
1. Memory technology
& Hierarchy

Back to caching...

Advances in Computer Architecture
Andy D. Pimentel

Caches in a  
multi-processor context

Dealing with concurrent updates

Advances in Computer Architecture, Andy D. Pimentel

Multiprocessor architecture
In a multiprocessor (MP) there will typically be multiple memory banks as
well as processors

There will also be an interconnection network

the simplest form is a bus, however this does not scale

scalability: point-to-point networks with some
topology

We deal with communications later in the course,  
for now we assume some mechanism for connecting processors and memories

Advances in Computer Architecture, Andy D. Pimentel

MP Memory architectures
Distributed Memory Architecture

Private memories associated with a single processor only

All communication uses message passing between processors

“Shared Memory” Architecture

actually, shared address space 
= all processors “see” a single, big memory via the same addresses

Shared Memory Architectures often implemented in a distributed fashion

Uniform Memory Access (UMA)

Non-Uniform Memory Access (NUMA)

Cache-Only Memory Architecture (COMA)

Advances in Computer Architecture, Andy D. Pimentel

MP Memory architecture - UMA

Advances in Computer Architecture, Andy D. Pimentel

MP Memory architecture - NUMA

Advances in Computer Architecture, Andy D. Pimentel

MP Memory architecture - COMA

Advances in Computer Architecture, Andy D. Pimentel

Why use caches in a MP system

Caches can reduce traffic on the interconnection network  
(important because communication doesn’t scale)

Fetching cache lines is more efficient than fetching single words from
DRAM memory

as long as locality is exploited

Problems arise as several copies of the same memory block may be
cached in different processors, i.e. multiple processors sharing a
storage

Advances in Computer Architecture, Andy D. Pimentel

Shared storage

write writeread

Multiple caches, one storage = what to do?

Advances in Computer Architecture, Andy D. Pimentel

General issues of shared memory

Sharing storage (RAM components) between processors adds hw complexity, esp. with
cache implementations

Issues that need solving:

Memory consistency: what the programmer expects from updates to
memory, i.e. when writes to memory from other processors become visible

Coherency protocol: when MP consistency is desired,  
how do writes by one processor become visible to other processors?

False sharing: multiple processors write to different memory addresses
with the same cache line address - causes extra coherency traffic

Advances in Computer Architecture, Andy D. Pimentel

Memory consistency
The memory consistency model establishes a contract between the memory system
and the programmer when there can be concurrent reads and writes to a shared storage

E.g. in a race condition, memory will need to consistently reflect a state and this is the
contract with the programmer

With no caching there is no problem - all races are resolved at the storage and programs will
see a consistent state, i.e. every processor will see the same sequence of reads and writes

Where multiple copies of the cache line are updated by different processors, we have to
decide what is allowed

Chosen model has an impact on the efficiency of the cache coherency protocol;  
Conversely, the coherency protocol must be defined to manage a given consistency
model

Advances in Computer Architecture, Andy D. Pimentel

Consistency models
Consistency models

define the behavior and correctness of a program

impose ordering constraints on reads and writes

balance programming complexity and performance

In effect they define a contract on what to expect between a concurrent
programmer and the memory

They include

strict consistency - where all loads & stores are strictly ordered

sequential consistency - where all processors see the same write order

and various relaxed or weakly consistent models

Advances in Computer Architecture, Andy D. Pimentel

Strict consistency
Always load the value updated by the most recent store

Too strict, normally unnecessary

Heavy coherence overhead

Advances in Computer Architecture, Andy D. Pimentel

Sequential consistency

“Random” switch between memory operations

Advances in Computer Architecture, Andy D. Pimentel

Sequential consistency
Definition:

A multiprocessor is sequentially consistent  
if the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program

Property:

All the nodes in the system observe the write operations on the memory in the same order

Locally, program order is enforced.

Intuitive to programmers

Still a heavy burden in coherence traffic

Advances in Computer Architecture, Andy D. Pimentel

Sequential consistency

Every processor observes all stores in the same order

Advances in Computer Architecture, Andy D. Pimentel

Sequential consistency

Every processor observes all stores in the same order

Advances in Computer Architecture, Andy D. Pimentel

Sequential consistency

Atomic and strongly ordered memory accesses
University

of
Amsterdam

CSPCSP
Computer
Architecture

Sequential consistency (SC)

Processor 1: Processor 2:

A = 0; B = 0;

......

