The Condorcet Jury Theorem and Its Variations

Day 2: Extensions

Adrian Haret
a.haret@uva.nl

The ILLC,
University of Amsterdam

MoL Project
June 3, 2020
1 Heterogeneous competences
2 Correlated voters
3 Strategic voting
4 More than Two Alternatives
5 Beyond
Recall the CJT

Theorem: The Condorcet Jury Theorem

If HOM, COM and IND are satisfied and $\frac{1}{2} < p < 1$, then, for any odd $n \geq 1$, it holds that:

(GBI) if $n > 1$, then $P(S_n \geq \frac{n+1}{2}) > p$;
(LIB) $P(S_{n+2} \geq \frac{n+3}{2}) > P(S_n \geq \frac{n+1}{2})$;
(ASY) $\lim_{n \to \infty} P(S_n \geq \frac{n+1}{2}) = 1$.

Condorcet
A more general form of Claim GBI

CONDORCET: Claim GBI is a particular version of the idea that the performance of the group is better than the performance of each of its individual members:

\[P(S_n \geq \frac{n + 1}{2}) > p_i, \text{ for all voters } i \in N. \]

CONDORCET: Which is what we’re aiming for, in general.
Recall, also, the assumptions

\((\text{COM})\) \(p_i > \frac{1}{2}\), for every \(i \in N\).

\((\text{HOM})\) \(p_i = p_j = p\), for any two agents \(i\) and \(j\) in \(N\).

\((\text{IND})\) \(P(X_i = u, X_j = v) = P(X_i = u)P(X_j = v)\), for any two agents \(i, j \in N\) and \(u, v \in \{0, 1\}\).
CONDORCET: What if we weaken some of these assumptions?
Heterogeneous competences
CONDORCET: What if voters have different competences?
Heterogeneous competences

CONDORCET: What if voters have different competences?

CONDORCET: Potentially above and below $\frac{1}{2}$.
CONDORCET: We rely on more or less the same model as yesterday:

- $A = \{a_1, a_2\}$, the alternatives
- $a^* \in A$, the true alternative;
- set $N = \{1, \ldots, n\}$ of n voters, where n is odd;
- profile $v = (v_1, \ldots, v_n)$ of votes, where $v_i \in A$;
- agent i’s competence $P(v_i = a^*) = p_i$;
The model

CONDORCET: We rely on more or less the same model as yesterday:

- $A = \{a_1, a_2\}$, the alternatives
- $a^* \in A$, the true alternative;
- set $N = \{1, \ldots, n\}$ of n voters, where n is odd;
- profile $v = (v_1, \ldots, v_n)$ of votes, where $v_i \in A$;
- agent i’s competence $P(v_i = a^*) = p_i$;

CONDORCET: We won’t be assuming that competences are all the same anymore.

- $p = (p_1, \ldots, p_n)$, vector of competences;
 - typically assuming that $p_1 \geq \cdots \geq p_n$;
- \bar{p}, the average competence, where:

$$\bar{p} = \frac{p_1 + \cdots + p_n}{n}.$$
CONDORCET: We rely on more or less the same model as yesterday:
- $A = \{a_1, a_2\}$, the alternatives
- $a^* \in A$, the true alternative;
- set $N = \{1, \ldots, n\}$ of n voters, where n is odd;
- profile $\mathbf{v} = (v_1, \ldots, v_n)$ of votes, where $v_i \in A$;
- agent i’s competence $P(v_i = a^*) = p_i$;

CONDORCET: We won’t be assuming that competences are all the same anymore.
- $\mathbf{p} = (p_1, \ldots, p_n)$, vector of competences;
 - typically assuming that $p_1 \geq \cdots \geq p_n$;
- $\bar{\mathbf{p}}$, the average competence, where:

\[
\bar{\mathbf{p}} = \frac{p_1 + \cdots + p_n}{n}.
\]

CONDORCET: And let’s write $M(n, \mathbf{p})$ instead of $P(S_n \geq \frac{n+1}{2})$, for the probability that a majority out of the n agents get it right, where $\mathbf{p} = (p_1 \ldots, p_n)$ is the vector of their competences.
The probability that the majority gets it right under these conditions

CONDORCET: If \(n = 3 \), then:

\[
M(3, p) = P(110) + P(101) + P(011) + P(111)
\]

\[
= p_1p_2(1 - p_2) + p_1(1 - p_2)p_3 + (1 - p_1)p_2p_3 + p_1p_2p_3
\]

\[
= p_1p_2 + p_2p_3 + p_1p_3 - 2p_1p_2p_3.
\]
The probability that the majority gets it right under these conditions

CONDORCET: If \(n = 3 \), then:

\[
M(3, p) = P(110) + P(101) + P(011) + P(111)
= p_1 p_2 (1 - p_2) + p_1 (1 - p_2) p_3 + (1 - p_1) p_2 p_3 + p_1 p_2 p_3
= p_1 p_2 + p_2 p_3 + p_1 p_3 - 2 p_1 p_2 p_3.
\]

OGF: In general, we have:

\[
M(n, p) = \sum_{S \subseteq \mathbb{N}, |S| \geq \frac{n+1}{2}} \prod_{i \in S} p_i \prod_{i \notin S} (1 - p_i).
\]

Owen et al. [1989]
The probability that the majority gets it right under these conditions

CONDORCET: If \(n = 3 \), then:

\[
M(3, p) = P(110) + P(101) + P(011) + P(111)
= p_1p_2(1 - p_2) + p_1(1 - p_2)p_3 + (1 - p_1)p_2p_3 + p_1p_2p_3
= p_1p_2 + p_2p_3 + p_1p_3 - 2p_1p_2p_3.
\]

OGF: In general, we have:

\[
M(n, p) = \sum_{S \subseteq N, |S| \geq \frac{n+1}{2}} \prod_{i \in S} p_i \prod_{i \notin S} (1 - p_i).
\]

CONDORCET: Do the conclusions of the CJT still hold?

