Homework 1

June 2, 2020

Pick one of the three questions below to answer.

Question 1. In the slides we wrote the probability that a majority out of the \(n \) total voters get it right as \(P(S_n \geq \frac{n+1}{2}) \). Assuming they all have the same competence \(p \), let’s call it \(M(n, p) \) here, to make it explicit that this is a function that depends on \(p \) as well. For instance, we have that:

\[
M(3, p) = \binom{3}{2} p^2 (1-p)^3 - 2 + \binom{3}{3} p^3 (1-p)^3 - 3 = 3p^2 (1-p) + p^3.
\]

Show that for a fixed odd \(n \) the function \(M(n, p) \) is increasing in the probability \(p \), i.e., that if \(p_1 < p_2 \) then \(M(n, p_1) < M(n, p_2) \).

Attempt at an answer. For \(n = 3 \):

\[
M(3, p) = 3p^2 (1-p) + p^3.
\]

If we see this is a function in \(p \), we want to show that it is increasing for \(p \in (0, 1) \). For that we can take the derivative with respect to \(p \):

\[
\frac{\partial M(3, p)}{\partial p} =
\]

We’re looking to see that the derivative is positive. The derivative turns out to be \(-6(p-1)p\), which is positive for the \(p \)'s we are interested in.
Question 2. In the presentation we always assumed \(n \) is odd, but what if \(n \) is even? The problem with that, of course, is that a strict majority winner might not exist. But suppose we modify the voting rule to say that if there is a tie between the two candidates, then we toss a (fair) coin to determine the winner.

The question, then, is: can you write down the formula for the probability that the true alternative is selected using this rule? Do you think the conclusions of the CJT still hold?

Attempt at an answer. Reduces to the case for \(n - 1 \).
Question 3. The CJT assumes that p, i.e., the probability that voters get it right, or, as we called it, their competence, is greater than $\frac{1}{2}$. This is like saying that they are better than random at getting it right. What, in general, would be a reason for $p < \frac{1}{2}$?

Attempt at an answer. Many reasons, but probably something to do with how we process information.