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DISTRIBUTION REGULATIONS AND DISCLAIMER

This package is for scientific purposes only and is distributed at no cost by the author. If the
program is used to obtain results for publication the author would appreciate acknowledge-
ment of this use in the publication. The author accepts no liability for any damage whatsoever
arising out of the use of this program package. By using the program this condition of non–
liability is accepted.
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Chapter 1

Introduction

The Escalator Boxcar Train (frequently abbreviated hereafter as EBT) is a program package,
that can be used to study the dynamics of physiologically structured, biological populations.
Unfortunately the terminology is slightly ambivalent, since the name Escalator Boxcar Train
in essence refers to the numerical method that was specifically developed to integrate the type
of equations, in terms of which the models for these structured populations are couched. The
EBT–package is my implementation of this numerical technique and this manual describes
how to use it for a particular problem.
This manual will not tell you what a physiologically structured population model is, nor how
to formulate one. Moreover, the manual will only do a half–hearted job to describe in detail
the numerical method itself. Basically, the formulation of a physiologically structured popu-
lation model gives rise to one or more partial differential equations (PDEs), which describe
the dynamics of the populations itself. These equations can be accompanied by one or more
ordinary differential equations (ODEs) which describe the dynamics of quantities that char-
acterize the environment of the population, such as food density. The Escalator Boxcar Train
as a numerical integration technique constitutes a method to approximate consistently this
mixture of partial and ordinary differential equations into a (unfortunately rather large) set
of ordinary differential equations only. As one of the special properties of the Escalator Box-
car Train this approximate system of ODEs can change in size during the integration. The
EBT–package is designed to carry out the numerical integration of this system and to handle
properly the changing number of ODEs. The package can handle the 2nd–order version of
the Escalator Boxcar Train, as discussed in (1).
To use the EBT–package properly it is necessary to have a firm understanding of physiologi-
cally structured population models in general. The basic theory of these models is described
in a number of different publications to be found in the literature of the last decade (see, for
example, (2; 3; 4)). Moreover, it is a prerequisite to know how to obtain the EBT–formulation
of the particular model that you want to study. A description of the Escalator Boxcar Train,
which could be seen as a numerical method for partial differential equations as well as a
modelling methodology in itself can be found in (5; 6; 1). This background knowledge is
really required to use this program package in a sensible way. Physiologically structured
population models are not at all easy to study and the numerical results obtained with the
EBT–program, as all results from numerical computations, should be treated with caution.
Only a good understanding of the model that is studied can lead to a proper interpretation.
The EBT–package is set up as a template program which can be adapted for any particular
problem that the user wants to study. The philosophy behind this approach is that any
program that implements the Escalator Boxcar Train would have a highly similar structure
with a whole set of routines carrying out jobs that are completely model–independent (e.g.,

1
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the organization and bookkeeping of cohorts). Therefore, it is possible to choose one specific
program structure, such that implementing a new problem only requires changing a handful
of routines (actually, it ended up to be 7 routines in this version). The current package reflects
my choice of that basic program structure.
Choosing a basic program structure implies that a decision has to be made between flexibility
and generality on the one hand and the ease with which a new problem is implemented on the
other. Implementing a particular structured population model could be made easier, if one
is willing to make more restrictive assumptions about the form of the model. This package
has developed over the years, in which I studied a variety of different problems with it, every
single problem usually having one or more unique features. This diversity in models studied
and their unique character has definitely tipped the balance towards flexibility and generality.
Hence, implementing a new structured population model will require some skill and a decent
understanding of the equations that are to be studied, which once more stresses the need for
a basic knowledge about physiologically structured population models.
I will not spend any time on discussing the particular choices I have made during the develop-
ment of the package. They all seemed reasonable at the time I made them, but undoubtedly
better choices could have been made (had I thought about them). Also, the program has
never been optimized to generate the fastest code possible. If somebody ever feels the need to
construct a better and faster version, I would be delighted. As said, the EBT–package forms
the program that I use myself to study the dynamics of many different structured population
models. After a number of request from a variety of people I have done a, probably crude,
polishing job to make it available for use by other people as well and to supply it with some
sort of a manual. This leaves much to be desired, above all some kind of user–friendly inter-
face for implementing the model and executing integration runs. These are features I have
designated as desirable extensions that, given the time (which I usually do not have), I will
try to implement one day. More serious short–comings than this lack of fancy features I will
treat with a lot more gravity. At this very moment I’m not aware of any serious bugs in the
program, but if anybody happens to find one, please contact me to help me fix it.

1.1 Manual organization

Studying the dynamics of a particular physiologically structured population model first of
all requires its appropriate EBT–formulation (refer to (5; 6; 1)). With the EBT–formulation
in hand studying the model dynamics boils down to a cyclic process involving the following
steps:

• Model implementation:

1. Specification of the model dimensions

2. Specification of the model equations

• Program building:

1. Compilation of the integration program from its source files

• Program execution:

1. Specification of integration settings and parameters

2. Specification of the initial population and environment data

3. Execution of the program and inspection of output
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The model implementation part is the topic of chapter 2 and 3. These chapters will describe
the general structure of the program, the data structures that are used to represent the
populations and the environment, and the syntax for addressing these data structures. Using
a particular example of a physiologically structured population model, it will be shown which
steps have to be carried out during implementation.
In chapter 4 it is shown how to build an executable program from the source files, consisting of
the library source files contained in the EBT–package and the model–specific files programmed
by the user.
Chapter 5 discusses how to execute the program and which input files are required. Program
execution can be carried out an arbitrary number of times, varying parameters and initial
conditions, without the need to re–compile the program anew. Compilation of the program
is only necessary if the dimensions of the model or its equations have been changed. The
specification of the model dimensions and equations and of the settings, parameters and initial
data is carried out by changing specific files, for which one can use his or her favored text
editor. Compilation and execution of the program is essentially done by typing a compilation
command in a specific format on the command–line of the computer system that is used. The
processing of the program output is left totally to the user. One or the other plotting program
should be used to study the results, which are delivered in a simple text file with columns of
numbers, representing quantities that were defined by the user in the model implementation
phase. From this description it is clear that the current EBT–package is only a building
block to be completed by a text editor and a plotting facility to form some kind of integrated
environment for studying the dynamics of structured population models.
Since I’m working on a UNIX–system myself, the package includes some Bourne–shell scripts
that make the compilation and execution steps somewhat easier. These scripts are described
in chapter 6.

1.2 Notational conventions

In the following I will (try to) be consistent in my notation and use different typefaces for
different purposes. The notation used is shown in table I.

1.3 Portability

The package is intended to crash most, if not all, computer systems, but there are, of course,
some lucky exceptions. The program itself is written in the C–language, following the stan-
dard adopted by the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) as described by (7). This implies that the source code will
probably compile without problems on any system when an “ANSI–like” C–compiler is used.

1.4 Package contents

The EBT–package contains a collection of files that can be subdivided into three categories:
library files, template files and script files. Library files contain routines that are entirely
independent of the structured population model itself, except for its dimensions (number of
structured populations, number of environmental variables, etc.). The set of template files
contains templates for the implementation of any particular structured population model in
the 2nd– order version of the Escalator Boxcar Train–method. The template files actually
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Table I: Notational convention used in this manual.

Typeface Represents

bold Bold typeface is used to indicate file and directory names.

<italic> Italic typeface surrounded by brackets indicates a placeholder
for information. For example, any reference to <model>
should be replaced by the actual name that you have given
to the model you are working on.

typewriter Typewriter font is used for all statements in the C–language
and all commands that have to be typed literally on the
command–line of the operating system to invoke programs or
start a particular shell script, such as described in chapter 6.
The typewriter font is also used when only parts of these
statements or commands are quoted.

implement a particular example of a structured population model that is described in sec-
tion 2.3. The package also contains templates for the input files that specify the control
variables and parameters for this example model, as well as templates for the input files that
specify its initial condition. The script files are Bourne–shell scripts that can be used in a
UNIX–environment for different tasks, such as building the executable program and running
it at a lower priority.
In addition to these files that form the core of the EBT–package, a directory examples
is included with the definition files for models that I have studied using the package and
that have been described in one or the other publication. I intend to extend this examples
directory over time, adding new models as they appear in the literature. This allows me to
include examples of model implementations without the need to describe them in detail. The
list in the following sections will give the reference to the publications in which the example
model is described. Every model has its own subdirectory in the examples directory, each
subdirectory containing the model dimension file, the model definition file, an appropriate
control variable file and an example initial state file.
The following sections give a more detailed description of all the files and subdirectories in
the EBT–package:
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1.4.1 Library files

escbox.h: Basic header file with global definitions that have to be acces-
sible to all routines, including constant and type definitions
that are used in the population data structures.

ebtmain.c: The main program file containing the main() routine and
the primary routines that handle initialization, integration,
output generation and shut–down of the program.

ebtinit.c: Routines used by the primary initialization procedure to read
in the initial state of the population and the environment
and to read in the values of the various control variables and
parameters.

ebtcohrt.c: Routines that are used to keep the cohort data structures
organized and to deal with their increasing and decreasing
number.

ebttint.c: Routine for the specification of the actual time integration of
the ODEs.

ebtrk2.c: Routines for the 2nd order Runga-Kutta integration method
with fixed stepsize.

ebtrk4.c: Routines for the 4th order Runga-Kutta integration method
with fixed stepsize.

ebtrkf45.c: Routines for the Runge-Kutta-Fehlberg 4/5th order integra-
tion method with an adaptive step size.

ebtrkck.c: Routines for the Cash-Karp Runga-Kutta integration method
with adaptive stepsize.

ebtdopri.c: Routines for the an explicit Runge-Kutta method of order
(4)5 due to Dormand and Prince with step size control and
dense output.

methtest.c: This file is only processed by the preprocessor to issue a state-
ment which time integration method is being used.

ebtstop.c: Routines used during the shutting–down of the program to
write a report with run statistics and to save the final state
of the system.

ebtutils.c: Low level routines mainly dealing with memory allocation
and de–allocation and with error handling.

ebtmain.h, ebtinit.h, ebtcohrt.h, ebttint.h, ebtstop.h, ebtutils.h:
The header files supplying the interface to the global variables
and functions defined in ebtmain.c, ebtinit.c, ebtcohrt.c,
ebttint.c, ebtstop.c, ebtutils.h, respectively.

ebttune.h: Include file to tailor the EBT to the current system. Ex-
plicit support for Linux, DEC/Alpha, Sun/SPARC with gcc,
CRAY C916.

shmem.h: Include file for shared memory access.
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1.4.2 Template files

ebttmpl.c: Template of the model definition file for the implementation
of a structured population model, using the 2nd–order Esca-
lator Boxcar Train–method.

ebttmpl.h: Model dimension file, specifying the dimensions of the struc-
tured population model that is implemented in ebttmpl.c.

tmpl.cvf: Input file specifying the values of the control variables and
the parameters for the model implemented in ebttmpl.c.

tmpl.isf: Input File specifying a possible initial state for the model
implemented in ebttmpl.c.

1.4.3 Script files

ebt: Bourne–shell script to be used in an UNIX–environment for
building the executable EBT–program from the model defi-
nition and library source files.

ebtclean: Bourne–shell script to be used in an UNIX–environment for
deleting files. Asks to confirm the removal of executable
programs, object files or output files generated by an EBT–
program during integration.

1.4.4 Contents of the examples directory

ebttmpl.c: Template of the model definition file for the implementation
of a structured population model, using the 2nd–order Esca-
lator Boxcar Train–method.

ebttmpl.h: Model dimension file, specifying the dimensions of the struc-
tured population model that is implemented in ebttmpl.c.

tmpl.cvf: Input file specifying the values of the control variables and
the parameters for the model implemented in ebttmpl.c.

tmpl.isf: Input File specifying a possible initial state for the model
implemented in ebttmpl.c.



