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Multiobjective Optimization and Evolutionary
Algorithms for the Application Mapping Problem in

Multiprocessor System-on-Chip Design
Cagkan Erbas, Selin Cerav-Erbas, and Andy D. Pimentel

Abstract—Sesame is a software framework that aims at devel-
oping a modeling and simulation environment for the efficient de-
sign space exploration of heterogeneous embedded systems. Since
Sesame recognizes separate application and architecture models
within a single system simulation, it needs an explicit mapping step
to relate these models for cosimulation. The design tradeoffs during
the mapping stage, namely, the processing time, power consump-
tion, and architecture cost, are captured by a multiobjective non-
linear mixed integer program. This paper aims at investigating the
performance of multiobjective evolutionary algorithms (MOEAs)
on solving large instances of the mapping problem. With two com-
parative case studies, it is shown that MOEAs provide the designer
with a highly accurate set of solutions in a reasonable amount of
time. Additionally, analyses for different crossover types, mutation
usage, and repair strategies for the purpose of constraints handling
are carried out. Finally, a number of multiobjective optimization
results are simulated for verification.

Index Terms—Design space exploration, evolutionary algo-
rithms, mixed integer programming, multiobjective optimization,
multiprocessor system-on-chip (SoC) design.

I. INTRODUCTION

MODERN embedded systems come with contradictory
design constraints. On one hand, these systems target

mass production and battery-based devices, and therefore
should be cheap and power efficient. On the other hand, they
still need to show high (sometimes real-time) performance,
and often support multiple applications and standards which
requires high programmability. This wide spectrum of design
requirements leads to complex system-on-chip (SoC) archi-
tectures, consisting of several types of processors from fully
programmable microprocessors to configurable processing
cores and customized hardware components. The ensuant high
complexity of embedded systems design has led to a new design
paradigm, known as the system-level design [1] which has the
following two important ingredients:

• using a platform architecture that is shared among mul-
tiple applications, rather than designing one for each of
them;
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• starting modeling and exploration with abstract exe-
cutable components and gradually lowering the abstrac-
tion level by inserting more implementation details in
every step, with the intention of reaching an optimal SoC
architecture.

In system-level design, early exploration of the design space
plays a crucial role as it allows evaluate of different architec-
ture alternatives without the burden of low-level primitives. In
terms of design time, it would otherwise be impossible to eval-
uate several alternatives, if one started at a lower level which
requires the synthesis and verification of different parts of the
design. The models at the system-level normally capture the be-
havior of the application, characteristics of the architecture, and
the various relations between the application and the architec-
ture, such as the allocation (which components of the platform
architecture are used), the binding (mapping of application pro-
cesses onto architecture resources), or the scheduling (execution
order of processes). The analytical and simulation models syn-
thesized at the system-level can provide reasonable estimations
of performance [2], power consumption [3], or cost of the design
[4], while minimizing the requirements in terms of modeling ef-
fort and simulation time that is needed in the early design stages.

The Sesame framework1[5], [6], which we develop within
the context of the Artemis project [7], provides methods and
tools for the efficient design space exploration of heterogeneous
embedded multimedia systems. Using Sesame, a designer can
model embedded applications and SoC architectures at the
system-level, map the former onto the latter using evolutionary
optimizers which consider multiple design objectives simul-
taneously, and perform application-architecture cosimulations
for rapid performance evaluations. Based on these evaluations,
the designer can further refine (parts of) the design, experi-
ment with different hardware/software partitionings, perform
cosimulations at multiple levels of abstraction, or mixed level
cosimulations where architecture model components operate
at different levels of abstraction. To achieve this flexibility,
the Sesame environment recognizes separate application and
architecture models within a single system simulation. The
application model defines the functional behavior of an ap-
plication, including both computation and communication
behaviors. The architecture model defines architecture re-
sources and captures their performance constraints. An explicit
mapping step maps an application model onto an architecture
model for cosimulation.

