that do not shrink under starvation conditions. Following

standard practice in the construction of IPMs (Ellner, Childs & Rees

2016), eqn 9 describes a Gaussian probability distribution of body

lengths at time t + 1 for any given body length at time t. In standard

IPMs, statistical regression functions are used to estimate E(L(t + 1))

andr2
LðLðtþ 1ÞÞ.

Reproduction

According to the Kooijman–Metz model, reproduction, that is the

number of offspring produced by an individual between time t and

t + 1, equals Y(Rm(L2=L2
m (Supporting Information). The parameter

Rm is the maximum reproduction rate of an individual of maximum

length Lm. Note that Rm is proportional to (1 ' j) (Supporting Infor-
mation), whereas Lm is proportional to j, which controls energy con-

servation. However, the role of j in the DEB-IPM is mostly implicit, as

j is used as input parameter only in the starvation condition L > LmE

(Y)/j, whereas Rm and Lm are measured directly from data. Like Lm,

Rm is also proportional to Imax (Supporting Information); as both j
and Imax are assumed to be constant across experienced feeding levels,

Rm is also assumed constant. Individuals are mature when they reach

puberty at length Lp and only surviving adults reproduce; thus, only

individuals within a cohort of length Lp ≤ L ≤ LmY/j reproduce. As

with the growth rate, the reproduction rate of an individual is a linear

function of its experienced feeding level Y with proportionality con-

stant Rm(L2=L2
m. Hence, the reproduction realised by a cohort of indi-

viduals of length L between time t and t + 1 that can shrink under

starvation conditions equals:

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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RðLðtÞÞ ¼
0 forLb )L\Lp

EðYÞRmLðtÞ2=L2
m forLp )L\LmEðYÞ=j.

(

eqn 10

If individuals do not shrink under starvation conditions, eqn 10

becomes (Supporting Information):

RðLðtÞÞ ¼
0 forLb )L\Lp

EðYÞRmLðtÞ2=L2
m forLp )L)LmEðYÞ

Rm

1'j ½EðYÞLðtÞ
2 ' jLðtÞ3

Lm
& forLmEðYÞ\L)LmEðYÞ=j.

8
><

>:

eqn 11

Survival

For simplicity, we assume a constant, size-independent background

mortality rate l. Additionally, an individual can only survive if it is able
to cover its maintenance costs (i.e. when L≤LmY/j). Assuming large

numbers of individuals of length L, the fraction of individuals in a

cohort of lengthL that survive from time t to t + 1 equals:

SðLðtÞÞ ¼ e'l forL)LmEðYÞ=j
0 otherwise.

!

eqn 12

IfDEB-IPMusers prefer tomodel survival size dependent, one could

use a logit function (because individuals either survive or die) to regress

survival data against body length so that eqn 12 becomes:

SðL;ðtÞÞ ¼
1

1þeaþbLðtÞ forL)LmEðXÞ=j
0 otherwise,

!

where a and b, respectively, are the intercept and slope of the logit

function.

Parent–offspring association

The same rationale that we used to construct the growth functionG(L0,

L(t)) (eqn 9) is used to construct the functionD(L0,L(t)):

DðL0;LðtÞÞ ¼
0 forL\Lp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prLb

ðLðtÞÞ
p e

'ðL0'ELb
ðLðtÞÞÞ2

2r2
Lb

ðLðtÞÞ
otherwise,

8
><

>:
eqn 13

where ELb ðLðtÞÞ is the expected size of offspring produced by a cohort

of individuals with length L(t), and r2
Lb
ðLðtÞÞ the associated variance.

Here, for simplicity, we set ELb
ðLðtÞÞ constant and r2

Lb
ðLðtÞÞ ¼ 0 (see

below). Users that wish to relate ELb ðLðtÞÞ to, for example, parental

body length could adopt the standard IPM approach and regress off-

spring body length at time t + 1 against parental body length at time t

to obtain ELb
ðLðtÞÞ, and the associated variance, r2

Lb
ðLðtÞÞ, from the

squared residuals (Easterling, Ellner &Dixon 2000).