Chapter 2

Program overview

2.1 The EBT–formulation of a structured population model

A physiologically structured population model describes the dynamics of an arbitrary number
of biological populations, in which the individuals are characterized and distinguished from
each other by a set of physiological traits that are called individual state variables (i–state
variables) (3; 4). The number of i–state variables with which every individual is labelled is
again arbitrary, although the EBT–package is based on the assumption that this number is
identical for every structured population in the model. To study the dynamics of a physio-
logically structured population model numerically (as is the aim of the EBT–package), the
structured population has to be subdivided into distinct groups of individuals that are more
or less similar. These groups of individuals are called cohorts and every structured population
consists of a collection of these cohorts. Every cohort is now characterized by a specific set of
statistics, notably the total number of individuals in the cohort and the mean i–state within
the cohort. The dynamics of these statistics in every single cohort is described by ordinary
differential equations. The exact form of these ODEs can be found in or at least inferred
from (5; 6; 1).
The cohorts that make up a structured population come in two different varieties: internal
cohorts and boundary cohorts (or “cohorts in creation”). The fundamental difference between
these two types is that the boundary cohorts are in the process of being created from the
individuals that are born at a particular time. Even if a structured population is initially
subdivided into distinct cohorts, the production of new offspring can in principle be (and is
most likely) a continuous process. Hence, to keep the population subdivided into cohorts, the
continuous inflow of newborns has to be organized into new cohorts. The cohorts that receive
such a reproductive input are said to be “in creation” or boundary cohorts. Internal cohorts
do not receive such an input of new individuals and are hence virtually closed off groups (see
(5; 6; 1) for a more elaborate description).
The number of boundary cohorts that are created at a particular time may be arbitrary large,
and as a consequence the number of internal cohorts will fluctuate over time as well. Just like
the internal cohorts, the boundary cohorts are characterized by a set of statistics, although
these statistics are defined in a slightly different way (5; 6; 1). At specific points during the
integration the existing set of boundary cohorts is absorbed into the structured population,
which it belongs to, and a new set is created. During this inclusion into the population,
the statistics that characterize a boundary cohort are transformed into their counterparts
characterizing an internal cohort. The time interval between two of these moments at which
the sets of boundary cohorts are changed will be called the cohort interval . In principle the
length of this cohort interval is fixed and hence changing the boundary cohorts happens at

7
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equidistant time values during the integration. However, the current version of the EBT–
package incorporates a method to force closure of the boundary cohorts in between these
equidistant time values (see section 3.5.8 on page 30). The whole cycle of creating the sets
of boundary cohorts for every population, the integration of the statistics during the cohort
interval and the transformation of the boundary cohorts into internal cohorts at the end of a
cohort interval, will be referred to as a cohort integration cycle.
As a special feature of the current version of the EBT–package, cohorts can, in addition to
the characterization with i–state variables, also be labelled with individual state constants (or
i–state constants). The difference between these two classes of variables is just that the i–state
variables change continuously over time, while the i–state constants change in a discontinuous
manner only. The dynamics of the i–state variables are hence specified in terms of ODEs,
the changes in the i–state constants are to be implemented by the user as instantaneous
transformations that will mostly occur at the end of a cohort integration cycle. An i–state
constant might, for example, be used to model the instantaneous changes in length of animals
with an exo–skeleton, that grow by molting.
In non–linear problems, the dynamics of the structured populations also depend upon a set
of variables that characterize the environment in which the populations live, referred to as
the environmental variables (or E–state variables). The number of these E–state variables is
again arbitrarily large. The E–state variables are either explicit, time–dependent functions
or dynamically varying. In the latter case the dynamics are also described by ODEs. Again,
you have to consult (5; 6; 1) for the exact formulation of these ODEs.

2.2 The basic program cycle

From the previous section it is clear that the main task of the program boils down to inte-
grating during a cohort interval simultaneously all environmental variables and all statistics
of the internal and boundary cohorts that make up the structured populations in the model.
As stated, the dynamics of these quantities are described by ODEs, and the program is
therefore in principle nothing else than an implementation of an often used numerical inte-
gration method for ordinary differential equations. The numerical integration method used
is the 4th/5th–order Runge–Kutta–Fehlberg method with adaptive step size. This method
performs every integration step twice but uses both times a different method: the first time
a 4th–order Runge–Kutta method and subsequently a 5th–order Runge–Kutta method. The
difference between the integration results obtained with the two different methods is used to
adapt the step size in the integration (see (9)).
The subdivision of the populations into distinct cohorts and the concomitant organization
of the cohort data structures make the program, however, different than just an ordinary
differential equation solver. After the statistics have been integrated over time until the end
of the cohort cycle, a variety of transformations and re–organizations of the cohort data are
initiated or allowed:

• At the end of a cohort cycle the statistics characterizing the boundary cohorts are first
turned into their counterparts that characterize the internal cohorts (5; 6; 1).

• If implemented, the program can subsequently carry out user–defined transformations,
which make the cohort data change in a discontinuous manner. These transformations
can, for example, remove individuals that have reached a maximum lifespan or imple-
ment a reproduction process that is pulsed in time. In addition, they can be used to
change the current values of the i–state constants.
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Table I: The equations modelling the individual consumer behavior and the autonomous
food dynamics, which form the ingredients of the simple example model of an (age,length)–
structured consumer population feeding on an unstructured food source.

Individual feeding rate: I(S, `) =
S

1 + S
`2

Growth rate in length: g(S, `) =
S

1 + S
− `

Reproduction rate: b(S, `) = α
S

1 + S
`2

Mortality rate: q(a) = δ for a < Amax

= ∞ otherwise

Food recovery rate: R(S) = rmS(1− S/K)

• Next, the current boundary cohorts for every population are absorbed into the collection
of internal cohorts that make up each of these populations.

• After the incorporation of the boundary cohorts, the program screens all the cohorts
present to determine whether the total number of individuals in the cohorts has become
negligible or whether cohorts have become identical in the value of their statistics (more
specifically in the value of their mean i–state). “Negligible” and “identical” in this
respect mean that the number of individuals in the cohort or the difference between the
mean i–state variables is less than a set of tolerance values that is under the control of
the user. Negligible cohorts are removed from the population, identical ones are lumped
together, in which the weighted mean of their statistics is taken as the new value.

• Subsequently, the program determines if output is requested at this time during the
integration. If so, the program writes the output quantities, as defined by the user, to
the output file.

• After all these operations the program starts a new cohort integration cycle by setting
up new sets of boundary cohorts for every population. The number and nature of these
boundary cohorts, being part of the model–specific implementation, are under control
of the user. The basic program cycle is now repeated, starting with the integration of
the variables up to the end of the next cohort integration interval.

2.3 Example of a structured population model

In the next chapter it will be explained, how in general one implements a particular structured
population model using the EBT–package. The required steps, which involve the specification
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Table II: The equations describing the dynamics of the size and state of the consumer
population, as represented by the density function n(t, a, `), and the concentration of food
particles, as represented by the variable S. The model is based on the modelled individual
behavior, specified in table I.

∂n(t, a, `)
∂t

+
∂n(t, a, `)

∂a
+

∂g(S, `) n(t, a, `)
∂`

= − q(a) n(t, a, `)

n(t, 0, `) =

1∫
0

∞∫
0

b(S, `) n(t, a, `) da d` if ` = 0

= 0 otherwise

n(0, a, `) = Ψ(a, `)

dS

dt
= R(S) −

1∫
0

∞∫
0

I(S, `) n(t, a, `) da d` , S(0) = S0

of the model dimensions and equations, will be illustrated using a simple example model. This
example model describes the dynamics of an (age,length)–structured consumer population
feeding on a dynamically varying food source. The model is essentially the same as the model,
which is used in (1) to illustrate the Escalator Boxcar Train technique. The single difference
is that individuals can only live for a finite time, i.e., all individuals die with certainty upon
reaching a specific maximum age. Since only a few individuals will reach the maximum age
and die instantaneously when realistic parameter values are used, the finite lifespan will only
have a minimal effect upon the dynamics. However, due to the finite lifespan the number
of cohorts in the structured population is bounded. In this section I will briefly discuss the
model and the resulting equations.
The individuals of the consumer population are characterized by both their age, denoted by
a, and their length `. The surface area and the weight of the individuals are assumed to be
proportional to, respectively, the second and third power of their length. The individuals
feed with a feeding rate proportional to their surface area. Moreover, the feeding rate per
unit surface area increases with the concentration of food particles S, following a hyperbolic
relation, the Holling type II functional response. The food source itself recovers from this
grazing activity by means of a logistic growth process. The energy intake which is assumed
to be proportional to the feeding rate, is allotted in constant proportions to growth plus
maintenance on the one hand and reproduction on the other hand.
The energy needed for maintenance is taken to be proportional to the weight of the individual.
From the proportion of energy channelled to growth plus maintenance, the maintenance
requirements are covered first and the remainder is spent on tissue growth. Individuals are
assumed to be capable of shrinking in size when starving for food and hence the energy spent
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Table III: The Escalator Boxcar Train formulation of the example model, based on the
description of the individual behavior given in table I and the population level dynamics
specified in table II. t + ∆ indicates the time at which the cohort cycle ends, while t + ∆−

and t + ∆+ indicate values just prior and afterwards, respectively.

Continuous time dynamics for the 0th
cohort, during cohort cycle interval:



dλ0

dt
= −δ λ0 +

i=n∑
i=0

b(S, µ`
i) λi

†

dπ`
0

dt = g(S, 0) λ0 + g`(S, 0) π`
0 − δ π`

0

dπa
0

dt = λ0 − δ πa
0

Continuous time dynamics for all
other cohorts, during cohort cycle in-
terval (i = 1, . . . , n):



dλi

dt
= −q(µa

i ) λi

dµ`
i

dt = g(S, µ`
i)

dµa
i

dt = 1

Renumbering equations and new ini-
tial values for cohort in creation at the
end of the cohort cycle:



λ1(t + ∆+) = λ0(t + ∆−)

µ`
1(t + ∆+) = π`

0(t+∆−)
λ0(t+∆−)

µa
1(t + ∆+) = πa

0 (t+∆−)
λ0(t+∆−)

λ0(t + ∆+) = 0

π`
0(t + ∆+) = 0

πa
0(t + ∆+) = 0

Renumbering equations for all other
cohorts at the end of the cohort cycle
(i = 1, . . . , n− 1):


λi+1(t + ∆+) = λi(t + ∆−)

µ`
i+1(t + ∆+) = µ`

i(t + ∆−)

µa
i+1(t + ∆+) = µa

i (t + ∆−)

Dynamics of the food density in the
environment:

dS

dt
= R(S)−

i=n∑
i=0

I(S, µ`
i) λi

†

† Include the 0th cohort if λ0 6= 0: Take µ`
0 : = π`

0/λ0

on tissue growth can essentially become negative. A constant amount of energy is needed
per unit weight increase. Under constant food conditions these assumptions lead to an age–
dependent growth process of the vonBertalanffy type. In this model the individual length
can now be scaled in such a way that it takes values between 0 and 1. All individuals are
then born with a scaled length value of 0. The model can be scaled even further by choosing
the time unit equal to the characteristic time for individual growth (which is equal to the
inverse of the growth rate in length) and by expressing the density of food particles in terms
of the maximum amount of particles that can be eaten per unit of time by an individual of
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maximum length.
Because of the constant subdivision of energy intake channelled into reproduction and growth
plus maintenance, reproduction is also proportional to the surface area of the individual and
equally dependent upon the food concentration. The reproduction rate is the quotient of the
energy input into reproduction and the, constant, energy requirement to produce one newborn
individual. Newborn individuals all have the same length at birth and start reproducing
immediately. The maximum reproduction rate of an individual of maximum length under
very high food densities will be denoted by α.
The natural mortality rate is assumed to be independent of both age and length and constant
in time. As mentioned before, all individuals die after a finite lifespan. The random mortality
rate will be denoted by δ, while Amax will represent the maximum age that an individual can
attain.
The last equation needed as ingredient of the structured population model, describes how the
food source itself recovers from the grazing activity of the consumer. It is assumed that the
food source grows logistically with a maximum growth rate denoted by rm and a carrying
capacity denoted by K.
The outlined individual behavior and autonomous food dynamics, which form the ingredients
of the structured population model, can be described by the equations that are given in
table I. These equations depend on the age and length of an individual consumer and on the
current food density. They are similar to the equations in (1, Eqs.(32)), except that in the
current model there is a finite lifetime.
On the basis of the modelled individual behavior, as given in table I, the dynamics of the
system can now be described by a partial differential equation (PDE) for a density function
n(t, a, `), which represents the state of the consumer population, and an ordinary differential
equation for the food concentration S. These differential equations have to be accompanied
by the appropriate boundary and initial conditions to complete the model. The complete set
of population level equations is given in table II. I will not discuss these equations any further
here, the formulation of these population equations is dealt with in (3; 4; 1).
To study the example model numerically with the EBT–package, the set of equations in
table II has to be reformulated using the Escalator Boxcar Train method into a system of
ODEs and a set of renumbering equations for the changes taking place at the end of a cohort
cycle (5; 6; 1). The resulting system of equations, which is referred to as the Escalator
Boxcar Train formulation of the model, is given in table III. The equations in this table
result from applying the 2nd–order version of the method to the example model. This 2nd–
order Escalator Boxcar Train formulation of the model is implemented in the template file
ebttmpl.c. This file, and the accompanying header file, ebttmpl.h will be discussed next.
For a discussion of the theory of the Escalator Boxcar Train formulation in general, see
(5; 6; 1).



Chapter 3

Model–dependent files

To implement a particular structured population model for study with the EBT–package, two
model–dependent files have to be created from templates supplied with the package. These
files define the parts of the program that are specific for the current model. All the parts of
the program that are model–independent, such as the routines that handle the initialization
of the program, the integration of all the statistics during a cohort cycle, the rearranging
processes at the end of a cohort cycle, the generation of output and the shutdown of the
program, are contained in the library files (see section 1.4.1 on page 5).
The first file to be created is a header file specifying the dimensions of the model, the second
file is a program file containing the equation specifications of the model. In the following the
header file will frequently be referred to as the “(model) dimension file”, the program file as
the “(model) definition file”. (Note that in the previous version 1.7 of the package these files
were usually called “problem–specific header file” and “problem–specific program file”). Both
the dimension and the definition file have to have the same basename, only their extensions
should be different. The dimension file, being a header file, should have a “.h” extension, the
definition file, being a program file, a “.c” extension.
The two files ebttmpl.h and ebttmpl.c (see section 1.4) constitute the dimension and def-
inition file for the example structured population model, implemented using the 2nd–order
Escalator Boxcar Train–method (see section 2.3 in the previous chapter). These files can be
used as templates for the implementation of the 2nd–order EBT formulation of any arbitrary
structured population model.
The sections 3.3 and 3.5 below discuss the necessary steps to implement a particular structured
population model into the EBT–package. However, before embarking on this discussion the
difference between i–state variables and i–state constants (section 3.1) should be pointed out
and and the distinction between parameters and constants in the model (section 3.2) should
be explained. In addition, section 3.4 discusses the data structures that are defined within
the EBT–package and the syntax to address them. These data structures, which are crucial
to the programming of the model definition file, contain the current values and derivatives
of all environmental and population variables that are present in the model. The EBT–
implementation will be illustrated using the example model discussed in section 2.3, of which
the 2nd–order Escalator Boxcar Train–formulation is given in table III. All examples of C-
coding, shown in the next sections, are hence stemming from the ebttmpl.h and ebttmpl.c
file, which pertain to this particular model.