Owen et al. [1989]
The conclusions of the CJT do not hold anymore

CONDORCET: If we take $p = (p_1, p_2, p_3) = (0.95, 0.8, 0.8)$, then:

$$M(3, p) = 0.944 < p_1.$$
The conclusions of the CJT do not hold anymore

CONDORCET: If we take $p = (p_1, p_2, p_3) = (0.95, 0.8, 0.8)$, then:

$$M(3, p) = 0.944 < p_1.$$

CONDORCET: Alas, it’s not true that groups are better than their members (GBI) anymore.
The conclusions of the CJT do not hold anymore

CONDORCET: If we take \(p = (p_1, p_2, p_3) = (0.95, 0.8, 0.8) \), then:

\[
M(3, p) = 0.944 < p_1.
\]

CONDORCET: Alas, it’s not true that groups are better than their members (GBI) anymore.

CONDORCET: If we take \(p' = (0.95, 0.8, 0.8, 0.6, 0.6) \), then:

\[
M(5, p') = 0.91 < M(3, p).
\]
The conclusions of the CJT do not hold anymore

CONDORCET: If we take \(p = (p_1, p_2, p_3) = (0.95, 0.8, 0.8) \), then:

\[
M(3, p) = 0.944 < p_1.
\]

CONDORCET: Alas, it’s not true that groups are better than their members (GBI) anymore.

CONDORCET: If we take \(p' = (0.95, 0.8, 0.8, 0.6, 0.6) \), then:

\[
M(5, p') = 0.91 < M(3, p).
\]

CONDORCET: It’s also not true that larger groups are better (LIB) anymore.
CONDORCET: Can we still salvage the asymptotic claim, though?
Can the asymptotic claim be salvaged?

CONDORCET: Can we still salvage the asymptotic claim, though?

J. PAROUSH: Yes, if the voters are still reasonably competent.
Can the asymptotic claim be salvaged?

CONORCET: Can we still salvage the asymptotic claim, though?

J. PAROUSH: Yes, if the voters are still reasonably competent.

J. PAROUSH: By that I mean that $p_i \geq \frac{1}{2} + \epsilon$, for some $\epsilon > 0$.
J. PAROUCH: \(p' \) is an improvement of \(p \) if \(p' \) is obtained by replacing a \(p_i \) with \(p'_i > p_i \)
J. PAROUSH: p' is an improvement of p if p' is obtained by replacing a p_i with $p'_i > p_i$

J. PAROUSH: If p' is an improvement of p, then $M(n, p') > M(n, p)$.
J. PAROUSH: p' is an improvement of p if p' is obtained by replacing a p_i with $p'_i > p_i$

J. PAROUSH: If p' is an improvement of p, then $M(n, p') > M(n, p)$.

J. PAROUSH: I call this Lemma 1; its proof is straightforward.

Parouch [1998]
How this works

J. PAROUSH: p' is an improvement of p if p' is obtained by replacing a p_i with $p'_i > p_i$

J. PAROUSH: If p' is an improvement of p, then $M(n, p') > M(n, p)$.

J. PAROUSH: I call this Lemma 1; its proof is straightforward.

J. PAROUSH: If $p = (p, \ldots, p)$, and $p > \frac{1}{2}$, then $\lim_{n \to \infty} M(n, p) = 1$.

Paroush [1998]
J. Paroush: \(p' \) is an improvement of \(p \) if \(p' \) is obtained by replacing a \(p_i \) with \(p'_i > p_i \).

J. Paroush: If \(p' \) is an improvement of \(p \), then \(M(n, p') > M(n, p) \).

J. Paroush: I call this Lemma 1; its proof is straightforward.

J. Paroush: If \(p = (p, \ldots, p) \), and \(p > \frac{1}{2} \), then \(\lim_{n \to \infty} M(n, p) = 1 \).

J. Paroush: I call this Lemma 2, but this is the asymptotic claim from the standard CJT.

Paroush [1998]
How this works

J. PAROUSH: p' is an improvement of p if p' is obtained by replacing a p_i with $p_i' > p_i$.

J. PAROUSH: If p' is an improvement of p, then $M(n, p') > M(n, p)$.

J. PAROUSH: I call this Lemma 1; its proof is straightforward.

J. PAROUSH: If $p = (p, \ldots, p)$, and $p > \frac{1}{2}$, then $\lim_{n \to \infty} M(n, p) = 1$.

J. PAROUSH: I call this Lemma 2, but this is the asymptotic claim from the standard CJT.

J. PAROUSH: Notice that we can get from $(\frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon)$ to (p_1, \ldots, p_n), if $p_i > \frac{1}{2} + \epsilon$, through a sequence of improvements.

Paroush [1998]
How this works

J. PAROUSH: \(p' \) is an improvement of \(p \) if \(p' \) is obtained by replacing a \(p_i \) with \(p'_i > p_i \)

J. PAROUSH: If \(p' \) is an improvement of \(p \), then \(M(n, p') > M(n, p) \).

J. PAROUSH: I call this Lemma 1; its proof is straightforward.

J. PAROUSH: If \(p = (p, \ldots, p) \), and \(p > \frac{1}{2} \), then \(\lim_{n \to \infty} M(n, p) = 1 \).

J. PAROUSH: I call this Lemma 2, but this is the asymptotic claim from the standard CJT.

J. PAROUSH: Notice that we can get from \((\frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon) \) to \((p_1, \ldots, p_n) \), if \(p_i > \frac{1}{2} + \epsilon \), through a sequence of improvements.

J. PAROUSH: And we know, from the CJT, that \(\lim_{n \to \infty} M(n, (\frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon)) = 1 \).

Paroush [1998]
How this works

J. Paroush: \(p' \) is an improvement of \(p \) if \(p' \) is obtained by replacing a \(p_i \) with \(p'_i > p_i \).

J. Paroush: If \(p' \) is an improvement of \(p \), then \(M(n, p') > M(n, p) \).

J. Paroush: I call this Lemma 1; its proof is straightforward.

J. Paroush: If \(p = (p, \ldots, p) \), and \(p > \frac{1}{2} \), then \(\lim_{n \to \infty} M(n, p) = 1 \).

J. Paroush: I call this Lemma 2, but this is the asymptotic claim from the standard CJT.

J. Paroush: Notice that we can get from \((\frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon) \) to \((p_1, \ldots, p_n) \), if \(p_i > \frac{1}{2} + \epsilon \), through a sequence of improvements.