A = 1; B = 1;

if (B == 0) ... if (A == 0) ..

SC model: atomic and strongly ordered memory accesses
e.g. delay write until all validations have been
acknowledged

Single-ported
memory

switch

P3P2 PnP1

Andy Pimentel – p. 204/259

Advances in Computer Architecture, Andy D. Pimentel

Weak consistency

Typically utilizes explicit synchronization operations

For example, semi-explicit consistency with fences:

All previous synchronizations must be performed before a
memory read

All memory writes must be performed before a
synchronization operation

Advances in Computer Architecture, Andy D. Pimentel

Cache coherency
Used to maintain consistency according to a given model

If multiple processors cache the same block and one processor writes
to it then the two copies of the same block of memory will contain
different data

Protocols are used to maintain coherency of the cached data and to
manage writes to shared cache lines

typically when one processor writes to a
cache line all other copies of that lines must
be made invalid

Advances in Computer Architecture, Andy D. Pimentel

Cache coherency

Time

Without cache:

Advances in Computer Architecture, Andy D. Pimentel

Cache coherency - the problem

Time

Using a copy-back protocol:

Advances in Computer Architecture, Andy D. Pimentel

Cache coherency - the problem

Time

Write through, maybe?

Looks better, but what if processor 1 reads again?

Advances in Computer Architecture, Andy D. Pimentel

False sharing
Generally the larger the cache line the greater the effect of locality 
i.e fewer accesses to main memory

However, with a very large cache line, if the same memory block is cached
in two processors and the copies must be consistent:

when a cache line is written by one processor

the other processor must mark that cache line as invalid regardless of
whether the particular word written is required by the second processor

This is called false sharing

Advances in Computer Architecture, Andy D. Pimentel

Example false sharing

Processors A and B access and share the same cache line

	 A reads words 0, 1 and 2 and writes only 1

	 B reads words 14 and 15 and writes only 15

each write invalidates the other’s copy of the cache line. This is false sharing as neither needs the data
written by the other, and yet this may impact the hit rates.

Generally cache hit ratios increase with cache line size  
but in a multi-processor system, false sharing generates more misses for larger line sizes.

0 1 2 1514

0 1 2 1514

Processor A

Processor B

Coherency protocols

Advances in Computer Architecture, Andy D. Pimentel

Coherency protocols
To maintain coherence on different copies of the same block of memory,  
there must be an exchange of information when the state of that data changes in
any one of the caches

This uses a protocol and a state associated with every cache line

the cache line or directory maintains the state
information

in addition information may also be required about
which other processors/cache controllers share a line

The simplest example of state associated with a cache line would be: {valid, invalid}

Advances in Computer Architecture, Andy D. Pimentel

Coherency protocols

Cache Coherence Controller

Handles CPU requests

Handles bus/network
events

Advances in Computer Architecture, Andy D. Pimentel

Coherency protocols
There are two classes of protocols,  
the choice is determined largely by the communication medium

Snoopy protocols - where each processor can “see” every memory
transaction and can maintain state information on shared cache lines (e.g. bus)

here, every cache lines maintains information on the state of the data stored

Directory protocols – where information about a block of memory is held
in just one place, a directory, that must identify the nodes or caches that share the
memory block

a write is notified to the directory, which in turn can initiate invalidations to
only those caches sharing the line

Advances in Computer Architecture, Andy D. Pimentel

Simple coherency protocol
Simplest protocol uses just a valid bit

allows cached reads and supports write-through and write-around cache policies

every write updates memory and also invalidates all other copies of the cached line

To allow coherent cached writes a dirty bit is used

indicates that the cache line has been written to and memory is not updated, i.e. a
copy back policy

the processor may now write multiple times to the same cache line without
incurring new memory transactions

loads from a dirty line forces a fetch from other caches / memory

Advances in Computer Architecture, Andy D. Pimentel

Example protocols (snoopy)

Invalid Valid

PR (issue NR)

NR, NW, PW (issue NW)

NW

PR, PW (issue NW), NR

PR - processor read
PW - processor write

NR - network read (observed bus read)
NW - network write (observed bus write)

Simplest protocol supports write through and write around

Advances in Computer Architecture, Andy D. Pimentel

Example protocols (snoopy)
Write-invalidate, supports copy back

Invalid Shared
(read-only)