13
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3.1 On i–state variables and i–state constants

The individual members of a physiologically structured population are characterized and
distinguished from each other by a set of physiological traits. These quantities are usually
referred to as i–state variables. The value of these variables change over time in a continuous
way. Within the EBT–package the mean values of these i–state variables are used to char-
acterize the cohorts of individuals, into which the population is subdivided. In addition, the
EBT–package allows the cohorts to be characterized by a set of quantities that I will refer to
as i–state constants. The fundamental difference between these two types of characteristic
quantities is the way in which they change over time. The i–state variables change contin-
uously over time and their dynamics are hence specified by sets of ODEs (see, for example,
table III on page 11). The user has to specify these differential equations in the routine
Gradient() (see section 3.5.7 on page 28) and the program takes care of the integration of
these ODEs over time. Good examples of i–state variables are age and size, as used, for
example, in the model of section 2.3.
The i–state constants, on the other hand, change in a discontinuous fashion as specified by
transformations implemented by the user. Such transformations should be implemented in
the routine InstantDynamics() (see section 3.5.10 on page 32) or, during initialization, in
the routine UserInit() (see section 3.5.4 on page 26). The user is completely responsible for
the values of these i–state constants and the way they change. The i–state constants can be
viewed as temporary storage space, just like a note–pad tagged onto a cohort, in which the
user can store values of interest that pertain to a particular cohort. The i–state constants
can, for example, be used to remember the state, with which the individuals in a cohort were
born.

3.2 Parameters versus constants

Another important distinction in the context of the EBT–package is between parameters and
constants. Both terms refer to non–dynamic quantities that are usually called parameters in
the structured population model to be studied. However, some of these quantities you will
want to vary more often than others. The ease with which these quantities are varied between
different integration runs, determines the distinction between parameters and constants in the
EBT–implementation.
Pure parameters (or shortly parameters) are non–dynamic quantities that can be varied from
one integration run to the other without the need to re–compile the program. Within the
EBT–program parameters are therefore defined to be variables, the value of which is only
set during initialization. The values of the parameters to be used in a particular integration
run hence have to be given to the program as input, using the control variable file (see
section 5.2.1 on page 38). The parameters in the EBT–program form an array of variables,
called parameter[]. The model dimension file has to specify the dimension of this array, that
is, how many of the non–dynamic quantities in your model are parameters and can hence be
varied from one integration run to the other. This is done with the PARAMETER NR constant,
described in section 3.3.6 (see below).
A constant is a non–dynamic quantity that is defined within the model definition file as
an alias for an explicit number. This constant, or rather the explicit (usually real–valued)
number it stands for, figures at one or more places in the model. The definition of a constant
is hence entirely restricted to the definition file and therefore changing it involves editing the
file and re–building the program.
The distinction between parameters and constants is slightly academic: all non–dynamic
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quantities in a structured population model could be defined as either parameters or as
constants. The distinction is only made to simplify implementation of a particular model. If
all non–dynamic quantities are taken to be parameters, their values have to be inputted to
the program during initialization via the control variable file (see section 5.2.1 on page 38).
If all these quantities are taken to be constants, every change to such a quantity would call
for a re–build of the integration program. The result is the same, but it is left to the user
which way of specifying non–dynamic quantities is preferred.

3.3 The model dimension file

The model dimension file defines all the dimensions of the model that is to be implemented.
The name of the model dimension file should always consist of the same basename as the model
definition file (see the next section) and have a “.h” extension. Therefore, for the example
model of section 2.3, which is implemented in the model definition file ebttmpl.c, the EBT–
package contains a model dimension file that is called ebttmpl.h. This file ebttmpl.h is
an appropriate template for the dimension file of any model and I hence strongly advice you
to use it as such. By editing its contents with your favorite text editor, this file has to be
adapted for the particular problem you are implementing.
The model dimension file contains a total of 6 definition statements, which will be discussed
in the next sections. All these definitions are obligatory, none of them may be missing. While
reading through the next sections, you are advised to follow the steps as well, by looking at
the template ebttmpl.h for the model dimension file.

3.3.1 The POPULATION NR constant

This constant specifies the number of structured populations that are part of the model to be
implemented. Definition of this constant is done in the following type of statement,

#define POPULATION NR <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, only one structured population is present, i.e.
the (age, length)–structured consumer population. Hence, in the dimension file ebttmpl.h
the following definition is found:

#define POPULATION NR 1

Note that it is impossible to specify 0 structured populations here!

3.3.2 The I STATE DIM constant

This constant specifies the number of i–state variables that characterize the individuals in the
structured populations present in the model. This number of i–state variables is the same for
the individuals of all populations. However, their nature does not have to be identical. Hence,
it is entirely plausible to have a model with two structured populations, the individuals of
which are characterized by the same number of i–state variables that have otherwise different
interpretations. The user is ultimately responsible to be consistent in the model definition
file (see section 3.5) with respect to the appropriate interpretation of the i–state variables
for the different populations. The program is totally oblivious of this interpretation. If the
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individuals of one of the structured populations are characterized by a smaller number of
i–state variables, an appropriate number of dummy variables can be introduced to complete
the total number of i–state variables.
Definition of this constant is done in the following type of statement,

#define I STATE DIM <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, the individuals of the consumer population
are characterized by their age and by their length (see table III). Hence, in the dimension
file ebttmpl.h the following definition is found:

#define I STATE DIM 2

Note that it is impossible to specify 0 i–state variables here!

3.3.3 The I CONST DIM constant

This constant specifies the number of i–state constants that characterize the individuals in
the structured populations present in the model.
As with the number of i–state variables, this number of i–state constants is the same for the
individuals of all populations, but not their nature. Again, the user is ultimately responsible
to be consistent in the model definition file (see section 3.5) with respect to the appropriate
interpretation of the constants for the different populations, as the program is totally oblivious
of it. If the individuals of one of the structured populations are characterized by a smaller
number of i–state constants, an appropriate number of dummy constants can be introduced
to complete the total number.
Definition of this constant is done in the following type of statement,

#define I CONST DIM <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, the individuals of the consumer population
are not characterized by any i–state constants at all. Hence, in the dimension file ebttmpl.h
the following definition is found:

#define I CONST DIM 0

Observe that it is indeed possible to have 0 i–state constants, as opposed to i–state variables.

3.3.4 The ENVIRON DIM constant

This constant specifies the number of environment variables (E–state variables) that char-
acterize the (dynamic part of the) environment in which all individuals of the structured
populations in the model live. Essentially the ENVIRON DIM constant refers to the number of
ODEs that have to be integrated simultaneously with the integration of the quantities that
characterize the structured populations. The environment can in addition be characterized by
quantities that change over time in an explicitly specified way. Examples of the latter include
temperature or solar influx. These environmental characteristics do change over time, but
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not dynamically, that is, not in a way that is described by a differential equation. Hence they
should not be counted among the E–state variable number that has to be specified here. It
should be noted that time is always the first environmental variable within the EBT–package.
The total number of E–state variables has to be increased accordingly.
Definition of this constant is done in the following type of statement,

#define ENVIRON DIM <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, the individuals of the consumer population
feed on the unstructured resource population. The concentration of food particles in the
environment is therefore necessarily part of the set of E–state variables, together with the
time as standard E–state variable. Hence, in the dimension file ebttmpl.h the following
definition is found:

#define ENVIRON DIM 2

3.3.5 The OUTPUT VAR NR constant

This constant specifies the number of quantities that have to be written to the output file
(see section 5.3.2 on page 45). Quantities of interest that serve as output from a structured
population model, usually comprise the values of the E–state variables in the model and
the values of specific measures of the structured population, such as the total number of
individuals, the total biomass of the population, or the mean size of all individuals (see (5;
6; 1)). Assigning the current values of these quantities of interest to the appropriate array of
variables that will be written to the output file, is done in the routine DefineOutput() (see
section 3.5.11 on page 33). The constant OUTPUT VAR NR tells the EBT–program how long
this array of output variables should be and hence how much memory to allocate for it.
Definition of this constant is done in the following type of statement,

#define OUTPUT VAR NR <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, I have chosen the total number of consumer
individuals in the structured population, their total biomass and the concentration of food
particles as output quantities of interest. Hence, in the dimension file ebttmpl.h the following
definition is found:

#define OUTPUT VAR NR 3

Note that it is impossible to specify 0 output variables!

3.3.6 The PARAMETER NR constant

This constant specifies the number of parameters in the model. The distinction between
parameters and constants in a structured population model was explained in section 3.2
on page 14. The constant PARAMETER NR tells the EBT–program the size of the array of
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parameters that will only be specified during initialization by means of values in the control
variable file. The EBT–program will allocate the appropriate amount of memory.
Definition of this constant is done in the following type of statement,

#define PARAMETER NR <number>

which should occur in the dimension file at an arbitrary place.
In the example model described in section 2.3, I have chosen to vary the quantities α, δ, rm

and K more frequently than the parameter Amax. Therefore, Amax is taken to be a constant
and will be defined in the model definition file. The other quantities are chosen to be pure
parameters and will hence have to be specified in the control variable file (see section 5.2.1
on page 38). Hence, in the dimension file ebttmpl.h the following definition is found:

#define PARAMETER NR 4

Observe that it is indeed possible to have 0 parameters!

3.3.7 The TIME METHOD constant

Optionally, the constant TIME METHOD can be set to either RK2, RK4, RKF45, RKCK (which is
the default value), or DOPRI5, indicating the time integration method to use:

• RK2: the 2nd order Runge-Kutta integration method with fixed step size,

• RK4: the 4th order Runge-Kutta integration method with fixed step size,

• RKF45: the Runge-Kutta-Fehlberg 4/5th order integration method with an adaptive
step size, or

• RKCK: the Cash-Karp Runga-Kutta integration method with adaptive step size,

• DOPRI5: an explicit Runge-Kutta method of order (4)5 due to Dormand and Prince
with step size control and dense output.

3.3.8 The DYNAMIC COHORTS constant

This constant specifies when new cohorts are to be generate. New cohorts can be generated
at the at of a cohort cyle, but also during a cohort cycle at an event specified by the user
(section 3.5.8). If DYNAMIC COHORTS equals 1, new cohorts are only formed whenever the
return value of the function ForceCohortEnd() equals 1. If DYNAMIC COHORTS equals 0, new
cohorts are formed whenever the return value of the function ForceCohortEnd() equals 1, in
addition to the usual formation of new cohorts at the end of a cohort cycle.
NB: For dynamic cohort closure the DOPRI5 method is needed. Therfore, TIME METHOD will
automatically be changed to DOPRI5 if DYNAMIC COHORTS is set to 1.
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3.4 Data structures and addressing syntax

The data structures within the EBT–program can be classified into (1) data representing
the state of the environment, (2) data representing the state of the internal cohorts in every
population, (3) data representing the state of the boundary population cohorts in every pop-
ulation and (4) the derivatives of all these quantities. In the following sections the addressing
syntax for these data structures will be discussed one by one. The syntax explained should be
used throughout the entire model definition file, as it is identical within any of the routines
discussed in later sections.

3.4.1 The environment variables

The current values of the environmental variables are always stored within an array of real val-
ued numbers. The name of this array is env[] and at any time its length equals ENVIRON DIM,
as specified in the model dimension file. The ith environmental variable is simply addressed
as env[i], with 0 ≤ i < ENVIRON DIM.
The interpretation of the individual environmental variables is for the largest part up to the
user. Only the 0th environmental variable env[0] is always fixed to be the time, the program
is oblivious to the meaning of the other environmental variables. The user is responsible for
a consistent interpretation.

3.4.2 The cohort statistics

The special property of the program resides in the subdivision of the populations into cohorts
of more or less similar individuals, which are characterized by a set of statistics. A second
important feature is that the number of these cohorts present can change over time. For these
two reasons a specific layout has been chosen for the population data inside the program. This
layout will be the topic of this and the following sections.
Every cohort of individuals in a particular structured population is represented inside the
program by a three-dimensional array, pop. The syntax for addressing the individual cohorts
in a particular population will be discussed later on in this section.
Every pop array contains a variable that bears the name

number

the value of which indicates the total number of individuals within the cohort it represents.
In the same way, every cohort contains a number of variables, to be precise I STATE DIM
quantities in total, which equal the mean value of the different i–state variables that charac-
terize the individuals within the particular cohort. Within the pop array these I STATE DIM
variables have the following names:

i state(0)
i state(1)
i state(2)

...
i state(I STATE DIM-2)
i state(I STATE DIM-1)
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Table I: The elements of the arrays pop and popIDcard. The elements represent the (phys-
iological) quantities that characterize the individuals within a single cohort of a structured
population. Addressing the quantities should be done using the variable names shown. n:
population index, i: cohort index, ISD: value of the constant I STATE DIM (section 3.3.2),
ICD: value of the constant I CONST DIM (section 3.3.3).

Array element Refers to:

pop[n][i][number] Number of individuals within the cohort.

pop[n][i][i state(0)] Mean of the 0th i–state variable.
pop[n][i][i state(1)] Mean of the 1st i–state variable.
pop[n][i][i state(2)] Mean of the 2nd i–state variable.

...
pop[n][i][i state(ISD-2)] Mean of the one–to–last i–state variable.
pop[n][i][i state(ISD-1)] Mean of the last i–state variable.