1http://sesamesim.sourceforge.net.
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Until recently, the mapping step in Sesame was assumed to
be performed by an experienced designer, intuitively. However,
this assumption was increasingly becoming inappropriate for
efficient design space exploration. First of all, the Sesame
environment targets exploration at an early design stage where
the design space is very large. At this stage, it is very hard to make
critical decisions such as mapping without using any analytical
method or a design tool, since these decisions seriously affect
the rest of the design process, and in turn, the success of the final
design. Besides, modern embedded systems are already quite
complicated, generally having a heterogeneous combination of
hardware and software parts possibly with dynamic behavior. It
is also very likely that these embedded systems will become even
more complex in the near future, and intuitive mapping decisions
will eventually become obsolete for future designs. Moreover,
coping with the design constraints of embedded systems, there
exist multiple criteria to consider, like the processing times,
power consumption and cost of the architecture, all of which
further complicate the mapping decision.

In Sesame, these issues are captured by means of a multiob-
jective combinatorial optimization problem [8]. Due to its large
size and nonlinear nature, it is realized that the integration of
a fast and accurate optimizer is of crucial importance for this
problem. The primary aim of the multiobjective optimization
process is to provide the designer with a set of tradable solutions,
rather than a single optimal point. The evolutionary algorithms
(EAs), in general, seem to be the best choice for attacking
such problems, as they evolve over a population rather than
a single solution. For this reason, numerous multiobjective
evolutionary algorithms (MOEAs) have been proposed in the
literature. The earlier MOEAs such as VEGA [9], MOGA [10],
and NSGA [11] have been followed by the elitist versions,
e.g., NSGA-II [12] and SPEA2 [13]. More recent work has
focused on the possible performance improvements by incor-
porating sophisticated strategies into MOEAs. For example,
Jensen has employed advanced data structures to improve the
runtime complexity of some popular MOEAs (e.g., NSGA-II)
[14], while Yen et al. have proposed an approach based on
the usage of dynamic populations [15]. In another recent work
[16], the idea of transforming a high-dimentional multiobjective
problem into a biobjective optimization problem is exploited
within an MOEA.

In this paper, we extend the work of [8] with the following
new contributions.

• We employ two state-of-the-art MOEAs [12], [13] in two
case studies from SoC design and report performance re-
sults. Previously, these MOEAs have mostly been tested
on simple and well-known mathematical functions, but
detailed performance results on real-life engineering
problems from different domains are very rare if any.

• A mathematical model is developed to exploit the multi-
processor mapping problem under multiple objectives.

• In order to determine the accuracy of the MOEAs, the
mathematical model is first linearized and then solved
by using an exact method, namely, the lexicographic
weighted Chebyshev method.

• We perform two case studies in which we demonstrate:
1) the successful application of MOEAs to SoC design,
especially in the early stages where the design space is

very large; 2) the quantitative performance analysis of two
state-of-the-art MOEAs examined in conjunction with an
exact approach with respect to multiple criteria (e.g., ac-
curacy, coverage of design space); and 3) the verification
of multiobjective optimization results by further investi-
gating a number of tradable solutions by means of simu-
lation.

• In addition, we perform comparative experiments on vari-
ation operators and report performance results for dif-
ferent crossover types and mutation usage. More specif-
ically, we analyze the consequences of using one-point,
two-point, and uniform crossover operators on MOEA
convergence and exploration of the search space. Besides,
we also show that mutation still remains as a vital oper-
ator in multiobjective search to achieve good exploration.
Hence, the MOEAs stay in accordance with the standard
EAs in this respect.

• We define three new metrics which will allow us to com-
pare different aspects of MOEAs.

• We examine the performance consequences of using dif-
ferent fitness assignment schemes (finer-grained and com-
putationally more expensive versus more coarse-grained
and computationally less expensive) in MOEAs.

• We study the outcome of using three different repair al-
gorithms in constraint handling and compare them with
respect to multiple criteria such as convergence and cov-
erage of search space.