PARAMETERISATION AND MODEL PERFORMANCE

Our two applications below illustrate how the DEB-IPM can be

parameterised for a data-rich species (bulb mite) and data-poor species

(reefmanta ray). Importantly, if users do not have access to data to esti-

mate all DEB parameters for their study species, one could check the

add-my-pet data collection (Add-my-pet 2016), which contains DEB

parameter estimates for >300 species, and use estimates of (closely)

related species.

Parameterisation for the bulbmite

Bulb mites (Acaridae) live in the soil and feed on bulbs and tubers and

are pests of many crops and ornamentals (D!ıaz et al. 2000). Bulb mites

are small (100–1000 lm) and live for up to a few months. From egg to

adult, they go through a larval and two to three nymph stages, which

takes between 11 and 40 days depending on food quality (Smallegange

2011). To parameterise theDEB-IPM, we use data on female bulbmite

life-history trajectories observed at a low (ad lib access to filter paper),

and high (ad lib access to yeast), feeding-level diet (Smallegange 2011).

We assume that bulb mites can shrink in response to starvation [note

that model output in case of the bulb mites does not differ between

whether individuals can shrink or not (Fig. S1)]. Egg length at birth is

independent of feeding level and maternal length (Smallegange, Deere

&Coulson 2014); hence, we setELb ðLðtÞÞ ¼ Lb ¼0(166 mm (Table 1),

and r2
Lb
ðLðtÞÞ ¼ 0. The maximum length observed for an adult female

is Lm = 1(008 mm (Table 1). Reproduction of this female was not

measured and, instead, we estimated Rm by taking the maximum,

observed average daily egg production rate of adult females on the high

feeding level, which equals Rm = 32 (Supporting Information). Ulti-

mate lengthL∞ is the asymptote of the von Bertalanffy growth curve in

length and represents the largest length an individual can achieve at a

particular feeding level. The length of the largest individual observed at

the low feeding level equalled 0(642 mm, and hence, we set

L∞ = 0(642 mm (Table 1). The length of the largest individual

observed on the high feeding level equalled 1(008 mm, and hence,

L∞ = Lm = 1(008 mm (Table 1). Length at puberty,Lp, within species

is not affected by growth and maturation rate in the Kooijman–Metz

growth model (even if these vary depending on food conditions). How-

ever, bulb mites are very plastic in their size at maturity in response to

food conditions (Table 1). We therefore chose to relate Lp to L∞ using

the linear relationship (Kooijman 2000, p. 270):

Lp ¼ dL1: eqn 14

We took the observed Lp and L∞ values for both feeding levels

(Table 1) and, using linear least-squares regression, estimated

d = 0(539 [95% confidence interval (CI): 0(134–0(945]. The basic Kooi-

jman–Metz model assumes a constant value for _rB, which, here, results

in poor predictions on mite body growth and the population biology

descriptors (Figs S1 and S2). Becausemites show very plastic growth in

response to different feeding levels (Fig. S1), we stepped away from this

assumption and used a statistical approach where we linearly related _rB
to feeding level and ultimate length following:

_rB ¼ 1=ðbþ aL1Þ; eqn 15

where the coefficient a and b are related to parameters from the full,

scaled standard DEB model: energy conductance (a) and somatic

maintenance (b) (Kooijman et al. 2008). To estimate a and b, we first
estimated _rB for each feeding level using a nonlinear least-squares esti-

mation procedure in R (nls function) (R Development Core Team

2013) to fit the equation Lt ¼ L1 ' ½L1 ' Lb&e' _rBt for _rB (see also

eqn 2) against observed growth curves (Smallegange 2011), with Lb

and L∞ fixed at the values observed for each feeding level (Table 1).