If I CONST DIM 6= 0:

popIDcard[n][i][i const(0)] Value of the 0th i–state constant.
popIDcard[n][i][i const(1)] Value of the 1st i–state constant.
popIDcard[n][i][i const(2)] Value of the 2nd i–state constant.

...
popIDcard[n][i][i const(ICD-2)] Value of the one–to–last i–state constant.
popIDcard[n][i][i const(ICD-1)] Value of the last i–state constant.

If the constant I CONST DIM is defined unequal to 0, a second array is created, popIDcard.
This array contains the current value of the i–state constants for the particular cohort. Exactly
I CONST DIM elements in the array popIDcard belong to a single cohort, and these are labelled
with the following names:

i const(0)
i const(1)
i const(2)

...
i const(I CONST DIM-2)
i const(I CONST DIM-1)

This naming convention is summarized in table I. The elements of a cohort array should
always be referred to using this naming convention, irrespective of the structured population
that the cohort is part of, and independent of the routine in which the quantity is addressed.

The internal population cohorts

The internal cohorts of any structured population in the model can be accessed within any of
the routines in the model definition file, using the three–dimensional array called pop[][][].
How to address a specific quantity that characterizes the ith cohort in the nth population, is
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shown in table I on page 20. For example, pop[1][5][number] refers to the total number of
individuals in the 6th cohort within the 2nd structured population in the model (Note that
in the C–language the lowest array index equals 0).
The total number of structured populations in the model (equal to the maximum value
of n, plus 1) is of course explicitly defined in the model dimension file with the constant
POPULATION NR. The number of cohorts in the different structured populations can, however,
vary over time. In all routines a variable can therefore be accessed which specifies the number
of internal cohorts in each structured population. This variable is an array of integer values,
called cohort no[], with a length equal to the value of POPULATION NR. cohort no[n] speci-
fies the number of internal cohorts that are present in the nth population at a particular time.
Note that this array is defined as a global variable and does not occur in the headers of the
routines. Acceptable values for the indices n and i in the expression pop[n][i][] therefore
are: 0 ≤ n< POPULATION NR and 0 ≤ i< cohort no[n], respectively.
In summary, to address the quantities within a specific internal cohort of a particular popu-
lation use the following syntax:

• Use pop[n][i][number] to address the total number of individuals in the ith cohort of
the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< cohort no[n])

• Use pop[n][i][i state(k)] to address (the mean of) the kth i–state variable in the
ith cohort of the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< cohort no[n], 0 ≤ k< I STATE DIM)

• Use popIDcard[n][i][i const(k)] to address (the value of) the kth i–state constant
in the ith cohort of the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< cohort no[n], 0 ≤ k< I CONST DIM)

The order of the internal cohorts in a structured population is not straightforward. It is
absolutely wrong to assume that the cohort with index 0 is one of the cohorts that has
been most recently added to the population. The EBT–program orders the cohorts in each
population according to the value of their mean i–state variables, but in descending order .
That is, the cohort with index 0 in a particular population actually has the largest value for
the quantity i state[0]. If two cohorts are equal in this first i–state variable, the second
i–state variable is taken as the ordering key, and so on. However, it is not good practice to rely
on this specific ordering of the cohorts. Although the program tries to keep the order intact,
the user has so much opportunity to change values of i–state variables that the described
order cannot be assured without sorting all the cohorts anew every time step. This operation
is very time consuming and hence has not been implemented.

The boundary population cohorts

The boundary cohorts of any structured population in the model can be accessed within
any of the routines in the model definition file, using the three–dimensional array called
ofs[][][]. How to address a specific quantity that characterizes the ith boundary cohort
in the nth population, is shown in table II on page 22. For example, ofs[0][2][number]
refers to the total number of individuals in the 3rd boundary cohort within the 1st structured
population in the model (Note that in the C–language the lowest array index equals 0).
The addressing of the boundary cohorts in the model is hence completely analogous to the
addressing of the internal cohorts, as described in the previous section.
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Table II: The elements of the arrays ofs and ofsIDcard characterize a single boundary
cohort. These arrays are completely analogous to the arrays pop and popIDcard (table I).
n: population index, i: cohort index, ISD: value of the constant I STATE DIM (section 3.3.2),
ICD: value of the constant I CONST DIM (section 3.3.3).

Array element Refers to:

ofs[n][i][number] Number of individuals within the cohort.

ofs[n][i][i state(0)] Mean of the 0th i–state variable.
ofs[n][i][i state(1)] Mean of the 1st i–state variable.
ofs[n][i][i state(2)] Mean of the 2nd i–state variable.

...
ofs[n][i][i state(ISD-2)] Mean of the one–to–last i–state variable.
ofs[n][i][i state(ISD-1)] Mean of the last i–state variable.

If I CONST DIM 6= 0:

ofsIDcard[n][i][i const(0)] Value of the 0th i–state constant.
ofsIDcard[n][i][i const(1)] Value of the 1st i–state constant.
ofsIDcard[n][i][i const(2)] Value of the 2nd i–state constant.

...
ofsIDcard[n][i][i const(ICD-2)] Value of the one–to–last i–state constant.
ofsIDcard[n][i][i const(ICD-1)] Value of the last i–state constant.

Acceptable values for n, the number of the structured population in the expression ofs[n][i][],
depend on the definition of the constant POPULATION NR in the model dimension file: 0 ≤ n< POPULATION NR.
As was the case for the internal cohorts, the number of boundary cohorts in the different struc-
tured populations in the model can vary over time. Therefore, in all routines, a variable can
be accessed which specifies the number of boundary cohorts in each structured population.
This variable is an array of integer values, called bpoint no[], with a length equal to the
value of POPULATION NR (compare the global variable cohort no[], discussed in the previous
section). bpoint no[n] specifies the number of boundary cohorts that are present in the
nth population at a particular time. The array bpoint no[] is defined as a global variable
and hence does not occur in the headers of the routines. Acceptable values for the index i in
the expression ofs[n][i][] hence are: 0 ≤ i< bpoint no[n].
In summary, to address the quantities within a specific boundary cohort of a particular
population use the following syntax (see also the previous section):

• Use ofs[n][i][number] to address the total number of individuals in the ith boundary
cohort of the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< bpoint no[n])

• Use ofs[n][i][i state(k)] to address the value of the kth i–state variable in the
ith boundary cohort of the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< bpoint no[n], 0 ≤ k< I STATE DIM)

• Use ofsIDcard[n][i][i const(k)] to address (the value of) the kth i–state constant
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in the ith boundary cohort of the nth population.
(0 ≤ n< POPULATION NR, 0 ≤ i< cohort no[n], 0 ≤ k< I CONST DIM)

Addressing the derivatives

The derivatives of the various variables are always labelled with the name of the variable itself
followed by the addition grad. Hence, the derivatives of the environment variables, the statis-
tics of the internal population cohorts and the statistics of the boundary population cohorts
are contained in data structures, called envgrad[], popgrad[][][] and ofsgrad[][][], re-
spectively. The structure and addressing of these derivatives is completely equivalent with
those of the variables themselves. For example:

• The derivative of the ith environment variable is accessed by envgrad[i].
(0 ≤ i < ENVIRON DIM)

• The derivative of the kth i–state variable in the ith cohort of the nth population is
accessed by popgrad[n][i][i state(k)].
(0 ≤ n< POPULATION NR, 0 ≤ i< cohort no[n], 0 ≤ k< I STATE DIM)

• The derivative of the total number of individuals in the ith boundary cohort of the
nth population is accessed by ofsgrad[n][i][number].
(0 ≤ n< POPULATION NR and 0 ≤ i< bpoint no[n])

3.5 The model definition file

The model definition file has to implement the equations that define the structured popu-
lation model under study. In essence the definition file is the EBT–implementation of the
particular structured population model. The name of the definition file should always have
the same basename as the dimension file (see the previous section) and have a “.c” extension.
Therefore, for the example model of section 2.3, the EBT–package contains a model defini-
tion file that is called ebttmpl.c. The accompanying model dimension file for the model
(ebttmpl.h) was discussed in section 3.3. This file ebttmpl.c is an appropriate template
for the definition file of any model and should hence be copied and renamed freely. By edit-
ing with your favorite text editor, this file has to be modified into the definition file for the
particular problem you want to study.
Apart from a single statement to include the general header file escbox.h, which defines
the necessary data structures, the main purpose of the model definition file is the implemen-
tation of 7 routines that are model–dependent. These routines are to be discussed in the
sections 3.5.4–3.5.11 below. The routines specify the number and nature of the boundary
cohorts, the continuous and instantaneous dynamics of all variables and the output of the
program.
As mentioned, the template file ebttmpl.c contains a fully programmed set of routines, which
implement the 2nd–order version of the Escalator Boxcar Train–formulation of the example
model, described in section 2.3. The body of the routines in this file can easily be adapted,
but the headers of these routines should not be changed at all.

N.B.: The functioning of the entire EBT–package depends crucially on
the correct definition of the routine headers in the model definition
file. Therefore, the user should only make changes to the body of
the routines in the template file, that is, the part of the routine
between its opening and closing brace.
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Within the routines in the model definition file, the syntax of addressing the various data
structures that contain all the information about the structured populations and their en-
vironment, is completely identical. This syntax for addressing the data was discussed in
section 3.4 above.
Although the programming of the 7 routines is the essential part of the definition file, the
implementation is often easier when the i–state variables and i–state constants and the pa-
rameters and other constants in the model are labelled with more meaningful names. This
“aliasing” is discussed in the sections 3.5.2 and 3.5.3. It should be stressed that this aliasing
is completely optional, but often very handy.
While reading through the next sections, you are advised to follow the steps also by looking at
the template ebttmpl.c for the model definition file. All illustrations with lines of program
code are taken from this template file. Implementing a particular structured population model
following the steps outlined below and using the template file as the backbone, will in my
opinion only require a minimal working knowledge of the C–programming language. A basic
knowledge from structured population models and their formulation seems to me at least
more essential.

3.5.1 Including the header file escbox.h

The first functional line of C–code in the model definition file should include the general
header file escbox.h. This is done using the following statement:

#include "escbox.h"

Including this header file takes care of defining all the necessary dimensions, the data struc-
tures (among them the cohort arrays) and the globally accessible variables that are to be used
in the remainder of the file.

3.5.2 Labelling i–state variables and constants

To make the programming of subsequent routines easier, it is possible (and advisable!) to
label i–state variables and constants with more meaningful names. All i–state variables and
constants can be given more meaningful names, but it is impossible to assign different names
to the same statistic (for example, the i–state variable with index 0) in different structured
populations in the model.
Labelling variables is done using statements of the form:

#define <name of i–state variable k> i state(k)

For example,

#define age i_state(0)
#define length i_state(1)
#define birthday i_const(0)

These definitions can simplify the addressing of the various statistics in the structured pop-
ulations. For example, given the definitions above the following variable references are syn-
onymous with each other and can hence be used interchangeably in the subsequent routines:

• pop[n][i][age] and pop[n][i][i state(0)],

• ofsgrad[n][i][age] and ofsgrad[n][i][i state(0)],
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• popgrad[n][i][length] and popgrad[n][i][i state(1)],

• ofs[n][i][length] and ofs[n][i][i state(1)],

• popIDcard[n][i][birthday] and popIDcard[n][i][i const(0)],

• ofsIDcard[n][i][birthday] and ofsIDcard[n][i][i const(0)],

(The i–state constant birthday (or i const(0)) could, for instance, be used to store for
every cohort the time that it was born).
Obviously, labelling i–state variables and constants, but also other constants and parameters
(see the next section), promotes a consistent interpretation of the various variables in the
model.
In the template file ebttmpl.c the only two i–state variables are identified with the physio-
logical traits age and length, respectively, by including the statements:

#define age i_state(0)
#define length i_state(1)

3.5.3 Defining constants and labelling parameters

As explained in section 3.2 on page 14 the EBT–package distinguishes constants and pure
parameters, depending on where the values of these quantities is specified. In turn, the place
where these non–dynamic quantities are specified determines how easily they can be modified
between integration runs (see for an elaborate explanation section 3.2).
Constants are essentially explicit (real–valued) numbers within the model definition file that
occur at some point in the structured population model. Specification of these constants can
be done using statements of the form:

#define <constant name> <value>

(It is good practice to use only uppercase letters in the constant name to avoid confusion with
variables).
In the template file ebttmpl.c the quantity Amax is treated as a constant and can hence
only be changed by editing the model definition file and re–building the executable pro-
gram. The constant Amax is identified with the value 100. In addition, a second constant
MAX COHORT SIZE is defined which will be used in the routine EventLocation() (see sec-
tion 3.5.8 below) to restrict the maximum number of individuals ending up in a “cohort in
creation” to 5 individuals. These two constants are defined by the statements:

#define AMAX 100
#define MAX_COHORT_SIZE 5.0

Parameters are non–dynamic quantities, the value of which is only specified during initializa-
tion of the integration program using the control variable file (see section 5.2.1 on page 38).
They can therefore be varied between integration runs without re–building the executable
program. The parameters constitute an array of real–valued numbers, called parameter[],
with length equal to the constant PARAMETER NR (see section 3.3.6 on page 17). Similar to
what was explained in the previous section for i–state variables, and constants, the parameters
can be given more meaningful names by using statements of the form:
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#define <name of parameter #n> parameter[n]

Defining these synonyms greatly promotes a consistent interpretation of the elements of the
array parameter[].
In the example model that is implemented in the file ebttmpl.c the quantities α, δ, rm and
K (see the model description in section 2.3) are taken as parameters and are assumed to
be the first, second, third and fourth element of the array parameter[], respectively. This
specific identification of the various parameters with the elements of the array parameter[]
entirely depends on the convention adopted by the user, which should be used consistently
throughout the model definition and the control variable file (see section 5.2.1 on page 38).
Within the ebttmpl.c file the parameters α, δ, rm and K are referred to by the names ALPHA,
DELTA, R and K, respectively. Hence, the identification of the array elements parameter[] is
made explicit in the following #define statements:

#define ALPHA parameter[0]
#define DELTA parameter[1]
#define RM parameter[2]
#define K parameter[3]

The parameters can now be referred to using either the appropriate element from the array
parameter[] or the name with which it was declared synonymous in the #define statements
above.