J. Paroush: And we know, from the CJT, that \(\lim_{n \to \infty} M(n, (\frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon)) = 1 \).

J. Paroush: So we’ve got ourselves a nice little result.

Paroush [1998]
Theorem: Paroush [1998]

If IND is satisfied, $p = (p_1, \ldots, p_n)$ is a vector of competences such that $p_i \geq \frac{1}{2} + \epsilon$, for some $\epsilon > 0$ then, for any odd n, it holds that:

$$\lim_{n \to \infty} M(n,p) = 1.$$
J. PAROUSH: Interestingly, it’s not enough to simply say that $p_i > \frac{1}{2}$.
J. PAROUSH: Interestingly, it’s not enough to simply say that $p_i > \frac{1}{2}$.

J. PAROUSH: If the p_i's approach $\frac{1}{2}$ fast enough, the asymptotic result doesn’t hold anymore.

Paroush [1998]
An apparent CJT

J. PAROUSH: Interestingly, it’s not enough to simply say that $p_i > \frac{1}{2}$.

J. PAROUSH: If the p_i’s approach $\frac{1}{2}$ fast enough, the asymptotic result doesn’t hold anymore.

J. PAROUSH: See my paper for details.

Paroush [1998]
CONDORCET: This result still requires voters to be individually competent, though.
Still too strict?

CONDORCET: This result still requires voters to be individually competent, though.

J. PAROUSH: True.
CONDORCET: This result still requires voters to be individually competent, though.

J. PAROUTH: True.
OGF: We can address this.
Theorem: Owen et al. [1989]

If IND is satisfied and \(\bar{p} > \frac{1}{2} \) is fixed, then it holds that:

\[
\lim_{n \to \infty} M(n, p) = 1.
\]

OGF: If the average competence \(\bar{p} \) is greater than \(\frac{1}{2} \), then the asymptotic claim still holds.
The proof

OGF: To prove this result, we look at $M(n, p)$ as a function in the p_i’s, and use the derivatives with respect to each p_i to understand how to maximize it.
But strange things still happen

\textbf{OGF:} If $\mathbf{p} = (0.72, 0.72, 0)$, then $\bar{\mathbf{p}} = 0.48$ and $M(3, \mathbf{p}) = 0.5184$.

\textbf{OGF:} If $\mathbf{p} = (1, 0.28, 0.28)$, then $\bar{\mathbf{p}} = 0.52$ and $M(3, 2\mathbf{p}) = 0.4816$.

G. Owen

B. Grofman

S.L. Feld
More on this

There is, of course, more:
Berend and Paroush [1998], Ben-Yashar and Paroush [2000], Dietrich and List [2004],
Dietrich [2008]
Correlated voters
K.K. Ladha: The main weakness of CJT is that its assumption of independence is unreasonable.

K.K. Ladha: Votes will be correlated because the judges or experts:
- share common information,
- communicate with each other, and
- are influenced by various schools of thought or opinion leaders espousing the same or opposite positions.

Ladha [1992]
P. BOLAND: I propose:

- X_1, \ldots, X_n random variables as before, with $X_i \in \{0, 1\}$;
- $P(X_i = 1) = p$, for every agent i, as in the classical CJT;
- voter 1 as the opinion leader, its decisions influencing the decision of the others;
- conditioned on X_1, X_i and X_j are conditionally independent, for $i, j \geq 2$;
- $0 \leq r \leq 1$, the correlation between X_1 and X_i, for $i \geq 2$;

Boland et al. [1989], Boland [1989]
A model with opinion leaders influencing the probabilities

P. BOLAND: I propose:

- X_1, \ldots, X_n random variables as before, with $X_i \in \{0, 1\}$;
- $P(X_i = 1) = p$, for every agent i, as in the classical CJT;
- voter 1 as the opinion leader, its decisions influencing the decision of the others;
- conditioned on X_1, X_i and X_j are conditionally independent, for $i, j \geq 2$;
- $0 \leq r \leq 1$, the correlation between X_1 and X_i, for $i \geq 2$;

P. BOLAND: Think of r as the probability that X_i will follow X_1, for $i \geq 2$, with $0 \leq r \leq 1$.

Boland et al. [1989], Boland [1989]
A model with opinion leaders influencing the probabilities

P. BOLAND: I propose:

- X_1, \ldots, X_n random variables as before, with $X_i \in \{0, 1\}$;
- $P(X_i = 1) = p$, for every agent i, as in the classical CJT;
- voter 1 as the opinion leader, its decisions influencing the decision of the others;
- conditioned on X_1, X_i and X_j are conditionally independent, for $i, j \geq 2$;
- $0 \leq r \leq 1$, the correlation between X_1 and X_i, for $i \geq 2$;

P. BOLAND: Think of r as the probability that X_i will follow X_1, for $i \geq 2$, with $0 \leq r \leq 1$.

P. BOLAND: Let’s write $M(n, p, r)$ for the probability that a majority out of n agents gets it right, with parameters p and r.

Boland et al. [1989], Boland [1989]
P. BOLAND: The parameter \(r \) influences the (conditional) probability of \(X_i \) being right, for \(i \geq 2 \), given \(X_1 \), as follows:
P. BOLAND: The parameter r influences the (conditional) probability of X_i being right, for $i \geq 2$, given X_1, as follows:

$$P(X_i = 1 \mid X_1 = 1) = r + p(1 - r)$$
P. BOLAND: The parameter r influences the (conditional) probability of X_i being right, for $i \geq 2$, given X_1, as follows:

$$P(X_i = 1 \mid X_1 = 1) = r + p(1 - r)$$
$$P(X_i = 0 \mid X_1 = 1) = (1 - p)(1 - r)$$
P. Boland: The parameter r influences the (conditional) probability of X_i being right, for $i \geq 2$, given X_1, as follows:

\begin{align*}
P(X_i = 1 \mid X_1 = 1) &= r + p(1 - r) \\
P(X_i = 0 \mid X_1 = 1) &= (1 - p)(1 - r) \\
P(X_i = 1 \mid X_1 = 0) &= (1 - r)p \\
P(X_i = 0 \mid X_1 = 0) &= r + (1 - r)(1 - p)
\end{align*}
P. BOLAND: The parameter r influences the (conditional) probability of X_i being right, for $i \geq 2$, given X_1, as follows:

\[
P(X_i = 1 \mid X_1 = 1) = r + p(1 - r) \\
P(X_i = 0 \mid X_1 = 1) = (1 - p)(1 - r) \\
P(X_i = 1 \mid X_1 = 0) = (1 - r)p \\
P(X_i = 0 \mid X_1 = 0) = r + (1 - r)(1 - p)
\]
ME: The flow of influence is very much like in a Bayesian net.
When $n = 3$