We estimated _rB at 0(083 * 0(001 SE (t = 74(67, P < 0(001) and

0(016 * 0(0003 SE (t = 42(36, P < 0(001) for the high and low feeding

levels, respectively. These values, along with the observed values for

L∞ for each feeding level (Table 1), were next used in a linear least-

squares regression to estimate a = '137(8 and b = 151(0 [R2 = 1(00
(no variation)] (eqn 15; Supporting Information). Mortality rate lwas

set constant (eqn 12), which is for themost part justified as, in juveniles,

mortality is unrelated to body length and only limitedly affected by

food quality, although mortality varies with body length and food

quality in adults (Smallegange, Deere & Coulson 2014). Using

observed female mortality rates (per day) [coded 0 (alive) or 1 (dead)],

we estimated l = 0(02 day'1 (95% CI: 0(01–0(03) and l = 0(04 day'1

(95% CI: 0(03–0(05) for the high and low feeding levels, respectively,
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using a generalised linear mixed model with a logit function, mite iden-

tity as a random factor and a binomial error structure. We assumed an

intermediate mortality rate of 0(03 day'1. Finally, in the starvation

condition, we set j = 0(082 [estimated using published data (Smalle-

gange 2011) and standard procedures described in Add-my-pet (2016)].

All data and statistical models (fitted in R; RDevelopment Core Team,

2013) used to estimate a, b, d, _rB,Rm, l and j are given in the Support-

ing Information.

Expected feeding levelE(Y) ranges from zero (empty gut) to one (full

gut). Here, mites on the high feeding level can be assumed to always

have a full gut so that E(Y) = 1. However, we set E(Y) = 0(95 for the

high feeding level as r(Y) > 0. Assuming that resource density is con-

stant, expected feeding level can be related to ultimate physical length

(L∞): E(Y) = L∞/Lm (Kooijman et al. 2008) so that, for the low feed-

ing level, E(Y) = 0(642 mm/1(008 mm = 0(64. We have no knowledge

on r(Y) and therefore ran each analysis for three values of r(Y): 0(1,
0(3 and 0(5. This does create an inconsistency as 0 ≤ E(Y) ≤ 1, whereas

r(Y) can be as high as 0(5. However, we explored these high values ofr
(Y) as (very) low values did not affect model output. Future work with

probability distributions that strictly confine the experienced feeding

level Y between 0 and 1 should reveal the implications of this inconsis-

tency formodel predictions.

Parameterisation for the reef manta ray

The reef manta ray (Mobulidae) is one of the largest rays in the world

and is distributed world-wide in tropical and subtropical waters. They

are non-migratory and live close to coasts, reefs or islands, where they

aggregate at cleaning stations and areas where they feed on zooplank-

ton (Marshall et al. 2011a). We chose to use the DEB-IPM with the

additional assumption that individuals cannot shrink under starvation

conditions (as shrinking is less likely to occur in vertebrates than in

invertebrates). We use published life-history data on female reef manta

rays obtained from a stable population off the coasts of Yaeyama

Islands, Japan, which population growth rate is estimated at k = 1(02–
1(03 (Kashiwagi 2014). We use the disc width, that is the distance

between the two pectoral fin tips, as the measure for body length.

Length at birth is measured at 130 cm and females mature at about

10 years of age at a minimum length of 380 cm (Kashiwagi 2014) and

live at least 40 years, reaching amaximum length of 550 cm (Marshall,

Dudgeon & Bennett 2011b). On average, adult females produce one

pup every 2 years (Kashiwagi 2014), but this can be as high as one pup

every year (Marshall et al. 2011a). Based on these observations, we set

Lb = 130 cm, Lp = 380 cm, Lm = 550 cm and Rm = 1 year'1. The

survival rate of juveniles and adults is estimated at 0(95 year–1 (Kashi-

wagi 2014), and we set the mortality rate constant at l = 'log

(0(95) = 0(05 year'1 (eqn 12). The von Bertalanffy growth rate is esti-

mated for females at _rB = 0(18 (Kashiwagi 2014). We assumed

ELb
ðLðtÞÞ ¼ Lb ¼ 130 cm and r2

Lb
ðLðtÞÞ ¼ 0. For the starvation con-

dition, we assume the commonly used value of j = 0(80 (Add-my-pet,

2016). Again, we explored a range of expected feeding level of

0(65 ≤ E(Y) ≤ 0(95 for three values of r(Y): 0(1, 0(3 and 0(5. All data
are summarised in Table 1.