3.5.4 The UserInit() routine

After the integration program has started and the control variable file (see section 5.2.1)
and initial state file (see section 5.2.2) have been read, the routine UserInit() is called by
the main program. The routine allows the user to carry out some specific initializations.
For example, it is possible within this routine to process possible command–line arguments
(other than the obligatory one, see chapter 5). Other examples include transformations of
the environmental and/or population data and the initialization of possible global variables
defined by the user.
As an important point it must be noted that, although it is possible to change the value
of all environmental and population variables, it is not possible to change their number .
Therefore, it is not possible to add new cohorts to a population in this routine. (You can, of
course, always initialize a population with a large number of cohorts with arbitrary contents
following section 5.2.2, define the contents for the required number of cohorts in this routine
and set the number of individuals in the unused cohorts to 0.0. These latter will be removed
automatically.)
As seen in the file ebttmpl.c, the body of this routine UserInit() can also be empty. In
the example model, no user–specified initialization is carried out.

3.5.5 The SetBpointNo() routine

As described in (1), the boundary cohorts (or “cohorts in creation”) of each structured pop-
ulation are characterized by special points, the so–called boundary points. Up to now I have
only encountered models with structured populations, in which all individuals are born equal.
In this simplified case, the number of boundary cohorts at every moment in time equals one
and the point characterizing this cohort equals the state that all individuals are born with.
However, the EBT–package is more general and can handle multiple boundary cohorts (see
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(1)). This and the following section describe the two routines in the model definition file that
specify the number and value of the boundary points for each structured population.
As described in section 2.1 and 2.2 the integration takes place in a cyclical fashion, during
which the boundary cohorts of a population receive a continuous inflow of individuals that
are born during the integration cycle. At the end of the cycle the existing boundary cohorts
are transformed into internal cohorts and a new set of boundary cohorts is formed. The
boundary points are involved in these transformations into internal cohorts. The routine
SetBpointNo() is called to determine how many new boundary cohorts have to be set up at
the beginning of the coming cohort cycle. The user has to specify this number for each of the
structured populations in the model, using the array bpoint no[]. The length of this array
obviously equals POPULATION NR. Therefore, the element bpoint no[n] of this array should
be set equal to the required number of boundary cohorts for population n during the next
cohort integration cycle.
Since the example model, implemented in ebttmpl.c, is one of this most common class of
models, in which all individuals are born equal, the number of boundary cohorts required
during a cohort cycle equals 1. Hence the one and only line of C–code encountered in the
routine SetBpointNo() looks like:

bpoint_no[0]=1;

3.5.6 The SetBpoints() routine

The routine SetBpoints() is called by the main integration program after the requested
number of boundary cohorts have been created for each structured population. The routine
is used to define the value of the boundary points, characterizing these cohorts. For an
extensive discussion of these boundary points refer to (1). In this manual only the general
implementation will discussed and, for the example model, the specification of the boundary
point in the simplified case that all individuals are born equal.
The variable that has to be defined in this routine is called bpoints[][][] and has exactly
the same structure as the variables pop[][][] and ofs[][][] described in section 3.4.2 above.
Therefore, this routine should assign values to all the quantities bpoints[n][i][i state(j)],
for all values of n, i and j (0 ≤ n< POPULATION NR, 0 ≤ i< bpoint no[n], 0 ≤ j< I STATE DIM).
Since a point characterizing a boundary cohort is fully identified with the values of the i–
states, there is no analogue of the arrays popIDcard[][][] and ofsIDcard[][][] for the
boundary cohort.
As mentioned in the previous section, the class of models in which all individuals are born
with an equal state is rather special. In this case, there is only one boundary cohort (see
previous section) and the unique state at birth can simply be taken as the boundary point.
The example model is a member of this class and, as explained in section 2.3, individuals are
born with age and length at birth both equal to 0. Therefore, the body of this routine in the
file ebttmpl.c contains the line of code:

bpoints[0][0][age]=0.0; bpoints[0][0][length]=0.0;

which is equivalent to:

bpoints[0][0][i_state(0)]=0.0; bpoints[0][0][i_state(1)]=0.0;

given the alias definitions of section 3.5.2.
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3.5.7 The Gradient() routine

In the routine Gradient() the user has to specify the derivatives of all the environmental
and population statistics of which the dynamics are described by ODEs. As explained in
section 2.1, the exact form of these ODEs can be found in or at least inferred from (5; 6; 1).
These ODEs heavily depend on the functions describing the growth, birth and death processes
of the individuals in the problem under study. The programming of this routine Gradient()
certainly requires a basic knowledge of the C programming language.
The derivatives of the environmental variables, whose values at any specific time are given
by the variable env[], have to be assigned to the elements of the variable envgrad[]. The
derivatives of the statistics (total number, mean i–state) of all the internal cohorts in the
various populations have to be assigned to the elements of the variable popgrad[][][].
The actual values of these statistics are contained in the variable pop[][][]. Similarly, the
derivatives of the statistics (total number, mean i–state) of all the boundary cohorts in the
populations have to be assigned to the elements of the variable ofsgrad[][][]. The actual
values of these quantities are given by the variable ofs[][][]. The complete addressing of
all these variables and their elements has been discussed extensively in section 3.4 above.
For the example model that is implemented in ebttmpl.c the complete EBT–formulation
is given in table III on page 11. The routine Gradient() implements all ODEs that are
specified in this table. In the following the implementation of Gradient() in ebttmpl.c will
be discussed step–by-step.
The first step implemented computes the current value of the functional response S

(1+S) that
occurs in the functions describing individual feeding, growth and reproduction in the model
(see table I on page 9). This computation is carried out by the following statement:

functional_response = env[1]/(1+env[1]);

(Note that “time” is always the first environment variable env[0], while in this model env[1]
represents the food density in the environment).
The second step is to compute the total population feeding and reproduction rate at the
current time. In the analytic formulation of the population model, these total population rates
are equivalent to integrals over the population density function, weighted with the individual
feeding and reproduction rate, respectively (see table II on page 10). In the EBT–formulation
of the model, these total population rates are given by summing the contribution of all the
individual cohorts to the feeding and reproduction, respectively (see table III on page 11).
Since both the individual feeding and reproduction rate are proportional to the individual
surface area, which is identified with the squared individual length, the total surface area of
the entire population is computed as a common factor:

for(i=0, total_area=0; i<cohort_no[0]; i++)
{

total_area +=
pow(pop[0][i][length], 2.0)*pop[0][i][number];

}

The implemented loop over the index i (0 ≤ i< cohort no[0]) ensures that all internal
cohorts are included. As is also indicated in table III, the contribution of the boundary
cohort should be included, if it is not empty:
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if(ofs[0][0][number] > 0.0)
{

mean_offspring_length =
ofs[0][0][length]/ofs[0][0][number];

total_area +=
pow(mean_offspring_length, 2.0)*ofs[0][0][number];

}

(Note that the quantity π`
0 is first converted into the mean length of the newborn individuals

present at the time, which is the equivalent quantity characterizing an internal cohort.)
The next step deals with the specification of the derivatives of the environmental variables.
The first of these derivatives is the time derivative. The second is the derivative of the food
density, which equals the difference between the logistic growth rate in food density and the
total food consumption rate. This total consumption rate is the product of the functional
response and the total population surface area, as computed before:

envgrad[0] = 1;
envgrad[1] = RM*env[1]*(1-env[1]/K)

- functional_response*total_area;

Subsequently, the derivatives of the number, mean age and mean length of the individuals in
every internal cohort is defined, as given in table III on page 11:

for(i=0; i<cohort_no[0]; i++)
{

popgrad[0][i][number] = -DELTA*pop[0][i][number];
popgrad[0][i][age] = 1;
popgrad[0][i][length] =

functional_response - pop[0][i][length];
}

The last part of the routine contains the definition of the ODEs for the quantities character-
izing the only boundary cohort of the population, which are also given in table III on page 11.
The total population birth rate, which equals the product of the parameter α, the functional
response and the total population surface area, appears in the derivative for the total number
of individuals in the boundary cohort (see table 2.1 for the form of the ODEs):

ofsgrad[0][0][number] = -DELTA*ofs[0][0][number]
+ ALPHA*functional_response*total_area;

ofsgrad[0][0][age] = -DELTA*ofs[0][0][age]
+ ofs[0][0][number];

ofsgrad[0][0][length] = -DELTA*ofs[0][0][length]
+ functional_response*ofs[0][0][number]

- ofs[0][0][length];

The specification of the various derivatives is thus completed. It should be noted that the
transformations listed in table III on page 11 that deal with the renumbering of all the cohorts
and the initialization of the new “cohorts in creation” are implemented in the library files.
The user does not have to deal with these transformations at all, other than specifying the
value of the boundary point (i.e. the individual state at birth) as is described in section 3.5.6
on page 27.
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3.5.8 The EventLocation() routine

As is described in section 2.1 and 2.2, the entire integration time is divided up into cohort
integration cycles (see also (5; 6; 1)). The main event that characterizes the end of a cohort
integration cycle is the transformation of the current boundary cohorts of each structured pop-
ulation into internal cohorts and the subsequent starting up of a new set of boundary cohorts.
Essentially, the length of the cohort integration cycle is fixed and determined by a quantity
that is read as input from the control variable file (see section 5.2.1). However, the current
version of the EBT–package allows for a dynamic cohort closure, that is, the end of a cohort
cycle can dynamically be enforced during the integration. The routine EventLocation() is
used for this purpose.
When the DOPRI5 integration method is being used, the routine named EventLocation() is
called to check whether a discontinuity in the time derivatives or an event has occurred. Such
a discontinuity or event is indicated by a zero (0) return value of this routine. Hence, every
time the return value changes from positive to negative or vice versa, this is interpreted as an
event occurrence. If an event occurs, the integration will not step over the time point of the
event, but will localize the moment of its occurrence by means of a root finding procedure.
This localization will stop when it has found a time, for which the return value of this
routine is within the tolerance bounds, distinguishing values from zero, as set in the CVF
file. After the event time has been localized, integration will be carried out exactly up to the
moment of event occurrence. Subsequently the routine ForceCohortEnd() (see section 3.5.9)
is called and the integration is started from the moment of the event location onwards. If no
event location is required, this routine should return a constant, negative value. The macro
NO EVENT can be used for this purpose.
At the end of the iterative process the most appropriate time integration step has been found
and this step length is used to integrate all ODEs exactly up to the time point at which the
cohort cycle should end (This integration exactly until the time that a cohort cycle should
end, is also done when the cohort cycle ends for one of the other reason, mentioned below).
After this final integration step, the boundary cohorts are closed off and the program carries
out the usual steps that follow the end of a cohort cycle (see section 2.2).

Switching problems

Models that use the feature of dynamic cohort closure will often be referred to as switching
problems, since the switch in sign from negative to positive of the result of EventLocation()
determines the time of closing the cohorts. In these switching problems, a cohort integration
cycle is hence ended:

1. if DYNAMIC COHORTS=0: at regularly spaced points in time that are separated from each
other by an interval, the length of which is controlled by the user (the “default length”
of the cohort cycle; see section 5.2.1),

2. if DYNAMIC COHORTS=0 or if DYNAMIC COHORTS=1: whenever the output of the defined
output quantities (see section 3.5.11) or the output of the total state of the system (see
section 5.2.1 and 5.3.4) is required, and

3. if DYNAMIC COHORTS=0 or if DYNAMIC COHORTS=1: whenever the result of the routine
(EventLocation) changes sign from negative to positive.

In non–switching problems this last type of event does not occur and a cohort cycle can only
end because of one of the first two reasons.
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N.B.: The distinction whether a problem is a switching or a non–switching
problem is only made at the moment that the returned result of
EventLocation() changes sign from negative to positive for the first
time. In a non–switching problem the routine EventLocation() should
therefore always return a negative value.

To facilitate the implementation of problems, in which dynamic cohort closure does not occur
at all, a constant NO EVENT has been defined that disables dynamic cohort closure and can
be returned as the result of (EventLocation). Therefore, in a non–switching problem the
routine (EventLocation) should only contain the line:

return NO_EVENT;

Essentially, the example model presented in section 2.3 is not a switching problem. For illus-
trative purposes, however, the model has been turned into a switching problem by requiring
that the maximum number of newborn individuals in the only boundary cohort is not larger
than the limit defined as MAX COHORT SIZE (currently set to the value of 5 individuals; see
section 3.5.3). The routine EventLocation() hence contains the following lines:

result = ofs[0][0][number] - MAX_COHORT_SIZE;
for (i=1; i<bpoint_no[0]; i++)

result = max(result, ofs[0][i][number] - MAX_COHORT_SIZE);

return result;

In the first statement, the variable result is initialized to the difference between the current
and the maximum allowable number (MAX COHORT SIZE) of individuals in the first boundary
cohort. Subsequently, this quantity is compared with the same difference in all other boundary
cohorts and the maximum of these values is selected (that is, the most positive or least negative
value encountered). This maximum is returned as result of the EventLocation() routine.
Obviously, the implemented loop structure is superfluous, since in this model there is only
one boundary cohort present at any time. The loop is implemented for purely illustrative
reasons.