ME: The flow of influence is very much like in a Bayesian net.
ME: So, in general:

$$P(X_1, X_2, X_3) = P(X_2 | X_1)P(X_3 | X_1)P(X_1).$$
When $n = 3$

ME: The flow of influence is very much like in a Bayesian net.
ME: So, in general:

$$P(X_1, X_2, X_3) = P(X_2 | X_1)P(X_3 | X_1)P(X_1).$$

ME: Thus:

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = P(X_2 = 1 | X_1 = 1)P(X_3 = 1 | X_1 = 1)P(X_1 = 1)$$

$$= (r + p(1 - r))^2 p;$$
When \(n = 3 \)

ME: The flow of influence is very much like in a Bayesian net.

ME: So, in general:

\[
P(X_1, X_2, X_3) = P(X_2 \mid X_1)P(X_3 \mid X_1)P(X_1).
\]

ME: Thus:

\[
P(X_1 = 1, X_2 = 1, X_3 = 1) = P(X_2 = 1 \mid X_1 = 1)P(X_3 = 1 \mid X_1 = 1)P(X_1 = 1) \\
= (r + p(1 - r))^2 p;
\]

\[
P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_2 = 1 \mid X_1 = 1)P(X_3 = 0 \mid X_1 = 1)P(X_1 = 1) \\
= (r + p(1 - r))(1 - p)(1 - r)p \\
= P(X_1 = 1, X_2 = 0, X_3 = 1);
\]
When $n = 3$

ME: The flow of influence is very much like in a Bayesian net.
ME: So, in general:

$$P(X_1, X_2, X_3) = P(X_2 \mid X_1)P(X_3 \mid X_1)P(X_1).$$

ME: Thus:

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = P(X_2 = 1 \mid X_1 = 1)P(X_3 = 1 \mid X_1 = 1)P(X_1 = 1) = (r + p(1 - r))^2 p;$$

$$P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_2 = 1 \mid X_1 = 1)P(X_3 = 0 \mid X_1 = 1)P(X_1 = 1) = (r + p(1 - r))(1 - p)(1 - r)p$$

$$= P(X_1 = 1, X_2 = 0, X_3 = 1);$$

$$P(X_1 = 0, X_2 = 1, X_3 = 1) = P(X_2 = 1 \mid X_1 = 0)P(X_3 = 1 \mid X_1 = 0)P(X_1 = 0) = (1 - r)^2 p^2 (1 - p).$$
The probability of a majority for the right answer, with $n = 3$

ME: We have here that:

$$M(3, p, r) = (r + p(1 − r))^2p + 2(r + p(1 − r))(1 − p)(1 − r)p + (1 − r)^2 p^2(1 − p)$$

$$= (-2p^3 + 3p^2 − p)r^2 + (4p^3 − 6p^2 + 2p)r − (2p^3 − 3p^2)$$

ME: We can see $M(3, p, r)$ as a function in r, and thus take the derivative with respect to r:

$$\frac{\partial M(3, p, r)}{\partial r} = (-4p^3 + 6p^2 − 2p)r + (4p^3 − 6p^2 + 2p)$$

$$= −2p(2p − 1)(p − 1)(r − 1)$$

$$< 0, \text{ if } 0 < r < 1 \text{ and } \frac{1}{2} < p < 1.$$

ME: Thus, if $\frac{1}{2} < p < 1$ and $0 < r \geq 1$, then $M(3, p, r)$ decreases as r grows.
P. BOLAND: We can reproduce this computation in a smart way for any n.
Group accuracy for competent voters diminished in the presence of a strong opinion leader

Theorem: Boland et al. [1989], Boland [1989]

If $0 \leq r_1 < r_2 \leq 1$, then, for any odd n, it holds that:

1. If $p > \frac{1}{2}$, then $M(n, p, r_1) > M(n, p, r_2)$;
2. If $p < \frac{1}{2}$, then $M(n, p, r_1) < M(n, p, r_2)$;
3. If $p = \frac{1}{2}$, then $M(n, p, r) = \frac{1}{2}$, for any $0 \geq r \geq 1$;

It also holds that, if $r < 1 - \frac{1}{2p}$, then:

$$\lim_{n \to \infty} M(n, p, r) = 1.$$
Theorem: Boland et al. [1989], Boland [1989]

If $0 \leq r_1 < r_2 \leq 1$, then, for any odd n, it holds that:

(1) if $p > \frac{1}{2}$, then $M(n, p, r_1) > M(n, p, r_2)$;
(2) if $p < \frac{1}{2}$, then $M(n, p, r_1) < M(n, p, r_2)$;
(3) if $p = \frac{1}{2}$, then $M(n, p, r) = \frac{1}{2}$, for any $0 \geq r \geq 1$;

It also holds that, if $r < 1 - \frac{1}{2p}$, then:

$$
\lim_{n \to \infty} M(n, p, r) = 1.
$$

P. BOLAND: If $p > \frac{1}{2}$, then the stronger the influence of the leader, the less likely the group is to make the correct decision.
K.K. LADHA: This is nice, but voters may be correlated for other reasons as well.
K.K. LADHA: This is nice, but voters may be correlated for other reasons as well.
K.K. LADHA: In most general terms, we can account for this using a correlation coefficient.
K.K. LADHA: I propose:

- \(X_1, \ldots, X_n \) random variables as before, with \(X_i \in \{0, 1\} \);
- \(P(X_i = 1) = p \), for every agent \(i \), as before;
- \(r_{ij} = P(X_i = 1, X_j = 1) \), the probability that \(i \) and \(j \) are both right;
- \(\rho_{ij} \), the coefficient of correlation between \(X_i \) and \(X_j \), where:

\[
\rho_{ij} = \frac{r_{ij} - p^2}{\sigma^2};
\]

- \(\bar{\rho} \), an aggregate correlation coefficient, defined as follows:

\[
\bar{\rho} = \frac{\sum_{i=1}^{n} \sum_{j \neq i}^{n} \rho_{ij}}{n(n - 1)}.
\]

Ladha [1992]
Let’s unpack this a bit

K.K. LADHA: r_{ij} is a measure of how independent i and j vote:

$$\begin{cases}
 r_{ij} = p^2, & \text{if } X_i \text{ and } X_j \text{ are independent,} \\
 r_{ij} < p^2, & \text{if } X_i \text{ and } X_j \text{ are negatively correlated,} \\
 r_{ij} > p^2, & \text{if } X_i \text{ and } X_j \text{ are positively correlated,}
\end{cases}$$
Let’s unpack this a bit

K.K. LADHA: \(r_{ij} \) is a measure of how independent \(i \) and \(j \) vote:

\[
\begin{align*}
 r_{ij} &= p^2, \quad \text{if } X_i \text{ and } X_j \text{ are independent}, \\
 r_{ij} &< p^2, \quad \text{if } X_i \text{ and } X_j \text{ are negatively correlated}, \\
 r_{ij} &> p^2, \quad \text{if } X_i \text{ and } X_j \text{ are positively correlated},
\end{align*}
\]

K.K. LADHA: Recall from yesterday, \(\sigma^2 \) is the variance of \(X_i \), which in this case is \(p(1 - p) \).
Let’s unpack this a bit

K.K. LADHA: r_{ij} is a measure of how independent i and j vote:

$$
\begin{cases}
 r_{ij} = p^2, & \text{if } X_i \text{ and } X_j \text{ are independent,} \\
 r_{ij} < p^2, & \text{if } X_i \text{ and } X_j \text{ are negatively correlated,} \\
 r_{ij} > p^2, & \text{if } X_i \text{ and } X_j \text{ are positively correlated,}
\end{cases}
$$

K.K. LADHA: Recall from yesterday, σ^2 is the variance of X_i, which in this case is $p(1 - p)$.

K.K. LADHA: If $n = 3$, then:

$$
\bar{\rho} = \frac{\rho_{12} + \rho_{13} + \rho_{23}}{3}.
$$
Applying this to the earlier model with an opinion leader

K.K. Ladha: For instance, for the model from Boland et al. [1989], Boland [1989], we get that:

\[r_{12} = P(X_1 = 1, X_2 = 1) = P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1) = pr + p^2 - p^2 r = r_{13} > p^2. \]
Applying this to the earlier model with an opinion leader

K.K. LADHA: For instance, for the model from Boland et al. [1989], Boland [1989], we get that:

\[
\begin{align*}
r_{12} &= P(X_1 = 1, X_2 = 1) \\
&= P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1) \\
&= pr + p^2 - p^2 r \\
&= r_{13} \\
&> p^2.
\end{align*}
\]

K.K. LADHA: We thus obtain that \(\rho_{12} = \rho_{13} = r \).
Applying this to the earlier model with an opinion leader

K.K. LADHA: For instance, for the model from Boland et al. [1989], Boland [1989], we get that:

\[r_{12} = P(X_1 = 1, X_2 = 1) \]
\[= P(X_2 = 1 | X_1 = 1)P(X_1 = 1) \]
\[= pr + p^2 - p^2 r \]
\[= r_{13} \]
\[> p^2. \]

K.K. LADHA: We thus obtain that \(\rho_{12} = \rho_{13} = r \).

K.K. LADHA: Similarly, we get:

\[r_{23} = P(X_2 = 1, X_3 = 1 | X_1 = 1)P(X_1 = 1) + P(X_2 = 1, X_3 = 1 | X_1 = 0)P(X_1 = 0) \]
\[= pr^2 + p^2 - p^2 r^2. \]
Applying this to the earlier model with an opinion leader

K.K. LADHA: For instance, for the model from Boland et al. [1989], Boland [1989], we get that:

\[r_{12} = P(X_1 = 1, X_2 = 1) \]
\[= P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1) \]
\[= pr + p^2 - p^2 r \]
\[= r_{13} \]
\[> p^2. \]

K.K. LADHA: We thus obtain that \(\rho_{12} = \rho_{13} = r. \)

K.K. LADHA: Similarly, we get:

\[r_{23} = P(X_2 = 1, X_3 = 1 \mid X_1 = 1)P(X_1 = 1) + P(X_2 = 1, X_3 = 1 \mid X_1 = 0)P(X_1 = 0) \]
\[= pr^2 + p^2 - p^2 r^2. \]

K.K. LADHA: And \(\rho_{23} = r^2. \)
Applying this to the earlier model with an opinion leader

K.K. LADHA: For instance, for the model from Boland et al. [1989], Boland [1989], we get that:

\[r_{12} = P(X_1 = 1, X_2 = 1) \]
\[= P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1) \]
\[= pr + p^2 - p^2r \]
\[= r_{13} \]
\[> p^2. \]

K.K. LADHA: We thus obtain that \(\rho_{12} = \rho_{13} = r. \)

K.K. LADHA: Similarly, we get:

\[r_{23} = P(X_2 = 1, X_3 = 1 \mid X_1 = 1)P(X_1 = 1) + P(X_2 = 1, X_3 = 1 \mid X_1 = 0)P(X_1 = 0) \]
\[= pr^2 + p^2 - p^2r^2. \]

K.K. LADHA: And \(\rho_{23} = r^2. \)

K.K. LADHA: And \(\bar{\rho} = \frac{r^2+2r}{3}. \)
K.K. LADHA: Correlation ρ can occur because of an opinion leader, but it’s a more general notion.
K.K. Ladha: Correlation ρ can occur because of an opinion leader, but it’s a more general notion.

