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Multiprocessor architecture
In a multiprocessor (MP) there will typically be multiple memory banks as 
well as processors 

There will also be an interconnection network 

the simplest form is a bus, however this does not scale 

scalability: point-to-point networks with some 
topology 

We deal with communications later in the course,  
for now we assume some mechanism for connecting processors and memories
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MP Memory architectures
Distributed Memory Architecture 

Private memories associated with a single processor only 

All communication uses message passing between processors 

“Shared Memory” Architecture 

actually, shared address space 
= all processors “see” a single, big memory via the same addresses 

Shared Memory Architectures often implemented in a distributed fashion 

Uniform Memory Access (UMA) 

Non-Uniform Memory Access (NUMA) 

Cache-Only Memory Architecture (COMA)
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MP Memory architecture - UMA
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MP Memory architecture - NUMA
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MP Memory architecture - COMA



Advances in Computer Architecture,  Andy D. Pimentel 

Why use caches in a MP system

Caches can reduce traffic on the interconnection network  
(important because communication doesn’t scale) 

Fetching cache lines is more efficient than fetching single words from 
DRAM memory 

as long as locality is exploited 

Problems arise as several copies of the same memory block may be 
cached in different processors, i.e. multiple processors sharing a 
storage
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Shared storage

write writeread

Multiple caches, one storage = what to do?
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General issues of shared memory

Sharing storage (RAM components) between processors adds hw complexity, esp. with 
cache implementations 

Issues that need solving: 

Memory consistency: what the programmer expects from updates to 
memory, i.e. when writes to memory from other processors become visible 

Coherency protocol: when MP consistency is desired,  
how do writes by one processor become visible to other processors? 

False sharing: multiple processors write to different memory addresses 
with the same cache line address - causes extra coherency traffic
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Memory consistency
The memory consistency model establishes a contract between the memory system 
and the programmer when there can be concurrent reads and writes to a shared storage 

E.g. in a race condition, memory will need to consistently reflect a state and this is the 
contract with the programmer 

With no caching there is no problem - all races are resolved at the storage and programs will 
see a consistent state, i.e. every processor will see the same sequence of reads and writes 

Where multiple copies of the cache line are updated by different processors, we have to 
decide what is allowed 

Chosen model has an impact on the efficiency of the cache coherency protocol;  
Conversely, the coherency protocol must be defined to manage a given consistency 
model
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Consistency models
Consistency models 

define the behavior and correctness of a program 

impose ordering constraints on reads and writes 

balance programming complexity and performance 

In effect they define a contract on what to expect between a concurrent 
programmer and the memory 

They include 

strict consistency - where all loads & stores are strictly ordered 

sequential consistency - where all processors see the same write order 

and various relaxed or weakly consistent models
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Strict consistency
Always load the value updated by the most recent store 

Too strict, normally unnecessary  

Heavy coherence overhead
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Sequential consistency

“Random” switch between memory operations
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Sequential consistency
Definition:  

A multiprocessor is sequentially consistent  
if the result of any execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each individual processor appear in 
this sequence in the order specified by its program 

Property:  

All the nodes in the system observe the write operations on the memory in the same order 

Locally, program order is enforced.  

Intuitive to programmers 

Still a heavy burden in coherence traffic
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Sequential consistency

Every processor observes all stores in the same order
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Sequential consistency

Every processor observes all stores in the same order
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Sequential consistency

Atomic and strongly ordered memory accesses
University

of
Amsterdam

CSPCSP
Computer
Architecture

Sequential consistency (SC)

Processor 1: Processor 2:

A = 0; B = 0;

...... ......

A = 1; B = 1;

if (B == 0) ... if (A == 0) ..

SC model: atomic and strongly ordered memory accesses
e.g. delay write until all validations have been
acknowledged

Single-ported
memory

switch

P3P2 PnP1

Andy Pimentel – p. 204/259
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Weak consistency

Typically utilizes explicit synchronization operations 

For example, semi-explicit consistency with fences: 

All previous synchronizations must be performed before a 
memory read 

All memory writes must be performed before a 
synchronization operation
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Cache coherency
Used to maintain consistency according to a given model 

If multiple processors cache the same block and one processor writes 
to it then the two copies of the same block of memory will contain 
different data 

Protocols are used to maintain coherency of the cached data and to 
manage writes to shared cache lines 

typically when one processor writes to a 
cache line all other copies of that lines must 
be made invalid
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Cache coherency

Time

Without cache:
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Cache coherency - the problem

Time

Using a copy-back protocol:
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Cache coherency - the problem

Time

Write through, maybe?

Looks better, but what if processor 1 reads again?
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False sharing
Generally the larger the cache line the greater the effect of locality 
i.e fewer accesses to main memory 

However, with a very large cache line, if the same memory block is cached 
in two processors and the copies must be consistent: 

when a cache line is written by one processor 

the other processor must mark that cache line as invalid regardless of 
whether the particular word written is required by the second processor 

This is called false sharing
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Example false sharing

Processors A and B access and share the same cache line 

	 A reads words 0, 1 and 2 and writes only 1 

	 B reads words 14 and 15 and writes only 15 

each write invalidates the other’s copy of the cache line. This is false sharing as neither needs the data 
written by the other, and yet this may impact the hit rates. 

Generally cache hit ratios increase with cache line size  
but in a multi-processor system, false sharing generates more misses for larger line sizes.