• The iterative search for the appropriate cohort end is computationally intensive, result-
ing in long program execution times. Switching should hence as much as possible be
avoided. If necessary, it is advisable to specify a rather large tolerance level (in the
order of 10−3–10−5) in the control variable file (see section 5.2.1). This will keep the
integration time within bounds.

3.5.9 The ForceCohortEnd() routine

When the DOPRI5 integration method is being used, the routine named ForceCohortEnd()
is called after an event has been localized on the basis of the EventLocation() routine defined
above. This routine should then return either COHORT END (=1) or NO COHORT END (=0), in-
dicating whether a cohort closure is currently required or not. If the macro DYNAMIC COHORTS
in the program header file is set to 0 (its default value) closing off boundary cohorts and trans-
forming them into internal cohorts takes place both at constant time intervals (as specified
by the cohort cycle limit variable in the .CVF file) and whenever the current routine returns
COHORT END. This allows for dynamic closure of boundary cohorts, for instance, to ensure a
limited number of individuals per cohort. If DYNAMIC COHORTS is set to 1 in the program



Escalator Boxcar Train User’s Manual 32

header file, closing off of boundary cohorts is exclusively performed when the current routine
returns COHORT END.
Remember: for dynamic cohort closure the DOPRI5 integration method (section 3.3.7) is
needed. If DYNAMIC COHORTS is set to 1, TIME METHOD will automatically be changed to DOPRI5
(see also section 3.3.8).

3.5.10 The InstantDynamics() routine

In the routine InstantDynamics() the user can specify the instantaneous dynamics that
take place at the end of a cohort integration cycle. The environmental variables contained
in env[], the internal cohort variables of all populations, contained in pop[][][], and the
boundary cohort variables, contained in ofs[][][], can instantaneously be given a specific
value. This allows the user to carry out a variety of discrete changes to the state of the
system. Two examples will be discussed.
The first example concerns a finite lifespan for the individuals in a structured population. If
all individuals of a population experience some form of mortality during their entire life, but
will die with certainty upon reaching a maximum age, all the cohorts in that population can
be tested on the mean age of its individuals. When this mean age exceeds the maximum age,
the number of individuals in the specific cohort can instantaneously be set to 0.
The second example is a pulsed reproduction process. If reproduction in a population occurs as
discrete, equally spaced events in time, the length of the cohort interval, specified by the user
in the control variable file (see section 5.2.1), can be chosen equal to the inter–reproductive
period, such that the transformation of the boundary cohorts takes place exactly after the
moment of reproduction. The pulsed reproduction process can then be implemented by
instantaneously setting the values of the boundary cohort variables equal to the number and
the mean i–stateof the newborns at the end of a cohort integration cycle.
Many more examples of instantaneous dynamics can be found and implemented in this routine.
It should be noted, however, that the instantaneous dynamics take place after the transforma-
tion of the boundary statistics, but before the incorporation of the boundary cohorts into the
collection of internal cohorts. Hence, the boundary cohorts are already characterized by the
same quantities (total number of individuals, mean i–state) that represent an internal cohort.
For example, if a pulsed reproduction process is implemented, the quantities, representing
the boundary cohort, should exactly equal the state at birth of the newborn individuals.
In the example model that is implemented in ebttmpl.c the routine InstantDynamics() im-
plements the immediate death on reaching the maximum lifespan Amax. Inside the following
loop:

for(i=0; i<cohort_no[0]; i++)
{

if(pop[0][i][age] > AMAX) pop[0][i][number] = 0;
}

the mean age of every internal cohort (not the boundary cohorts!), numbered from 0 to
cohort no[0]-1, is compared with the value of Amax. If larger, the number of individuals
in the particular cohort is set to 0. Theoretically only one cohort could have passed the
maximum lifespan after each cohort cycle. Nonetheless, for a correct implementation of the
instantaneous death all the cohorts are tested, because assumptions about the ordering of
the cohorts within the population cannot be made safely. The user should, for example, not
assume that the cohort with the highest number (cohort no[0]-1) in a particular population
also has the largest mean age. As described in section 3.4.2, the cohorts with the lower indices



Escalator Boxcar Train User’s Manual 33

are the ones with the larger mean ages. However, their order again depends upon the value
of the other i–state variables as well.

3.5.11 The DefineOutput() routine

The dynamics of a structured population model are usually captured in terms of measures
of the state of the environment and the structured populations in the model. The routine
DefineOutput() should define these quantities of interest that are subsequently stored into
the output file (see section 5.3.2). The output of results is carried out at regular time intervals,
the length of which is defined by a variable that is specified in the control variable file (see
section 5.2.1). Output is only allowed immediately after the sets of boundary cohorts have
been incorporated into the structured populations and hence the program will always trans-
form the boundary cohorts into internal cohorts when output is required. Therefore, only the
environmental variables, again contained in the variable env[], and the population variables,
addressed using the variable pop[][][], can be used for this definition. The output quanti-
ties should be stored in the array output[]. The length of this array is equal to the value of
the constant OUTPUT VAR NR, as specified in the model dimension file (see section 3.3.5). The
current time is automatically written to the output file before all the quantities defined in the
routine DefineOutput().
As already mentioned in section 3.3.5 on page 17, the quantities of interest in the exam-
ple model described in section 2.3, are the concentration of food particles and the total
number and biomass of consumer individuals in the structured population. In the routine
DefineOutput(), the first output variable output[0] is set equal to the current food density,
given by the value of env[1], the second environmental variable, in the line:

output[0] = env[1];

(Remember that the first environmental variable, env[0], is always the time).
The total number of individuals in the consumer population and their biomass are subse-
quently determined in the loop structure that follows:

for(i=0; i<cohort_no[0]; i++)
{

output[1] += pop[0][i][number];
output[2] +=

pow(pop[0][i][length], 3.0)*pop[0][i][number];
}

The total population size is calculated by summing the number of individuals in all the cohorts
(with indices ranging from 0 to cohort no[0]-1), presently constituting the population. This
sum is accumulated in the second output quantity output[1]. The total biomass of the
population is calculated by summing the biomasses of all the cohorts, which is equal to the
cube of the mean length of the individuals times the number of individuals in the cohort.
This sum is accumulated in the third output quantity output[2]. The main EBT–program
subsequently writes the current time and the values of these output quantities to the output
file (see section 5.3.2).



Chapter 4

Program building

After programming the model dimension and definition file an executable program has to be
generated from the library modules that are supplied with the EBT–program package and
the two model–dependent files. When working within a UNIX–environment this can most
easily be carried out, using the ebt–script that is described in section 6.1 on page 47. The
description below is therefore primarily aimed at users that do not employ that script.
To build a program the following library files have to be compiled into object files, using an
appropriate C–compiler (see also section 1.4.1):

ebtmain.c: The main program file with primary routines.

ebtinit.c: Routines carrying out the initialization.

ebtcohrt.c: Routines for organizing the cohort data structures.

ebttint.c:: Routine for the the time integration.

ebtrk2.c: Integration method routines.

ebtrk4.c: Integration method routines.

ebtrkf45.c: Integration method routines.

ebtrkck.c: Integration method routines.

ebtdopri.c: Integration method routines.

ebtutils.c: Low level service routines.

ebtstop.c: Routines used during shut–down of the program.

In addition to these library files, the model definition file has to be compiled as well. The
final step to obtain an executable program involves linking the compiled library modules and
model definition file together.
However, for a successful compilation of these files the command–line, with which the C–
compiler is invoked, should contain some specific switches. These requirements concerning
the compile command–line result from the following properties of the EBT–package:

• The constants defined in the model dimension file determine the sizes of the data struc-
tures in the EBT–program (see section 3.3), on which all library files depend. As a
first step, the model dimension file is always included into the the general header file
escbox.h in which these data structures are defined. The general header file is subse-
quently included into every file during compilation, including the model definition file.
Since the library files are designed to be model–independent the name of the model
dimension file is left undefined within the file escbox.h and substituted by a macro
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PROBLEMFILE. This macro PROBLEMFILE functions as a placeholder, which has to be
specified appropriately at the time of compilation to point the compiler at the dimen-
sion file that belongs to the model for which the library files are presently compiled.
Defining this macro PROBLEMFILE can be carried out by using the -D switch as an addi-
tional command–line option for your C–compiler. For example, if the model dimension
file is called example.h, the macro PROBLEMFILE is correctly defined by including the
following switch into the C–compiler command–line:

-DPROBLEMFILE="<example.h>"

• Since both the model dimension file and the general header file escbox.h have to be
included into the source code files during compilation, the C–compiler has to be aware
of the directories in which these files are located. These locations can be specified,
using the -I switch as an additional command–line option. For example, if the model
dimension file is located in the current directory and the general header file is to be found
in a directory /usr/local/escbox, the compiler can be notified of these locations by
including the following switches into the C–compiler command–line:

-I. -I/usr/local/escbox

• The current EBT–package can be used for the 2nd–order version of the Escalator Boxcar
Train only, i.e. not for the the 3rd–order version.

Given that the command–line, with which the C–compiler is invoked, conforms to the three
requirements discussed above, the building and linking of the various object modules into
an executable program is straightforward. It is possible to compile and link all the library
modules and the model definition file with one single call to the C–compiler. In this case
all the source code files (those with a .c extension) should be specified on the command–line
at the same time. The method I prefer involves generating a separate object module for
every source file and subsequently linking them all together. The reason is that the model
definition file will be changed much more often than the model dimension file. Therefore, a
new compilation of all the library files, which only depend on the model dimension file, is
required much less frequently than the compilation of the model definition file. Generating
separate object modules for every source file makes it possible to just compile the model
definition file anew and subsequently link it with the still valid object files of the library
modules.
As an example, I will show the necessary commands to generate an executable program from
the ebttmpl.c definition file, whose implementation was discussed in the previous chapter.
The statements that I show below to illustrate the various steps were actually carried out on
a SUN–IPX workstation using SUN–OS version 4.1.2 and its accompanying cc compiler. In
this example it will be assumed that all the library files that make up the EBT–package are
located in the directory /usr/local/escbox and that the model files to be compiled (in this
case the ebttmpl.c and ebttmpl.h files) are in the current directory.
The following 7 statements call the C–compiler to generate the object modules from the
6 library files (ebtmain.c, ebtinit.c, ebtcohrt.c, ebtrkf45.c, ebtutils.c, and ebtstop.c)
and the model definition file (ebttmpl.c). These statements only show the minimally required
compiler options at the command–line, obviously the user can add his/her own preferred ones:
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> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtmain.o -c /usr/local/escbox/ebtmain.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtinit.o -c /usr/local/escbox/ebtinit.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtcohrt.o -c /usr/local/escbox/ebtcohrt.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtrkf45.o -c /usr/local/escbox/ebtrkf45.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtutils.o -c /usr/local/escbox/ebtutils.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebtstop.o -c /usr/local/escbox/ebtstop.c

> cc -I. -I/usr/local/escbox -DPROBLEMFILE="<ebttmpl.h>" \
-o ebttmpl.o -c ebttmpl.c

After these 7 compile statements, the current directory will contain the generated object
modules, which are linked together into an executable program with the following command:

> cc -o ebttmpl ebtmain.o ebtinit.o ebtcohrt.o ebtrkf45.o \
ebtutils.o ebtstop.o ebttmpl.o -lm

(The -lm switch is incorporated into this link statement to search also the mathematical
library to resolve the calls to some of the routines used in the EBT–package). After carrying
out this link step, the current directory contains an executable program, called ebttmpl,
that is to say if no errors were encountered in the programmed source files. How to use this
executable program for the time integration of the dynamics exhibited by the implemented
structured population model is the topic of the next chapter.



Chapter 5

Program execution

The previous chapter described how an executable program could be created from the library
files in the EBT–package and the model dimension and definition file, implemented by the
user. This chapter will describe how the executable program has to be started (see section 5.1)
and discuss the various in– and output files of the program. Apart from command–line
arguments that the user might want to use in the routine UserInit() (see section 3.5.4) to
define specific variables in the model definition file, in– and output of the program only takes
place by means of files. More specifically, the program needs to read 2 input files, which
are described in section 5.2.1 and 5.2.2 below, and generates up to 5 output files that are
discussed in section 5.3.1–5.3.5.

5.1 Starting an integration

Starting the integration program can be done by simply typing the name of the executable file
on the command–line of the operating system. One command–line argument is mandatory,
indicating the name of the integration run that has to be carried out. Therefore, an integration
run can be started with a statement of the form:

<program> <run>

For example, if the generated executable file is called ebttmpl, as was the case in the example
discussed in the previous chapter, and the integration run to be carried out is called tmpl,
the command to start the integration run is:

ebttmpl tmpl

The importance of the name of the run is that it equals the root of the name of all the in– and
output files. All the files read or written by the program have this same basename and only
differ from each other by a unique extension. As input the integration program reads a control
variable file (discussed in section 5.2.1) and an initial state file (discussed in section 5.2.2).
The program assumes that these two files bear names that are constructed by adding a .cvf
and .isf extension, respectively, to the common root of the filename, i.e. the name of the run.
Similarly, the program constructs the names of the output files by adding a unique extension
to the name of the run (see the description of the output files in the sections 5.3.1–5.3.5
below).
As part of the EBT–package (see the contents description in section 1.4.2 on page 6) two files
are supplied, called tmpl.cvf and tmpl.isf, that serve as templates for the control variable
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file and the initial state file, respectively. Therefore, the example of the command–line given
above starts the program ebttmpl from the previous chapter to carry out the run tmpl, the
characteristics of which are determined by these two template files.
Obviously, to start the integration program successfully the executable file has to be found by
the operating system. It should therefore be in the current directory or in a directory that is
part of the path that is searched by the operating system for executable files. Alternatively
the full name of the file, including the directory in which it is located, can be used to start
the program. In the same way the name of the run should give sufficient information on the
location of the input files. Since the names of the input files are constructed by only adding
an extension to the name of the run, the latter can contain a directory specification as well. If
the program does not succeed in localizing one of the input files, it exits with an appropriate
error message.