The rest of this paper is organized as follows. Section II dis-
cusses related work. Problem and model definitions and con-
straint linearizations are described in Section III. Section IV
consists of four parts discussing the preliminaries for multi-
objective optimization, the lexicographic weighted Chebyshev
method, the different attributes of multiobjective evolutionary
algorithms and the repair algorithm, and the metrics for com-
paring nondominated sets. In Section V, two case studies are
performed and comparative performance analysis of MOEAs
are given, followed by some simulation results. The last section
presents concluding remarks.

II. RELATED WORK

In the domain of embedded systems and hardware/software
codesign, several studies have been performed for system-level
synthesis [17]–[19] and platform configuration [20]–[23]. The
former means the problem of optimally mapping a task-level
specification onto a heterogeneous hardware/software architec-
ture, while the latter includes tuning the platform architecture
parameters and exploring its configuration space.

Blickleetal.[17]partitionthesynthesisproblemintotwosteps:
the selection of the architecture (allocation), and the mapping of
the algorithm onto the selected architecture in space (binding)
and time (scheduling). In their framework, they only consider
cost and speed of the architecture, power consumption is ignored.
To cope with infeasibility, they use penalty functions which
reduce the number of infeasible individuals to an acceptable
degree. In [19], a similar synthesis approach is applied to
evaluate the design tradeoffs in packet processor architectures.
But additionally, this model includes a real-time calculus to
reason about packet streams and their processing.
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In the MOGAC framework [18], starting from a task graph
specification, the synthesis problem is solved for three objec-
tives: cost, speed, and power consumption of the target architec-
ture. To accomplish this, an adaptive genetic algorithm which
can escape local minima is utilized. However, this framework
lacks the management of possible infeasibility as it treats all
nondominated solutions equally even if they violate hard con-
straints. No repair algorithm is used in any stage of the search
process; the invalid individuals are just removed at the end of
evolution.

In [20], the configuration space of a parameterized SoC
architecture is optimized with respect to a certain application
mapped onto that architecture. The exploration takes into
account power/performance tradeoffs and takes advantage of
parameter dependencies to guide the search. The configuration
space is first clustered by means of a dependency graph, and
each cluster is searched exhaustively for local Pareto-optimal
solutions. In the second step, the clusters are merged iteratively
until a single cluster remains. The Pareto-optimal configura-
tions within this last cluster form the global Pareto-optimal
solutions. In [21], the exploration framework of [20] is used
in combination with a simulation framework. The simulation
models of SoC components (e.g., processors, memories, inter-
connect busses) are used to capture dynamic information which
is essential for the computation of power and performance
metrics. More recently, Ascia et al. [22] have also applied a
genetic algorithm to solve the same problem.

The work in [23] presents an exploration algorithm for param-
eterized memory architectures. The inputs to the exploration al-
gorithm are timing and energy constraints obtained from the ap-
plication tasks and the memory architecture specifications. The
goal is to identify the system time/energy tradeoff, when each
task data member is assigned a target memory component. Exact
and heuristic algorithms are given for solving different instances
of the problem. However, only one type of heuristic (based on
a branch and bound algorithm) is used, and no comparison with
other heuristics is given.

In the Sesame framework, we do not target the problem of
system synthesis. Therefore, a schedule is not constructed at the
end of the design process. Our aim is to develop a methodology
which allows for evaluating a large design space and provides us
with a number of approximated Pareto-optimal solutions. These
solutions are then input to our simulation framework for further
evaluation. After simulation, figures about system-level trade-
offs (e.g., utilization of components, data throughput, commu-
nication media contention) are provided to the designer. Thus,
our goal is efficient design space exploration in terms of simula-
tion. In addition, our framework also differs from the mentioned
frameworks in the sense that it uses process networks for algo-
rithm specification rather than task graphs.

Most of the aforementioned system-level synthesis/explo-
ration and platform configuration frameworks have relied on
evolutionary search techniques. Besides these studies, evolu-
tionary algorithms are utilized at many abstraction levels of
electronic systems design, such as in analog integrated circuit
synthesis [24] and in the design of digital signal processing
systems [25] and evolvable hardware [26].