K.K. Ladha: It’s just a property of the distribution of values across the variables.
K.K. LADHA: Correlation ρ can occur because of an opinion leader, but it’s a more general notion.
K.K. LADHA: It’s just a property of the distribution of values across the variables.
K.K. LADHA: It’s interesting because it sets a bound for the CJT to hold.
More on dependence between voters:
 Ladha [1993], Estlund [1994], Berg [1993a,b], Kaniovski [2010], Peleg and Zamir [2012], Pivato [2017]
As long as the correlation is not too high

Theorem: Ladha [1992]

For any odd n, it holds that if:

\[\bar{\rho} < 1 - \frac{n}{n-1} \left(\frac{p - \frac{1}{4}}{p^2} \right), \]

then $M(n, p) > p$.

K.K. Ladha
As long as the correlation is not too high

Theorem: Ladha [1992]

For any odd n, it holds that if:

$$\bar{\rho} < 1 - \frac{n}{n-1} \frac{p - \frac{1}{4}}{p^2},$$

then $M(n, p) > p.$

K.K. Ladha: If the votes are not highly correlated, then Claim GBI (groups are better than individuals) of the CJT still holds.
Strategic voting
Often left out, but

ASB: An important—but largely implicit—assumption in proofs of the CJT is that individuals vote ‘sincerely’.

Austen-Smith and Banks [1996]
Often left out, but

ASB: An important—but largely implicit—assumption in proofs of the CJT is that individuals vote ‘sincerely’.

CONDORCET: Why wouldn’t they?

Austen-Smith and Banks [1996]
We propose:

- as usual two alternatives, a and b, one of them the true alternative;
- voters $N = \{1, \ldots, n\}$, with prior probabilities $P(a) = \pi$ and $P(b) = 1 - \pi$;

 - $P(a)$ is the probability that a is the true alternative;
- voter i receives signal $s_i \in \{0, 1\}$, with:

 $$P(s_i = 0 \mid a) = q_a > \frac{1}{2};$$

 $$P(s_i = 1 \mid b) = q_b > \frac{1}{2};$$

- a profile $s = (s_1, \ldots, s_n)$ of signals;
A model with strategic voters

ASB: We propose:

- as usual two alternatives, a and b, one of them the true alternative;
- voters $N = \{1, \ldots, n\}$, with prior probabilities $P(a) = \pi$ and $P(b) = 1 - \pi$;
 - $P(a)$ is the probability that a is the true alternative;
- voter i receives signal $s_i \in \{0, 1\}$, with:

 $$P(s_i = 0 \mid a) = q_a > \frac{1}{2},$$
 $$P(s_i = 1 \mid b) = q_b > \frac{1}{2};$$

- a profile $s = (s_1, \ldots, s_n)$ of signals;

ASB: So how do voters vote?
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

Voter i can use Bayes' rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a | s_1 = 0) = \frac{P(s_1 = 0 | a) P(a)}{P(s_1 = 0)} = q_a \pi P(s_1 = 0);$$

$$P(b | s_1 = 0) = \frac{P(s_1 = 0 | b) P(b)}{P(s_1 = 0)} = (1 - q_b) (1 - \pi) P(s_1 = 0).$$

Similar calculations can be made if $s_i = 1$.

Voter i votes sincerely if it votes for the likeliest alternative, given its own signal s_i.

And we assume that, in general, for $s_i = 0$ then a turns out to be more likely, and for $s_i = 1$ then b turns out to be more likely.
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a \mid s_1 = 0) =$$
The most likely state, according to your own signal

ASB: Say voter \(i \) receives a signal \(s_i = 0 \).

ASB: Voter \(i \) can use Bayes’ rule to compute the odds for \(a \) and \(b \), given only its own signal \(s_i = 0 \):

\[
P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a)P(a)}{P(s_1 = 0)}
\]

ASB: Similar calculations can be made if \(s_i = 1 \).

ASB: Voter \(i \) votes sincerely if it votes for the likeliest alternative, given its own signal \(s_i \).

ASB: And we assume that, in general, for \(s_i = 0 \) then \(a \) turns out to be more likely, and for \(s_i = 1 \) then \(b \) turns out to be more likely.
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a)P(a)}{P(s_1 = 0)} = \frac{q_a \pi}{P(s_1 = 0)};$$

Similar calculations can be made if $s_i = 1$.

ASB: Voter i votes sincerely if it votes for the likeliest alternative, given its own signal s_i.

ASB: And we assume that, in general, for $s_i = 0$ then a turns out to be more likely, and for $s_i = 1$ then b turns out to be more likely.
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

\[
P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a) P(a)}{P(s_1 = 0)} = \frac{q_a \pi}{P(s_1 = 0)},
\]

\[
P(b \mid s_1 = 0) = \frac{P(s_1 = 0 \mid b) P(b)}{P(s_1 = 0)} = \frac{(1 - q_b)(1 - \pi)}{P(s_1 = 0)}.
\]
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a)P(a)}{P(s_1 = 0)} = \frac{q_a \pi}{P(s_1 = 0)};$$

$$P(b \mid s_1 = 0) = \frac{P(s_1 = 0 \mid b)P(b)}{P(s_1 = 0)} = \frac{(1 - q_b)(1 - \pi)}{P(s_1 = 0)}.$$

ASB: Similar calculations can be made if $s_i = 1$.

D. Austen-Smith

J.S. Banks

Personality, and the Conc

JEFFREY S. BANKS

Note: This extract contains equations and mathematical notations. It describes a scenario where voters receive signals and use Bayes' rule to calculate the odds of their preferred option being the most likely state.
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a)P(a)}{P(s_1 = 0)}$$

$$= \frac{q_a\pi}{P(s_1 = 0)};$$

$$P(b \mid s_1 = 0) = \frac{P(s_1 = 0 \mid b)P(b)}{P(s_1 = 0)}$$

$$= \frac{(1 - q_b)(1 - \pi)}{P(s_1 = 0)}.$$

ASB: Similar calculations can be made if $s_i = 1$.