5.2 Input files

As mentioned, the program reads a control variable file and an initial state file as input.
The latter file has to contain all the information on the initial state of the environment
and the statistics (number of individuals, mean i–state variables, plus the value of the i–
state constants) for all the cohorts in the various structured populations in the model. The
control variable file has to contain all the necessary variables that control the operation of the
program. Examples are the maximum time until which the integration has to be continued,
various tolerance levels determining the required accuracy of the integration, but also the
values of the parameters for the current integration run. Both these files, which are plain text
files containing only characters, digits, tabs, and white spaces, should have a specific format,
otherwise the integration program cannot successfully read them. The necessary layout of
both files is discussed in the next two sections.

5.2.1 The control variable file (CVF–file)

The EBT–package contains templates of the control variable file (CVF–file) for the 2nd–order
version of the Escalator Boxcar Train. This files is called tmpl.cvf. Here I will discuss the
layout of this file, which is the appropriate CVF–file for the example model ebttmpl that
has been used as an illustration throughout all previous chapters.
The file tmpl.cvf contains the following lines of plain text:
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"Integration accuracy" 1.0E-8
"Cohort cycle time interval" 0.5
"Tolerance value, determining identity with zero" 1.0E-5

"Maximum integration time" 100.0
"Output time interval" 1.0
"Complete state output interval, 0 for none" 50.0

"Minimum allowable number of individuals in cohort" 0.0

"Relative tolerances for i-state variable #0" 0.0
" i-state variable #1" 0.0
"Absolute tolerances for i-state variable #0" 0.0
" i-state variable #1" 0.0

"Birth rate coefficient Alpha" 0.75
"Individual death rate Delta" 0.1
"Logistic growth rate R" 3.0
"Carrying capacity K" 8.3

The lines or records in this file all have the same structure: every record consists of a string
that gives a verbal description of the quantity that is specified on the current line, followed by
one or more real–valued numbers, specifying the value(s) to be used in the current integration
run for the particular control quantity. If the particular control quantity is specific for one
structured population in the model only, there have to be exactly POPULATION NR real–valued
numbers specified after the description string, one pertaining to each population. This holds
for the minimum cohort size and the relative and absolute tolerances for the i–state variables.
The description string is contained within double quotes to indicate its start and end, although
this is not absolutely necessary. If a record does not start with a double quote the program
assumes that all the characters up to the very first digit encountered make up the description
string (Note that this would cause problems if the description string contains a digit as a
character, as is the case in the tmpl.cvf file).
The empty lines that occur in the file are irrelevant. They are inserted for better readability
and the program skips these empty lines while processing the file. The program reads and
stores the description strings simply to repeat them afterwards in the report file (see sec-
tion 5.3.1), it does not interpret them at all. The entire set of control variables is read in a
predetermined way. Therefore, the order of the different records (lines) in the CVF–file, not
its absolute position, is of utmost importance and should be maintained meticulously. In the
next sections the different records in the file will be explained in more detail.

Integration accuracy

This first record in the CVF–file specifies the required accuracy with which individual inte-
gration steps have to be carried out. The EBT–package employs the 4th/5th–order Runge–
Kutta–Fehlberg method with adaptive step size to carry out the time integration of all ODEs
(see (9)). This method performs every integration step twice but uses both times a differ-
ent method: the first time a 4th–order Runge–Kutta method and subsequently a 5th–order
Runge–Kutta method. The difference between the results obtained with the two methods is
measured relative to the current value of the variable that is integrated, yielding an estimate
of the relative error made during the integration of the variable. Subsequently, the maximum
relative error is determined over the set of all variables of which the dynamics are described
by ODEs. If the maximum relative error thusly obtained is less than the integration accuracy
specified in the first record in the CVF–file, the integration step is accepted as successful,



Escalator Boxcar Train User’s Manual 40

otherwise it is rejected and the step size is decreased. Appropriate values for this integration
accuracy are of the order 10-7–10-9 , smaller values imply a more accurate integration using
smaller steps and taking longer to complete the run.

Cohort cycle time interval

The second record in the CVF–file specifies the length of the cohort interval, i.e., the interval
between the equidistant time values at which the boundary cohorts are closed off, transformed
into internal cohorts and replaced by a new set of boundary cohorts (See section 3.5.8 for
a complete discussion of the times at which the boundary cohorts are transformed and re-
placed). The length of this cohort interval is entirely dependent on the structured population
model itself. However, smaller values lead to a better approximation of the analytical model
dynamics, but imply that more often, and hence more, new internal cohorts are created. As
a result the number of ODEs to be integrated is larger and the program will run slower.
For the example model ebttmpl a value of 0.5 turns out to be appropriate. It is advisable
when studying the dynamics of a structured population model to study the influence of the
cohort interval length. It should have such a value that halving or doubling its value does
not influence the resulting dynamics significantly.

Tolerance for identity to zero

The third record in the CVF–file determines the tolerance level when quantities in the program
are compared to 0. This control variable is especially important in switching problems, that is
when the dynamic cohort closure option is used. As described in section 3.5.8 on page 30, in
switching problems the program attempts to locate the exact moment at which the returned
value of the routine Eventlocation() equals 0. In reality the program assumes it has obtained
this exact moment when the returned result is smaller in absolute value than the tolerance
specified in this third record in the CVF–file. Appropriate values are in the order of 10-3–
10-5 . If smaller values are taken the program will try to determine the moment at which the
returned value of the routine Eventlocation() equals 0, more accurately. This is, however,
very time consuming and should be used with great care.
In non–switching problems the tolerance level in this record in the CVF–file is only used to
determine whether it is time to write the output variables or the entire state of the model to
the corresponding file. Here the value of the tolerance level is less critical and can easily be
taken equal to 10-5 , as is done in the tmpl.cvf file for the ebttmpl model.

Maximum integration time

The fourth record in the CVF–file is almost self–explanatory, as it specifies the maximum time
value until which the integration has to be continued. On reaching this maximum integration
time, the program will write the output variables to the output file, save the final state of all
the variables in the model, write the report file, and exit.

Output time interval

The fifth record in the CVF–file specifies the time interval between successive output moments.
The output variables defined in the routine DefineOutput() (see section 3.5.11) are written
to the output file at the start of the integration run and at equidistant times afterwards, the
length of the interval in between being specified in the current record of the CVF–file. The
output file is more fully described in section 5.3.2. It is not possible to specify a zero value
for this time interval.
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Complete state output interval

Apart from writing the values of the output variables, defined by the user, to the output file,
the program incorporates the option to write the entire state of the environment and all the
structured populations to a separate file, called the complete state output file (CSO–file; see
section 5.3.4 on page 45 for a description of the form in which the entire state is saved in
this file). The sixth non–empty record in the CVF–file specifies the time interval between
the moments at which the entire state is written to this CSO–file. It should be noted that
the entire state of the system constitutes a considerable amount of data and specifying too
small a value at the current record will lead to a very big CSO–file. In contrast to the regular
output time interval, it is possible to specify a zero value for this time interval, which has the
meaning that the entire state of the model is never saved in the CSO–file. Consequently, if
the value specified in this sixth record equals 0, the CSO–file is not created at all.

Minimum cohort size

As described in section 2.2 on page 8, the integration program screens all cohorts in all
structured populations at the end of a cohort cycle interval. Cohorts that have become too
small are subsequently removed from the population. The quantity in the seventh record of
the CVF-file determines what exactly is meant by “too small”. If the number of individuals in
a cohort is less than the minimum cohort size specified in the current record, it is considered
negligible and removed from the population. If this quantity is set to 0, cohorts are never
considered to be too small and are hence never removed in this way from the structured
population. Obviously, the minimum cohort size can be used to limit the number of cohorts
in a structured population by removing cohorts of which the influence is negligible. If no
other mechanism keeps the total number of cohorts within bounds, this minimum cohort size
should absolutely be set to a non–zero value. Otherwise the total number of cohorts will
simply grow unlimitedly and the integration program will slowly grind to a halt.
Smaller values for the minimum cohort size would postpone deleting the cohorts from a
population and hence will lead to a better approximation of the analytical model dynamics.
This better approximation is obtained at the expense of a larger system of ODEs that has to be
integrated over time and hence an integration program that is considerably slowed down. The
appropriate value of the minimum cohort size is strongly model–dependent. For the example
model ebttmpl it is set equal to 0 in the tmpl.cvf file. The example model implements
a maximum age after which all the individuals die instantaneously (see section 3.5.10 on
page 32). In the cohorts that reach this maximum age the number of individuals is set to 0
and hence they are removed irrespective of the minimum cohort size. The presence of this
mechanism to limit the number of cohorts in the structured population makes it unnecessary
to specify a non–zero value for the minimum cohort size.
The minimum cohort size can be different for the different structured populations in the
model. Therefore, if more than one structured population is present in the model, the min-
imum cohort size has to be given for them separately. This seventh non–empty record in
the CVF–file should always specify as many values after the description string as there are
structured populations present in the model, meaning that the number of values given for the
minimum cohort size should equal the value of the constant POPULATION NR (see section 3.3.1
on page 15). If not enough values are given, the program will exit with an appropriate error
message. Note, however, that the description and all the values should still be given on the
same line, the subsequent values separated from each other by white spaces.
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Relative and absolute tolerances for i–state variables

Simultaneously with screening all the structured populations at the end of a cohort cycle for
cohorts that have become too small, the populations are also screened to identify cohorts that
have become identical (see section 2.2 on page 8). If cohorts are found to be identical, they
are joined together. The resulting new cohort has a total number of individuals that equals
the sum of the number of individuals in the two original cohorts. The values of the mean
i–state variables and i–state constants in the new cohort is set to the weighted mean of these
statistics in the original cohorts.
Joining identical cohorts is another way to keep the number of cohorts in the structured
populations within bounds, just like the removal of cohorts that have become too small. The
relative and absolute tolerances that have to be specified in the CVF–file determine whether
two cohorts have become identical. Two cohorts are considered identical with respect to a
specific i–state variable if either the difference between the values of this i–state variable in
the two original cohorts is less than the absolute tolerance specified in the CVF–file, or the
quotient of this difference and the mean of the i–state variables in the two cohorts is less than
the relative tolerance (Note that only one of the relative and absolute tolerance has to be met
to consider two cohorts identical with respect to the specific i–state variable). Two cohorts
are now considered completely identical, if they are identical in all their i–state variables.
Only then the cohorts are joined.
The number of records that specify these tolerances in the CVF–file varies between models,
as it always has to equal the number of i–state variables (Remember that the number of i–
state variables was necessarily equal in all structured populations in a model). The tolerance
values for all the i–state variables are specified on separate lines in the CVF-file, first all
relative, subsequently all absolute tolerances. Therefore, after the seventh record specifying
the minimum cohort sizes, first I STATE DIM records should be given that specify the relative
tolerance for each of the i–state variables, numbered 0 . . . I STATE DIM− 1. Following these
relative tolerances, the absolute tolerances should be specified for each of these I STATE DIM
i–state variables. Self–evidently, the order in which the tolerances are specified should match
the order of the i–state variables, as used in the model definition file.
As was the case for the minimum cohort size, also the tolerance values can differ for different
structured populations. If more than one structured population is present in the model, every
single tolerance value has to be given for them separately. Therefore, each tolerance record
in the CVF–file should always specify as many values after the description string as there
are structured populations present in the model (equal to POPULATION NR, see section 3.3.1
on page 15). If not enough values are given, the program will exit with an appropriate error
message. Note, however, that the description and all the values should still be given on the
same line, the successive values separated from each other by white spaces.
In the template file tmpl.cvf all relative and absolute tolerances are set to 0. This implies that
no screening of the cohorts will take place at all, which will speed up the integration program
considerably. Lumping identical cohorts in the example model ebttmpl is unnecessary since
the number of cohorts is limited anyway, because of the maximum age that individuals can
attain. It should be noted that setting both the relative and the absolute tolerance to 0 for
only one i–state variable, is sufficient to inhibit lumping of cohorts in all cases. Identity of
cohorts is then impossible.

Parameter values

The last records in the CVF–file have to specify the values of the free parameters in the model
(see the sections 3.2, 3.3.6 and 3.5.3). Every free parameter is specified on a separate line,
hence there should be a total of PARAMETER NR records altogether (If PARAMETER NR equals 0,
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no records are required). Self–evidently, every record should contain only a description string
plus one single real–valued number and the order of the records should match the order that
is used in the model definition file (see section 3.5.3 on page 25).
In the example model that is implemented in the file ebttmpl.c the quantities α, δ, rm and K
(see the model description in section 2.3) are taken as free parameters and are assumed to be
the first, second, third and fourth element of the array parameter[], respectively. Therefore,
there appear 4 records in the CVF–file tmpl.cvf that successively specify the values of these
parameters.