Model performance

Wefirst compared the bulbmite functions for growth and reproduction

predicted for both feeding levels against independent, empirical data.

We could not do test this for reefmanta rays as no independent, empiri-

cal observations are available.We next used eqn 1 to create predictions

of population growth rate (k), lifetime reproductive success (R0) and

generation time (T) for each species. To this end, we discretised the

IPM (eqn 1) and divided the length domain Ω into 200 very small-

width discrete bins, defined as ‘mesh points’ (a higher number of bins

did not produce different results). The result is amatrix thatmaps a vec-

tor of 200 size classes from time t to t + 1. The dominant eigenvalue of

this matrix equals k. R0 was calculated as the dominant eigenvalue of

the matrix F = V(I ' GS)'1, where I is the identity matrix and

V = DR, where D is a matrix that approximates the parent–offspring
association kernel and R is a matrix that approximates the reproduc-

tion kernel (Caswell 2001). G and S, respectively, are the matrix that

approximates the growth function and the survival function. In the

Supporting Information, we provide a detailed explanation and exam-

ple of how to construct these matrices. Generation time was approxi-

mated as T = log(R0)/log(k), which represents the time it takes a

population to increase by a factorR0 (Caswell 2001).

We used the DEB-IPM to investigate for both species the relation-

ship between expected feeding level and the population biology descrip-

tors k,R0 andT for the three values ofr(Y) (0(1; 0(3; 0(5). In case of the
mites, we compared these relationships against observed values for

mites raised on the low and high feeding levels, but also on a diet of

intermediate feeding level: ad lib access to oats, for which E(Y) = L∞

(oats)/Lm (yeast) = 0(857/1(008 = 0(850 (Deere, Coulson & Smalle-

gange 2015). In case of the rays, we compared these relationships

Table 1. Dynamic energy budget (DEB) parameters for female bulbmites raised individually at low and high feeding levels (Smallegange 2011), and
for female reefmanta rays in a population ofYaeyama Islands, Japan (Kashiwagi 2014)

Symbol Description

Bulbmite Reef manta ray

Value Unit Value Unit

E(Y) Expected feeding level at whichDEBparameters aremeasured 0(64 0(95 – NA –
Lb Body length at birth 0(167 0(166 mm 130 cm
Lp Body length at puberty (maturity) 0(314 0(564 mm 380 cm
L∞ Ultimate length 0(642 1(008 mm NA cm
Lm Maximum length atE(Y) = 1 – 1(008 mm 550 cm
Rm Maximum reproduction rate atLm – 32 # day'1 1 # year'1

_rB von Bertalanffy growth rate 0(016 0(083 day'1 0(18 year'1

j Energy allocation fraction to somaticmaintenance and growth 0(082 0(082 – 0(80 –
l Mortality rate 0(03 0(03 day'1 0(05 year'1

r(Y) Standard deviation of expected feeding level used in simulations 0(1; 0(3; 0(5 – 0(1; 0(3; 0(5 –

NA, not available.
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against the estimated value of k = 1(02 for the Japan population

(Kashiwagi 2014), the observed value of cohort generation time

Tc = 25 years [Tc is defined as defined as the mean age at which adult

reproduce and calculated, very roughly, by taking themean of themini-

mum and maximum adult age: (10 + 40)/2 = 25 years], and R0 = exp

[Tc 9 log(k)] = 1(6. Note that, for both species, we compared pre-

dicted generation time T (calculated from k and R0 estimated from the

DEB-IPM) against observed cohort generation time Tc as no

observations on T exist. However, these two measures are often

similar (Caswell 2001).