ASB: Voter i votes *sincerely* if it votes for the likeliest alternative, given its own signal s_i.
The most likely state, according to your own signal

ASB: Say voter i receives a signal $s_i = 0$.

ASB: Voter i can use Bayes’ rule to compute the odds for a and b, given only its own signal $s_i = 0$:

$$P(a \mid s_1 = 0) = \frac{P(s_1 = 0 \mid a)P(a)}{P(s_1 = 0)} = \frac{q_a \pi}{P(s_1 = 0)},$$

$$P(b \mid s_1 = 0) = \frac{P(s_1 = 0 \mid b)P(b)}{P(s_1 = 0)} = \frac{(1 - q_b)(1 - \pi)}{P(s_1 = 0)}.$$

ASB: Similar calculations can be made if $s_i = 1$.

ASB: Voter i votes *sincerely* if it votes for the likeliest alternative, given its own signal s_i.

ASB: And we assume that, in general, for $s_i = 0$ then a turns out to be more likely, and for $s_i = 1$ then b turns out to be more likely.
ASB: Say there are only three voters, and the signals are $s = (0, 1, 0)$.
The most likely state, according to all signals

ASB: Say there are only three voters, and the signals are \(s = (0, 1, 0) \).

ASB: If voter 1 were to see \(s \), it could use Bayes' rule to update its probabilities:

\[
P(a \mid s_1 = 0, s_2 = 1, s_3 = 0) = \frac{P(s_1 = 0, s_2 = 1, s_3 = 0 \mid a) P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)}
= \frac{P(s_1 = 0 \mid a) P(s_2 = 1 \mid a) P(s_3 = 0 \mid a) P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)}
\propto q_a^2 (1 - q_a) \pi.
\]
The most likely state, according to all signals

ASB: Say there are only three voters, and the signals are $s = (0, 1, 0)$.

ASB: If voter 1 were to see s, it could use Bayes’ rule to update its probabilities:

$$P(a \mid s_1 = 0, s_2 = 1, s_3 = 0) = \frac{P(s_1 = 0, s_2 = 1, s_3 = 0 \mid a)P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)}$$

$$= \frac{P(s_1 = 0 \mid a)P(s_2 = 1 \mid a)P(s_3 = 0 \mid a)P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)}$$

$$\propto q_a^2(1 - q_a)\pi.$$

ASB: Similarly for b:

$$P(b \mid s_1 = 0, s_2 = 1, s_3 = 0) \propto (1 - q_b)^2 q_b(1 - \pi).$$
ASB: Say there are only three voters, and the signals are \(s = (0, 1, 0) \).

ASB: If voter 1 were to see \(s \), it could use Bayes’ rule to update its probabilities:

\[
P(a \mid s_1 = 0, s_2 = 1, s_3 = 0) = \frac{P(s_1 = 0, s_2 = 1, s_3 = 0 \mid a)P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)} = \frac{P(s_1 = 0 \mid a)P(s_2 = 1 \mid a)P(s_3 = 0 \mid a)P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)} \propto q_a^2(1 - q_a)\pi.
\]

ASB: Similarly for \(b \):

\[
P(b \mid s_1 = 0, s_2 = 1, s_3 = 0) \propto (1 - q_b)^2q_b(1 - \pi).
\]

ASB: In this case, it can happen that \(b \) becomes more likely than \(a \).
The most likely state, according to all signals

ASB: Say there are only three voters, and the signals are \(s = (0, 1, 0) \).

ASB: If voter 1 were to see \(s \), it could use Bayes’ rule to update its probabilities:

\[
P(a \mid s_1 = 0, s_2 = 1, s_3 = 0) = \frac{P(s_1 = 0, s_2 = 1, s_3 = 0 \mid a) P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)} \\
= \frac{P(s_1 = 0 \mid a) P(s_2 = 1 \mid a) P(s_3 = 0 \mid a) P(a)}{P(s_1 = 0, s_2 = 1, s_3 = 0)} \\
\propto q_a^2 (1 - q_a) \pi.
\]

ASB: Similarly for \(b \):

\[
P(b \mid s_1 = 0, s_2 = 1, s_3 = 0) \propto (1 - q_b)^2 q_b (1 - \pi).
\]

ASB: In this case, it can happen that \(b \) becomes more likely than \(a \).

ASB: So voter 1 has an incentive to vote against its own signal.
Thinking that you’re the decisive voter

ASB: If voter 1’s signal is $s_1 = 0$ and it’s thinking in game-theoretic terms, i.e., in which it wants to maximize its expected payoff (and the payoff depends on getting things right) then the only scenario voter 1 should care about is the one where it’s the decisive voter.

J.S. Banks
Thinking that you’re the decisive voter

ASB: If voter 1’s signal is $s_1 = 0$ and it’s thinking in game-theoretic terms, i.e., in which it wants to maximize its expected payoff (and the payoff depends on getting things right) then the only scenario voter 1 should care about is the one where it’s the decisive voter.

ASB: Because in all the others its vote doesn’t make a difference.
Thinking that you’re the decisive voter

ASB: If voter 1’s signal is $s_1 = 0$ and it’s thinking in game-theoretic terms, i.e., in which it wants to maximize its expected payoff (and the payoff depends on getting things right) then the *only* scenario voter 1 should care about is the one where it’s the decisive voter.

ASB: Because in all the others its vote doesn’t make a difference.

ASB: But in this case it can end up disregarding its own information!
The voters are fit for the CJT

ASB: Assuming that voters vote informatively, i.e., according to the signal they receive, the probability that voter i gets it right is:

$$P(s_i = 0 \mid a)P(a) + P(s_i = 1 \mid b)P(b) = q_a\pi + q_b(1 - \pi)$$

$$> \frac{1}{2}.$$

ASB: In other words, voters are competent.
The voters are fit for the CJT

ASB: Assuming that voters vote informatively, i.e., according to the signal they receive, the probability that voter \(i \) gets it right is:

\[
P(s_i = 0 \mid a)P(a) + P(s_i = 1 \mid b)P(b) = q_a \pi + q_b (1 - \pi)
\]

\[
> \frac{1}{2}.
\]

ASB: In other words, voters are competent.