Fig. 1. The mapping problem on a simple example. The mapping function has
to consider multiple conflicting design objectives and should identify the set of
Pareto-optimal mappings.

III. PROBLEM AND MODEL DEFINITION

In the Sesame framework, applications are modeled using
the Kahn process network (KPN) [27] model of computation
in which parallel processes—implemented in a high-level
language—communicate with each other via unbounded FIFO
channels. The workload of an application is captured by in-
strumenting the code of each Kahn process with annotations.
By executing the application model, each process generates its
own trace of application events.

The architecture models in Sesame simulate the performance
consequences of the application events generated by an applica-
tion model. They solely account for performance constraints and
only model timing behavior, since the functional behavior is al-
ready captured in the application model. An architecture model
is constructed from generic building blocks provided by a li-
brary which contains template models for processing cores and
various types of memory.

Since Sesame makes a distinction between application and
architecture models, it needs an explicit mapping step to relate
these models for cosimulation. In this step, the designer decides
for each application process and first in, first out (FIFO) channel
a destination architecture model component to simulate its
workload. Thus, this step is one of the most important stages
in the design process, since the final success of the design
is highly dependent on these mapping choices. In Fig. 1, we
illustrate this mapping step on a very simple example. In
this example, the application model consists of four Kahn
processes and five FIFO channels. The architecture model
contains two processors and one shared memory. To decide on
an optimum mapping, there exist multiple criteria to consider:
maximum processing time in the system, power consumption,
and the total cost. This section aims at defining a mapping
function, shown with in Fig. 1, to supply the designer with a
set of best alternative mappings under the mentioned system
criteria.

A. Application Modeling

The application models in Sesame are represented by a graph
KPN , where the set and refer to the Kahn
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nodes and the directed FIFO channels between these nodes,
respectively. For each node , we define
to be the set of FIFO channels connected to node ,

. For each Kahn node, we define a computation
requirement, shown with , representing the computational
workload imposed by that Kahn node onto a particular compo-
nent in the architecture model. The communication requirement
of a Kahn node is not defined explicitly; rather it is derived from
the channels attached to it. We have chosen this type of defini-
tion for the following reason: if the Kahn node and one of its
channels are mapped onto the same architecture component, the
communication overhead experienced by the Kahn node due to
that specific channel is simply neglected. Only its channels that
are mapped onto different architecture components are taken
into account. So our model neglects internal communications
and only considers external communications. Formally, we de-
note the communication requirement of the channel with .
To include memory latencies into our model, we require that
mapping a channel onto a specific memory asks computation
tasks from the memory. To express this, we define the computa-
tional requirement of the channel from the memory as . The
formulation of our model ensures that the parameters and
are only taken into account when the channel is mapped onto
an external memory.

B. Architecture Modeling

Similarly to the application model, the architecture model is
also represented by a graph , where the sets

and denote the architecture components and the con-
nections between the architecture components, respectively. In
our model, the set of architecture components consists of two
disjoint subsets: the set of processors and the set of mem-
ories , and . For each processor

, the set represents the memories
which are reachable from the processor . We define processing
capacities for both the processors and the memories as and

, respectively. These parameters are set such that they reflect
processing capabilities for processors, and memory access la-
tencies for memories.

One of the key considerations in the design of embedded sys-
tems is the power consumption. In our model, we consider two
types of power consumption for the processors. We represent the
power dissipation of the processor during execution with ,
while represents its power dissipation during communica-
tion with the external memories. For the memories, we only de-
fine , the power dissipation during execution. For both pro-
cessors and memories, we neglect the power dissipation during
idle times. In our model, we also consider the financial costs
associated with the architecture model components. Using an
architecture component in the system adds a fixed amount to
the total cost. We represent the fixed costs as and for the
processors and the memories, respectively.

C. The Mapping Problem

We have the following decision variables in the model:
if Kahn node is mapped onto processor , if

channel is mapped onto memory , if channel
is mapped onto processor , if processor is used in

the system, and if memory is used in the system. All
the decision variables get a value of zero in all other cases. The
constraints in the model are the following.