PR (issue NR)NR, NW, INV

PR - processor read
PW - processor write
INV - invalidate

NR - network read (observed bus read)
NW - network write (observed bus write)

Exclusive
(read/write)

PW (issue NW) PW (issue INV)

(write back line)

NW, INV

NW (write back line)

NR, PR

PW, PR

This is a simple, common protocol in bus-based SMPs

NR

Advances in Computer Architecture, Andy D. Pimentel

Example protocols (snoopy)
MESI: write back and write around

Advances in Computer Architecture, Andy D. Pimentel

Example protocols
MOESI

Modified: cache holds dirty data

Owned: cache owns the dirty data

Exclusive: cache holds clean data,
which is the only one in the
caches

Shared: clean data

Invalid: empty

Advances in Computer Architecture, Andy D. Pimentel

Snoopy protocols
A bus allows snoopy protocols to be implemented efficiently

A bus is a broadcast medium and hence all processors
can see all transactions on the bus

In networks this is not the case as networks are divergent, i.e. point-to-point
with branching

A snoopy cache controller monitors all bus transactions and maintains cache line
state for every line it has cached

i.e. a write on the bus to a cached line would generate an invalidate signal
locally for any processor caching that line

Advances in Computer Architecture, Andy D. Pimentel

Directory-based protocols
Busses provide a simple solution to the cache coherence problem but
they do not scale

the concept of all processors monitoring all transactions of all other processors is in itself is not
scalable

Scalable multiprocessors require a network solution to be adopted

networks are point-to-point communication mediums and generally do not support broadcast

even if they do support broadcast, if used by all processors, this would very quickly saturate the
network

The solution is to use a protocol based on a directory that maintains state on cache lines and a
mechanism for determining sharing

in this way the communication can be a multi-cast involving only the nodes/caches sharing a
given block of data

Advances in Computer Architecture, Andy D. Pimentel

Full-map directoriesUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Directory based protocols

Full map

X:
Directory

Cache Cache

P1 P2 Pn

Cache

Read X Read X Read X

X:
Directory

Cache Cache Cache

P1 P2 Pn

X: data X: X: datadata

Write X

X:
Directory

Cache Cache Cache

P1 P2 Pn

dataX:

Andy Pimentel – p. 215/259

Advances in Computer Architecture, Andy D. Pimentel

Sharing-list directories
A sharing list is a distributed data structure stored as a linked list of the
processors sharing a given memory block

the advantage of this scheme is that message generation is distributed

protocol messages follow the linked list between nodes/processors in the list

Each cache directory needs memory to store a link for every cache line

the directory can be implemented as a dedicated memory

in main memory

or as a combination with caching

Advances in Computer Architecture, Andy D. Pimentel

Example

In this example processor P4 is the owner of a cache line
which is shared by processors P2, P7, and P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Advances in Computer Architecture, Andy D. Pimentel

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

1

2

Messages exchanged
to add P1 to sharing list

Advances in Computer Architecture, Andy D. Pimentel

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Messages exchanged
on P1 write

1

2
3

4

5
6

Advances in Computer Architecture, Andy D. Pimentel

Cache-only Memory Architectures

COMA

Data with no home location: attraction memory similar to L2 cache

Memory includes data, tags and states

Large capacity (normally DRAM)

Properties:

Allow data to flow dynamically in the system

Always have to preserve the last copy

Hard to locate a data item

Advances in Computer Architecture, Andy D. Pimentel

Data diffusion memory

Hierarchical bus-based COMA

Attraction memory ≈ big cache

Advances in Computer Architecture, Andy D. Pimentel

General COMA properties
In a Cache Only Memory Architecture (COMA) there is no home location for a block of data
in memory: data migrates to where it is being used

All memory is in a cache somewhere - usually DRAM

Data in COMA has a global address but this is maintained as a tag using normal cache
mapping techniques

all valid data must be assigned to a cache somewhere in the system, it can also be
shared

directories maintain coherence information

The KSR 1 is an example of a COMA (Kendall Square Research, Cambridge, MA, USA, 1986)

Advances in Computer Architecture, Andy D. Pimentel

COMA - Summary
Advantages

Replication of data not constrained by small local caches

Win at poor data placement by software (i.e., capacity cache misses in NUMA)

Better scalability to larger systems

Disadvantages (compared with NUMA)

Complicated coherence protocol

Long coherence latency

Hard to locate a data item

Needs non-standard memory management hardware to implement AMs