0 1 2 1514

0 1 2 1514

Processor A

Processor B



Coherency protocols
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Coherency protocols
To maintain coherence on different copies of the same block of memory,  
there must be an exchange of information when the state of that data changes in 
any one of the caches 

This uses a protocol and a state associated with every cache line 

the cache line or directory maintains the state 
information 

in addition information may also be required about 
which other processors/cache controllers share a line 

The simplest example of state associated with a cache line would be: {valid, invalid}
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Coherency protocols

Cache Coherence Controller 

Handles CPU requests 

Handles bus/network 
events
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Coherency protocols
There are two classes of protocols,  
the choice is determined largely by the communication medium  

Snoopy protocols - where each processor can “see” every memory 
transaction and can maintain state information on shared cache lines (e.g. bus) 

here, every cache lines maintains information on the state of the data stored 

Directory protocols – where information about a block of memory is held 
in just one place, a directory, that must identify the nodes or caches that share the 
memory block 

a write is notified to the directory, which in turn can initiate invalidations to 
only those caches sharing the line
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Simple coherency protocol 
Simplest protocol uses just a valid bit 

allows cached reads and supports write-through and write-around cache policies 

every write updates memory and also invalidates all other copies of the cached line 

To allow coherent cached writes a dirty bit is used 

indicates that the cache line has been written to and memory is not updated, i.e. a 
copy back policy 

the processor may now write multiple times to the same cache line without 
incurring new memory transactions 

loads from a dirty line forces a fetch from other caches / memory
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Example protocols (snoopy)

Invalid Valid

PR (issue NR)

NR, NW, PW (issue NW)

NW

PR, PW (issue NW), NR

PR - processor read
PW - processor write

NR - network read (observed bus read)
NW - network write (observed bus write)

Simplest protocol supports write through and write around
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Example protocols (snoopy)
Write-invalidate, supports copy back

Invalid Shared
(read-only)

PR (issue NR)NR, NW, INV

PR - processor read
PW - processor write
INV - invalidate

NR - network read (observed bus read)
NW - network write (observed bus write)

Exclusive
(read/write)

PW (issue NW) PW (issue INV)

(write back line)

NW, INV

NW (write back line)

NR, PR

PW, PR

This is a simple, common protocol in bus-based SMPs

NR  
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Example protocols (snoopy)
MESI: write back and write around
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Example protocols
MOESI 

Modified: cache holds dirty data 

Owned: cache owns the dirty data 

Exclusive: cache holds clean data, 
which is the only one in the 
caches 

Shared: clean data 

Invalid: empty
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Snoopy protocols
A bus allows snoopy protocols to be implemented efficiently 

A bus is a broadcast medium and hence all processors 
can see all transactions on the bus 

In networks this is not the case as networks are divergent, i.e. point-to-point 
with branching 

A snoopy cache controller monitors all bus transactions and maintains cache line 
state for every line it has cached 

i.e. a write on the bus to a cached line would generate an invalidate signal 
locally for any processor caching that line
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Directory-based protocols
Busses provide a simple solution to the cache coherence problem but 
they do not scale 

the concept of all processors monitoring all transactions of all other processors is in itself is not 
scalable 

Scalable multiprocessors require a network solution to be adopted 

networks are point-to-point communication mediums and generally do not support broadcast 

even if they do support broadcast, if used by all processors, this would very quickly saturate the 
network 

The solution is to use a protocol based on a directory that maintains state on cache lines and a 
mechanism for determining sharing 

in this way the communication can be a multi-cast involving only the nodes/caches sharing a 
given block of data
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Full-map directoriesUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Directory based protocols

Full map

X:
Directory

Cache Cache

P1 P2 Pn

Cache

Read X Read X Read X

X:
Directory

Cache Cache Cache

P1 P2 Pn

X: data X: X: datadata

Write X

X:
Directory

Cache Cache Cache

P1 P2 Pn

dataX:

Andy Pimentel – p. 215/259
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Sharing-list directories
A sharing list is a distributed data structure stored as a linked list of the 
processors sharing a given memory block 

the advantage of this scheme is that message generation is distributed 

protocol messages follow the linked list between nodes/processors in the list 

Each cache directory needs memory to store a link for every cache line 

the directory can be implemented as a dedicated memory 

in main memory  

or as a combination with caching
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Example

In this example processor P4 is the owner of a cache line 
which is shared by processors P2, P7, and P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64
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Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

1

2

Messages exchanged  
to add P1 to sharing list
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Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Memory

Directory

P1 P2 P3 P4 P5 P6 P7 P64

Messages exchanged  
on P1 write

1

2
3

4

5
6
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Cache-only Memory Architectures

COMA 

Data with no home location: attraction memory similar to L2 cache 

Memory includes data, tags and states 

Large capacity  (normally DRAM) 

Properties: 

Allow data to flow dynamically in the system 

Always have to preserve the last copy  

Hard to locate a data item
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Data diffusion memory

Hierarchical bus-based COMA 

Attraction memory ≈ big cache
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General COMA properties
In a Cache Only Memory Architecture (COMA ) there is no home location for a block of data 
in memory: data migrates to where it is being used 

All memory is in a cache somewhere - usually DRAM 

Data in COMA has a global address but this is maintained as a tag using normal cache 
mapping techniques 

all valid data must be assigned to a cache somewhere in the system, it can also be 
shared 

directories maintain coherence information 

The KSR 1 is an example of a COMA (Kendall Square Research, Cambridge, MA, USA, 1986)
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COMA - Summary
Advantages 

Replication of data not constrained by small local caches 

Win at poor data placement by software (i.e., capacity cache misses in NUMA) 

Better scalability to larger systems 

Disadvantages (compared with NUMA) 

Complicated coherence protocol 

Long coherence latency 

Hard to locate a data item 

Needs non-standard memory management hardware to implement AMs