Results

MODEL PERFORMANCE

It is rewarding to see that the von Bertalanffy growth function

that is derived from the Kooijman–Metz DEB model fits the

empirical observations on bulb mite growth well for each feed-

ing level (Fig. 1a,b). The function describing bulb mite mean

reproduction overestimates independent observations (inde-

pendent because these data were not used to estimate any of

the DEB parameters) on reproduction rates at the low feeding

level (Fig. 1c). However, for the high feeding level, predicted

mean reproduction rates match independent observations on

mean bulb mite reproduction (Fig. 1d: solid and dotted lines

are similar).

Unsurprisingly, both k and R0 increased with increasing

feeding level for both bulb mites and reef manta rays (Fig. 2a–
d). For the mites, predicted increases in k and R0 followed

empirical observations (Fig. 2a,c). Even though individual

reproduction rates were overestimated for large mites at E

(Y) = 0(64 (Fig. 1c), this did not result in an overestimation of

k at E(Y) = 0(64 (Fig. 2a), but did overestimate R0 (Fig. 2c)

and thereby T (Fig. 2e) at E(Y) = 0(64. Predicted R0 at E

(Y) = 0(95 did not significantly differ from observedR0 for the

mites (inferred from the fact that the predicted value is within

the 95%CI of the observed value) (Fig. 2c). In case of the rays,

predicted k andR0 overlapped with observed values at feeding

levels E(Y) between 0(7 and 0(8 (Fig. 2b,d). Generation time

for both species decreased with increasing feeding level

(Fig. 2e,f). In case of the mites, only at the highest feeding level

did the predicted value match observed cohort generation time

Tc (Fig. 2e). In case of the rays, predicted Tmatched observed

Fig. 1. Bulb mite demographic functions for growth and reproduction
at time t + 1 in relation to body length at time t for the low and high
feeding levels. Lines are predictions and symbols are observations
(Smallegange 2011). In panels (a) and (b), filled symbols and solid lines,
respectively, denote when observed growth and growth predicted by
the dynamic energy budget-integral projection model (DEB-IPM)
function for growth is greater than zero; open symbols and dotted lines,
respectively, denote when observed and predicted growth is equal to or
lower than zero. In panels (c) and (d), solid lines represent DEB predic-
tions on reproduction rates, and a linear regression fit is also plotted
(dotted lines) to show how mean reproduction rate relates to body
length.

Fig. 2. Population growth rate k [a (day'1), b (year'1)], lifetime repro-
ductive success R0 (c, d) and generation time T [e (days), f (years)] in
relation to feeding level E(Y) as predicted for three values of r(Y): r
(Y) = 0(1 (solid lines); r(Y) = 0(3 (dashed lines) and r(Y) = 0(5 (dot-
ted lines) for bulb mites (left-hand panels) and reef manta rays (right-
hand panels). Grey symbols in (a), (c) and (e) are observed values for
mites on low [E(Y) = 0(64], intermediate [E(Y) = 0(85] and high feed-
ing levels [E(Y) = 0(95]. Observed values in (a) are calculated by taking
the exponent of log(R0)/Tc (Caswell 2001), where Tc is the observed
cohort generation time for bulb mites (Smallegange 2011; Deere, Coul-
son & Smallegange 2015). Vertical lines through the symbols in (b) and
(c) are 95% CIs. Grey lines in (b), (d) and (f) are observed values for
reef manta rays (Kashiwagi 2014): k = 1(02, Tc = 25 years, and
R0 = exp[Tc 9 log(k)] = 1(6. See Table 1 and text for parameter
values.
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Tc at feeding levels of E(Y)+ 0(75 (Fig. 2f). Variation in feed-

ing level, r(Y), had little effect on how each population

descriptor varied with changing feeding level in case of the

mites; in case of the rays, however, an increase in r(Y)
decreased k and R0 across the range of explored feeding levels

(Fig. 2).