5.2.2 The initial state file (ISF–file)

The initial state file (ISF–file) has to define the initial state of the environment and all the
structured populations in the model. The program reads this file after reading the CVF–file,
creates the appropriate number of internal cohorts for every population and stores the values
that it reads from this file. As the integration program reads the file in a specific order, the
layout of the ISF–file is again of overriding importance. If this layout is not meticulously
adopted, the initial state will not be read correctly. It is possible that an incorrectly spec-
ified initial state will generate no error message and the program will nonetheless start the
integration run.
In contrast to the CVF–file, empty lines in the ISF–file are very important. The presence of
an empty line is interpreted by the integration program as the end of the current section in
the ISF–file. Every such a section contains the initial state of either the environmental data
or of one of the structured populations in the model. The use of any type of comment in the
ISF–file is also discouraged, it will simply be skipped by the program and can cause problems
while reading the file (Only the presence of real–valued numbers counts, which means that a
line is considered empty even if it is full of non–digit characters).
The first line in the ISF–file should contain the initial values for the environment variables
in the model. The first value should always equal the initial time value, as explained in
section 3.3.4. The following values should be the initial data for the other environmental
statistics. In total, the number of values specified in this section should equal the value of
the constant ENVIRON DIM. (These values can best be given on one single line, although the
program is flexible at this point: the integration program simply reads the first ENVIRON DIM
values in the ISF–file as initial values for the environment variables.)
After the initial state of the environment one or more empty lines should be inserted in the
ISF–file to identify the start of the next section. The second section in the ISF–file contains
the initial data for the structured population with index 0 in the current model. Every line
in this second section has to specify the initial values for exactly one single cohort. The
program is very strict about this: if there are not enough data on one line to define a cohort
completely, it will discard the entire data line, ushering a warning about an incomplete cohort
specification. Similarly, if there are more numbers present on a single line than is necessary
to define a single cohort, the superfluous numbers are discarded. The program will not warn
about the latter situation.
The order of the numbers on every single line is also significant. The first number read on a
line is assumed to be the total number of individuals in the cohort. The following quantities
are taken as the initial values for the mean i–state variables in the order that is adopted
by the user throughout the model definition file (see section 3.5). Whatever the structured
population model, every line has to contain at least this total number of individuals and a
total number of I STATE DIM values, representing the means of the i–state variables. The
program then continues with reading the initial values of the i–state constants. These should
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be given as the last set of numbers on the line, their number should obviously equal the value
of the I CONST DIM constant (see section 3.3.3) and the order in which they are specified
should match the order that is adopted by the user throughout the model definition file. If
the constant I CONST DIM is set to 0 in the model dimension file, the program naturally skips
this part of the initialization of a cohort.
After the successful processing of a single line and initialization of the corresponding cohort,
the program starts reading the subsequent line. If this line also contains a set of numbers,
it is assumed to define the initial state of another cohort belonging to the same structured
population as the previous one. The process is repeated until the program encounters one
or more empty lines, which are interpreted as the end of the initial state of the structured
population that is currently read. If the thusly completed structured population wasn’t
the last one in the model, the program continues to search for the initial state of the next
structured population. This cycle is repeated until a valid initial state for all the structured
populations in the model is read from the ISF–file.
Summarizing, it is important to remember that sections in the ISF–file are separated from
each other by empty lines, containing no numbers at all. The sections specify the initial state
of the environment and the successive structured populations, while the initial state of a single
cohort should always occupy exactly one line of data. Failure to adhere to the described layout
can cause warning messages about insufficient cohort specifications or structured populations
that do not contain any cohort at all. In case of the incomplete cohort warning the program
will continue the integration if possible, in case of a population without any cohort the program
will exit with an error message.
The EBT–package contains a file tmpl.isf that is an appropriate initial state file for the ex-
ample model ebttmpl. This file, which can serve as a template for any structured population
model implemented using the 2nd–order version of the Escalator Boxcar Train, contains the
following lines of data:

0 2.5

10.0 20.0 0.5

The data define the initial time at the start of the integration run (env[0]) to equal 0 and
the current food density, which was the second environmental variable in the model (env[1])
to equal 2.5. At the start of the integration, the only structured population in the model is
made up of one single cohort containing 10 individual consumers with an age of 20 time units
and a length equal to 0.5 (Remember that these quantities were scaled in the example model
and hence dimensionless, see section 2.3).

5.3 Output files

After the extensive discussion of the input files, the output files will require considerably
less explanation. Up to 5 output files will be created by the integration program, the exact
number depends on whether complete state output is required (see section 5.2.1) and whether
the implemented model uses the dynamic cohort closure option (see section 3.5.8 on page 30).
The 3 files that will always be generated are the report (see section 5.3.1), the output (see
section 5.3.2) and the end state file (see section 5.3.3). If the time interval for complete state
output is set to a non–zero value (see section 5.2.1), the program will also regularly write the
entire state of the model to the complete state output file (see section 5.3.4). All generated
output files are plain text files, containing simple characters, digits, tabs and white spaces.
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5.3.1 The report file (REP–file)

The report file (REP–file) is one of the 3 files that is always generated by the integration
program. It reports the name of the executable file that generated the report, the name
of the run that was carried out and the values of the control variables used during the
integration. In addition to the name of the program and the run it hence simply contains a
copy of the contents of the CVF–file (see section 5.2.1). Both the description strings and the
specified values from the CVF–file are written to the report file. Its contents are therefore
self–explanatory. The name of the report file is constructed by adding the extension .rep to
the common root of the filename, i.e., to the name of the run.

5.3.2 The output variable file (OUT–file)

The output file contains the values of the output variables, as defined by the user in the
routine DefineOutput() (see section 3.5.11 on page 33). Its name is constructed by adding
the extension .out to the common root of the filename (name of the run). The values of the
output variables are saved for the first time at the start of an integration run. Subsequently,
their values are appended to the file at equidistant moments in time, the interval in between
two output events being equal to the value of the “output time interval”, as described in
section 5.2.1.
The output file contains lines of data, in which the individual numbers are arranged in
columns, separated from each other by tabs and white spaces. The first number in every
data line always gives the time at which the variables were determined, the following num-
bers are the actual values of the output variables at that particular time. The order of
these output variables is determined by the user in the routine DefineOutput(). The total
number of values on a data line hence is one more (the time value!) than the value of the
OUTPUT VAR NR constant (see section 3.3.5 on page 17).

5.3.3 The end state file (ESF–file)

At the end of an integration run, whether the maximum integration time has been reached
or the integration is stopped for another reason, the program tries to save the entire state
of the model in a file, the end state file (ESF–file). The name of the ESF–file is constructed
by adding the extension .esf to the common root of the filename (name of the run). Saving
the final state of the model might not always be successful or possible, for instance, when
there is no more room on the file system to store new information. On the other hand,
the program might come to a halt because one of the populations has gone extinct, while
all cohorts died out. In the latter case the ESF–file does not contain very much valuable
information. However, when the program stops because the maximum integration time has
been reached, the ESF–file usually does contain the entire final state of the model. The file
then has exactly the same layout as the ISF–file. It can therefore be copied to a new file with
a .isf extension and used as the initial state file for a next run. In this way it is possible to
continue an integration run at the point where it stopped.

5.3.4 The complete state output file (CSO–file)

The complete state output file (CSO–file) is only created by the program if the value of the
“time interval between complete state output” is set to a non–zero value in the CVF–file (see
section 5.2.1). It is again a plain text file, the name of which is generated by adding the
extension .cso to the common root of the filename (name of the run). If the time interval
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between complete state output is non–zero, the specified value equals the interval between
times that the entire state of the model is written to the CSO–file, where the start of the
integration run is the first time the entire state of the model is saved. The format that is
used to save the entire state of the model is identical to the format that is described for the
ISF–file, and is also used in the ESF–file. Hence, the complete state output starts with a
line containing the values of all the environmental data and continues with writing all the
individual cohort statistics for each structured population in the model. Each cohort takes up
one line of data and an empty line marks the end of the current section, being the environment
or a structured population. Every line contains the total number of individuals in a cohort,
their mean i–state values and the values of the i–state constants (see section 5.2.2 on page 43).
At subsequent times of complete state output the entire state of the model is simply appended
to the CSO–file.

5.3.5 The complete state binary output file (CSB–file)

This is a binary version of the .CSO file that can be read by the Ebttool.



Chapter 6

Bourne–shell scripts

In addition to the library and template files that constitute the core of the EBT–package, it
also contains a number of Bourne–shell scripts to be used within a UNIX–environment only.
These scripts are not essential but facilitate certain tasks that frequently recur while using the
EBT–package. They have been created and tested on a SUN–IPX workstation running SUN–
OS version 4.1.2. For a proper functioning of these shell scripts a number of environment
variables should be defined (refer to the descriptions below) and the PATH variable, which
specifies the directories that the operating system searches for executable files, might have to
be changed. Otherwise, the scripts should not require any adaptation for the use on different
systems.
The ebt–script, discussed in section 6.1, is a helpful tool that automates the entire process of
building and maintaining the executable file from the library files and the model dimension
and definition file. The ebtclean–script (section 6.2) removes on request either the compiled
object and executable files of a specified model or the output files of a specific run. In the
following sections the use of these shell scripts will be explained one by one.

6.1 Compilation using the EBT–script

Syntax

ebt [switches] <model>

Description

This script helps in building and maintaining the object and executable files of a
structured population model that has been implemented using the EBT–package.
The argument <model> should be the name of a structured population model and
hence a model dimension and definition file have to be present under that name with
a .h and a .c extension added to it, respectively. For example, to use the script for
building the ebttmpl model discussed in previous chapters both the ebttmpl.h and
ebttmpl.c file should be present. If these files are not found, the script asks the user
to confirm the creation of the files from the templates in the EBT–package.

47
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The script will build all object files and the executable file if they are not present yet.
The compiled object files that are generated from the EBT library files are linked
together into one library module, the name of which is constructed by adding a .lib.o
extension to the name of the model itself (cf. ebttmpl.lib.o). This library module
contains all model–independent routines in compiled form and only depends on the
model dimensions. The model definition file is compiled and stored under a name that
equals the name of the model with a .o extension added to it (cf. ebttmpl.o). The
last step in the building process is linking together the compiled library module (name
of the model plus .lib.o extension) and the compiled model definition file (name of
the model plus .o extension) into an executable file that is saved under the basename
of the model (cf. ebttmpl). When invoked again the script checks all dependencies
and will rebuild the object modules and the executable file, as far as necessary. If the
model dimension file has changed, both the compiled library module and the compiled
model definition file have to be created anew. If the model definition file is changed,
only this file is compiled anew and linked together with the still valid compiled library
module.
The ebt–script implements the appropriate commands to compile and link all the
files, including the command–line arguments that are specifically required for the
compilation of the files in the EBT–package (discussed in chapter 4 on page 34).
Hence, it defines the PROBLEMFILE macro in accordance with the name of the model
that is specified as the argument to the script. In addition, the script can also be
used for running a line checking program, such as “lint”, on the model definition
and/or the library files to check the consistency of the C–coding in these files. These
operations are controlled by command–line switches as well (see below).
The operations of the ebt–script are controlled by a number of environment variables
that determine the name and desired command–line switches of the C–compiler used
for the compilation, the name and desired command–line switches of the line checking
program, and the location of all EBT–files. These environment variables are described
below and should be set appropriately for the computer system on which the script is
used.

Switches

-l Run the line checking program (cf. lint) on all source files, including the
model definition file and all EBT library files.

-t Run the line checking program (cf. lint) on the model definition file only,
skip the EBT library files.

-h Display a help message, listing all the switches and the required syntax to
invoke this script.

Environment variables

EBTPATH
This environment variable is read by the shell script to determine the directory
in which the EBT–package is installed. The script carries out a restricted
test whether all library and template files are really present in the specified
directory. If not, it exits with an appropriate error message.
Default value: /usr/local/escbox.
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CC
This environment variable should contain the command with which to invoke
the C–compiler to be used for the compilation of the source files. The command
should either have a full pathname preceding it, or the directory in which the
compiler resides should be part of the PATH variable.
Default value: cc.

CCFLAGS
This environment variable should contain the command–line switches with
which to invoke the C–compiler. Added to these switches are the switches that
are necessary for the successful compilation of the EBT files (see chapter 4).
Default value: -O.

LINT
This environment variable should contain the command with which to invoke
the line checking program to be used. The command should either have a full
pathname preceding it, or the directory in which the program resides should
be part of the PATH variable.
Default value: lint.

LINTFLAGS
This environment variable should contain the command–line switches with
which to invoke the line checking program.
Default value: -u -v.

LDFLAGS
This environment variable should contain the command–line switches for link-
ing the compiled model definition file and the compiled library files into an
executable program. Mainly used to specify which libraries have to be searched
for unresolved function calls.
Default value: -lm.

6.2 Deleting files using the EBTCLEAN–script

Syntax

ebtclean [switches] <name>

Description

The ebtclean–script deletes on request files that are generated either by the ebt–
script during compilation and program building or by an integration program itself
while carrying out a specific run. The only argument <name> should hence be a
valid name of a model or an integration run. The functioning of the script is very
simple: it checks for the presence of the following files:

• an executable program, called <name>,
• a compiled object file, called <name>.o,
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• a compiled library file, called <name>.lib.o,
• a complete state output file, called <name>.cso,
• a complete state binary output file, called <name>.csb.
• an end state file, called <name>.esf,
• an output file, called <name>.out, and
• a report file, called <name>.rep.

The full name of every one of these files that is indeed encountered by the script is
passed on to the standard UNIX delete command (rm) together with the command–
line switches that were specified when the script was invoked. The mentioned files are
subsequently removed, either silently or after confirmation by the user.

Switches

-f Standard command–line switch of the UNIX delete command (rm). Forces
files to be removed without verification and without reporting error messages.

-i Standard command–line switch of the UNIX delete command (rm). Asks the
user to verify the deletion of each file.
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