ASB: The probability that any two voters \(i \) and \(j \) both get it right is:

\[
P(s_i = 0, s_j = 0 \mid a)P(a) + P(s_i = 1, s_j = 1 \mid b)P(b) = q_a^2 \pi + q_b^2 (1 - \pi)
\]

\[
> (q_a \pi + q_b (1 - \pi))^2.
\]

ASB: Voters \(i \) and \(j \) are positively correlated.

ASB: But we can put bounds on this correlation.

ASB: In fact, we can show that the correlation falls within the bounds of Ladha [1992].
A perfect storm

ASB: Conditions are perfect for the CJT...
A perfect storm

ASB: Conditions are perfect for the CJT...

ASB: ...If only voters vote according to their own signal!
A perfect storm

ASB: Conditions are perfect for the CJT...
ASB: ...If only voters vote according to their own signal!
ASB: Herein lies the tragedy: parameters can be tweaked such that strategic agents end up voting against their signal.
ASB: Conditions are perfect for the CJT...
ASB: . . . If only voters vote according to their own signal!
ASB: Herein lies the tragedy: parameters can be tweaked such that strategic agents end up voting against their signal.
ASB: Messing up the CJT.
Theorem: Austen-Smith and Banks [1996]

The result shows exactly when sincere voting manages to be a Nash equilibrium in the associated Bayesian game.
FEDDERSEN & PESENDORFER: Sometimes the rational thing to do is to abstain.
Feddersen and Pesendorfer [1996]

MCLENNAN: Sometimes strategic voting can deliver the right result though.
McLennan [1998]
(possible assignment)
More than Two Alternatives
CONORCET: It would be nice to see what happens for more than two alternatives.
What if there are more than two alternatives

CONDORCET: It would be nice to see what happens for more than two alternatives.

CONDORCET: The problem with that, though, is that majority rule doesn’t make sense any more.
What if there are more than two alternatives

CONDORCET: It would be nice to see what happens for more than two alternatives.

CONDORCET: The problem with that, though, is that majority rule doesn’t make sense any more.

CONDORCET: For instance, if the profile is $v = (a, a, b, b, c)$, there is no majority
What if there are more than two alternatives

CONDORCET: It would be nice to see what happens for more than two alternatives.

CONDORCET: The problem with that, though, is that majority rule doesn’t make sense any more.

CONDORCET: For instance, if the profile is $\mathbf{v} = (a, a, b, b, c)$, there is no majority

LIST & GOODIN: Let’s look at the plurality rule.
LG: We propose:

- a set $A = \{a_1, \ldots, a_m\}$ of m alternatives, with $a^* \in A$ the correct alternative;
- the set $N = \{1, \ldots, n\}$ of voters;
- each voter i votes for an alternative $v_i \in A$;
- a profile $R = (v_1, \ldots, v_n)$ of votes;
- $P(v_i = a_j) = p_{ij}$, the voters' competence, i.e., the probability that voter i votes for alternative a_j;
 - we write simply $P(a_j)$ when it doesn’t matter who is voting;
- the plurality rule f_{plr} selects the alternative(s) that appear most often in R;
- $PL(n, a)$ is the probability that a is the unique plurality winner out of a profile of size n.

C. List
R.E. Goodin
Of course, we want to make some assumptions.

Voters have the same competences.

\((\text{gHOM})\) \(P(v_i = a_j) = P(v_k = a_j) \), i.e., \(p_{ij} = p_{kj} \), for any agents \(i, k \in N \).

Voters are competent, i.e., more likely to pick the correct option than not:

\((\text{gCOM})\) \(P(v_i = a^*) > P(v_i = a_i) \), for any voter \(i \in N \) and \(a_i \neq a^* \).

Then, as usual, voters vote independently.

\((\text{gIND})\) \(P(v_i = a_j, v_k = a_l) = P(v_i = a_j)P(v_k = a_l) \), for any \(a_i, a_l \in A \) and voters \(i, k \in N \).
An example

LG: For instance, take $A = \{a_1, a_2, a_3\}$, and assume that a_1 is the right alternative.
LG: Suppose the probabilities to select these alternatives are (p_1, p_2, p_3), with $p_1 > p_2 > p_3$ and $p_1 + p_2 + p_3 = 1$
LG: And say we look at profiles of three voters.
LG: The probability that a_1 is the unique plurality winner is the probability that a_1 appears at least twice:

$$PL(3, a_1) = P(a_1, a_1, a_2) + P(a_1, a_1, a_3) + P(a_1, a_1, a_1)$$

$$= p_1^2 p_2 + p_1^2 p_3 + p_1^3$$

LG: Similarly, the probability that a_2 is the plurality winner is:

$$PL(3, a_2) = p_2^2 p_1 + p_2^2 p_3 + p_3^2$$

LG: It can be shown, then, that $PL(3, a_1) > PL(3, a_2)$.
LG: We can also do this all more generally.
Theorem: List and Goodin [2001]

If g_{HOM}, g_{COM} and g_{IND} are satisfied, then, for any integer n, it holds that:

1. $PL(n, a^*) > PL(n, a_i)$, for any alternative $a_i \neq a^*$;
2. $\lim_{n \to \infty} PL(n, a^*) = 1$.

C. List
R.E. Goodin
A more recent take on this problem

P. HUMMEL: See my paper.

Hummel [2010]
(possible assignment)
Beyond
Subjects we have not looked at...

But are great possible assignment topics:

- endogenous accuracy (Ben-Yashar and Nitzan [2001])
- state dependence (Ben-Yashar and Nitzan [1997, 2014])
- truth-tracking in other multi-agent scenarios:
 - judgment aggregation (Bovens and Rabinowicz [2006], De Clippel and Eliaz [2015], Hartmann and Sprenger [2012], Terzopoulou and Endriss [2019])
 - belief merging (Everaere et al. [2010])
 - liquid democracy (Kahng et al. [2018])
References

References III