Discussion

LESSONS FROM THE BULB MITE AND REEF MANTA RAY

APPLICATIONS

Our application of theDEB-IPM to bulbmites and reef manta

rays demonstrates the ease with which the framework can be

parameterised and analysed. In case of the mites, there was a

satisfactory match between predicted and observed individual

growth and reproduction rates, except for reproduction by

large individuals at low feeding levels. The latter mismatch was

of little consequence to k, but did result in a predicted R0 that

was much higher than what we observed. The latter discrep-

ancy carried over to create a mismatch at the same low feeding

level between observed and predicted generation times Tc and

T, as T was calculated from the values of R0 (and k) predicted
by the model. Possibly, because bulb mites are very plastic in

their life-history trajectories, the assumption of a constant j
and Imax, and hence constant Rm and Lm (both of which are

used to calculated reproduction rates), is violated. The DEB-

IPMdid capture the patterns of how k,R0 and T changed with

changing feeding conditions in bulb mites, but predictions did

not always fall within the CIs of data observations. To create

such precise population forecasts across all feeding levels, alter-

native (DEB)models could be explored.

In case of the reef manta ray, we had few life-history data

and no information on experienced feeding levels in the wild.

However, we can glean some clues from the model output

regarding experienced feeding levels. Most strikingly, values of

all three predicted and observed population descriptors k, R0

and T each overlapped between feeding levels of 0(7–0(8; this
overlap increases confidence in the model’s performance. A

feeding level of around 0(7–0(8 suggests that reef manta rays

experience feeding levels whereby their gut is considered ‘just

filled’, on a scale between empty and bursting (Piet & Guruge

1997). We purposefully applied the DEB-IPM to a stable pop-

ulation of reef manta rays, but many populations across the

world are in decline, mainly due to overfishing and bycatch

(Marshall et al. 2011a). Parameters in the DEB-IPM all have

biological definitions (Table 1); an elasticity analysis targeting

lower feeding levels could therefore aid in identifying which

life-history processes should be prioritised in conservation

research andmanagement.

MODEL EVALUATION: STRENGTHS AND WEAKNESSES

The key strength of models based on DEBs is that they incor-

porate trade-offs in energy use through the j-rule of the DEB

core. Thismechanistic underpinningmeans that theDEB-IPM

is a promising tool to forecast population responses to novel or

stochastically varying environmental conditions that predomi-

nantly affect growth and reproduction. To do so, using stan-

dard IPMs forces one to assume that the phenomenological

demographic functions estimated for the original (constant or

stationary) environment apply to individuals in the novel envi-

ronment. If this assumption does not hold, for example when

reproduction rates and/or size distributions differ greatly

between the original and novel environment or when they vary

greatly as environmental conditions vary over time, then

extrapolation errors could create a substantial mismatch

between predicted and actual population responses to environ-

mental change. This is particularly likely to occur in organisms

with plastic life histories; a recent stochastic, standard IPM

applied to bulb mites indeed did not meet the assumption that

demographic functions apply across all environments (Smalle-

gange, Deere & Coulson 2014). A similar rationale holds for

modelling density dependence under temporally varying or

novel conditions. In standard IPMs, density is included as a

term in the regression models describing demographic rates

(Ellner, Childs & Rees 2016), again under the assumption that

density dependence acts the same in the original and novel

environment. Extending the DEB-IPM to include resource

dynamics (one example of which is in the Supporting Informa-

tion) introduces a mechanistic underpinning to density depen-

dence that operates through resource limitation due to

feedback between consumer and resource dynamics. Another

strength of DEB-IPMs is that differences between species in

their energy budget are mostly due to differences in their set of

DEB parameters, facilitating comparative studies of character

and population dynamics between species. Here, for example,

we found that varying the variance in expected feeding level, r
(Y), had little effect on predicted population growth rate and

lifetime reproductive success inmites (lines in Fig. 2a,c are very

similar and sometimes overlap), but did result in different val-

ues for each expected feeding level E(Y) in case of the reef

manta ray (lines in Fig. 2b,d are widely spaced). What drives

these differences remains to be explored. Furthermore, unlike

standard IPMs, no long-term individual-level data scored from

birth to death are required for model parameterisation;

instead, to run the DEB-IPM, one needs only seven parameter

estimates (Lb, Lp, Lm, Rm, _rB, j and l). This is of particular
benefit to study systems where it is difficult to track the life his-

tory of the same individual (e.g. micro-organisms, small (soil-

dwelling) animals). Even if limited or no DEB data are avail-

able, one can resort to the add-my-pet data collection and use

DEB parameter estimates of related species as a starting point

(Add-my-pet 2016).

For the purpose of this study, we chose to use the most sim-

ple DEB growth model, but more complex alternatives exist.

For example, within the ‘standard’ animal DEB model (Sousa

et al. 2010), individuals can build up reserves and use them

when starving (in the Kooijman–Metz model, individuals

die instantaneously when they cannot cover maintenance

costs). This model has been simplified to the ‘scaled standard

model’ (Kooijman et al. 2008), but the use of scaling and com-

pound parameters hampers the interpretation of equations

(Jager, Martin & Zimmer 2013). In turn, Jager, Martin &

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
Methods in Ecology and Evolution, 8, 146–154

152 I. M. Smallegange et al.



Zimmer (2013) simplified the standard animal DEB model,

mainly by not including state variables for reserve and matu-

rity. Their resultingDEBkissmodel is very similar to theKooi-

jman–Metz model but with the addition of an embryonic

stage, a strict mass balance and direct links to metabolic pro-

cesses (Jager, Martin & Zimmer 2013). However, incorporat-

ing these DEB growth models into IPMs will be challenging,

given the complexity of relating body length at time t + 1 and

at time t from the model’s differential equations. Furthermore,

the parent–offspring and survival functions in the DEB-IPM

are not mechanistically derived. Here, we assumed that indi-

viduals suffer a background mortality and die instantaneously

the moment they cannot meet their energy requirements for

maintenance. In reality, individuals can survive such periods of

starvation by using reserves. However, in a test of how well an

individual-based DEB model that includes reserve dynamics

describes population patterns, Martin et al. (2013) concluded

that the dynamics of starvation and recovery are too poorly

understood to accurately predict population fluctuations. Only

by including extra assumptions on food-dependent mortality

were they able to match model predictions to independent

observations from population experiments. Here, we have set

a first step towards developing a more mechanistic IPM based

on DEB theory. Although extending our framework is com-

plex, we emphasise that structured population models, of any

mathematical form, may benefit from the incorporation of

mechanisms. For example, Alver et al. (2016) include food,

energetics and temperature dependence in a partial differential

equation model for marine copepods, coupled to ocean circu-

lation. The possibilities for inclusion of mechanism are poten-

tially endless.

OUTLOOK: EVOLUTIONARY CHANGE

The DEB-IPM, like most IPMs, does not include genes and

hence does not explicitly incorporate evolution. Simple evolu-

tionary insight can still be obtained through the estimation of

evolutionary quantities such as the strength of viability and fer-

tility selection (Smallegange &Coulson 2013), which are calcu-

lated as the difference in population-level mean body length

after and before survival, or after and before reproduction,

respectively. When evolutionary change in character values

takes many generations, analysis of a DEB-IPM will likely

provide insight into current population, life history and char-

acter dynamics. To study long-term evolutionary change, one

could apply evolutionary game theory to a DEB-IPM to study

the endpoints of trait evolution (e.g. Childs et al. 2011), but,

then, the ecological and evolutionary time-scales are decou-

pled. Coulson et al. (2016) recently developed a framework

that explicitly couples evolution and ecology by linking quanti-

tative genetics and IPMs. For systems where the rate of evolu-

tionary change in character distributions is likely to be (fairly)

close to the rate of change observed on ecological time-scales,

the latter framework would be highly suited to study change in

phenotypic character distributions. If, in such cases, one is

interested in the ecological and evolutionary dynamics of body

size and its role in population and community dynamics, one

would profit from incorporating the DEB-IPM into this

framework. Such an endeavour would be particularly insight-

ful in studies that focus on the eco-evolutionary dynamics of

parameters that play an important role in individual life histo-

ries, such as size at birth or at maturity. This would require a

multivariate DEB-IPM where the dynamics of each of these

characters is modelled alongside the dynamics of body size.

The accompanying challenges in doing so, however, at the

moment, makes this a distant goal.
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