• Each Kahn node has to be mapped onto a single processor

(1)

• Each channel in the application model has to be mapped
onto a processor or a memory

(2)

• If two communicating Kahn nodes are mapped onto the
same processor, then the communication channel(s) be-
tween these nodes have to be mapped onto the same pro-
cessor

(3)

• The constraint given below ensures that when two com-
municating Kahn nodes are mapped onto two separate
processors, the channel(s) between these nodes are to be
mapped onto an external memory

(4)

• The following constraints are used to settle the values of
and s in the model. We multiply the right-hand side

of the first equation series by the total number of Kahn
nodes and FIFO channels, since this gives an upper bound
on the number of application model components that can
be mapped to any processor. Similar logic is applied to the
equations related with memory

(5)

(6)

Three conflicting objective functions exist in the optimization
problem.

• The first objective function tries to minimize the max-
imum processing time in the system. For each processor
and memory, and represent the total processing
time of the processor and memory, respectively. We also
show the total time spent by the processor for the execu-
tion events as and for the communication events as

(7)

(8)

(9)

(10)
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So the objective function is expressed as

(11)

• The second objective function tries to minimize the power
consumption of the whole system. Similarly, and
denote the total power consumption of processor and
memory

(12)

(13)

(14)

• The last objective function aims at minimizing the total
cost of the architecture model

(15)

Definition 1 (MMPN problem): The multiprocessor map-
pings of process networks (MMPN) problem is the multiob-
jective integer optimization problem shown in (16) and (17) at
the bottom of the page. For the sake of convenience, Table I
presents the set of mathematical symbols for the MMPN
problem.

D. Constraint Linearizations

In Section V, we will solve an instance of the MMPN problem
using both exact and heuristic methods. Because the problem
has some nonlinear constraints, one has to linearize them before
using a mathematical optimizer. Next, we show how this is done.

Equation (3) can be linearized by replacing it with these three
constraints

(18)

(19)

(20)

Similarly, (4) can be linearized by introducing a new binary vari-
able and adding the constraints

(21)

(22)
(23)

Finally, (9) can be linearized by introducing the binary variable
and adding the constraints

(24)

(25)

(26)

TABLE I
TABLE OF SYMBOLS FOR THE MMPN PROBLEM

IV. MULTIOBJECTIVE OPTIMIZATION

A. Preliminaries

Definition 2: A general multiobjective optimization problem
with decision variables and objective functions is defined as

where represents a solution and is the set of feasible
solutions. The objective function vector maps a decision
vector in decision space to an objective
vector in objective space .

Definition 3 (Dominance Relations): Given two objective
vectors and , we say the following.

• ( strictly dominates ) iff ,
.

• ( dominates ) iff and ,
.

• ( weakly dominates ) iff ,
.

• ( is incomparable with ) iff
such that and .

(16)

(17)
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Definition 4: A decision vector is said to be
nondominated in set iff such that .

Definition 5 (Nondominated Set and Front): The set con-
taining only nondominated decision vectors is called
nondominated set. Its image on the objective space

is called nondominated front.
Definition 6 (Pareto Set and Front): The set
is nondominated in is called Pareto set. Its image on the

objective space is called
Efficient set or equivalently Pareto front.

Definition 7 (Euclidean Distance): The Euclidean distance
between two vectors (of dimension ) and is defined as

.
After these ground-laying definitions, in the rest of this

section we first briefly explain an exact method for solving
multiobjective optimization problems, namely the lexico-
graphic weighted Chebyshev method which was introduced
by Steuer and Choo [28]. Then, we will move to heuristic
methods and introduce two state-of-the-art highly competitive
MOEAs [12], [13]. The discussion on MOEAs is performed
within the context of the MMPN problem, especially when it
comes to those problem specific parameters. We conclude this
section by defining three new metrics for MOEA performance
comparisons.

B. Lexicographic Weighted Chebyshev Method

Definition 8 (Weakly Pareto-Optimal Point): A solution
is weakly Pareto-optimal if there is no such

that .
The lexicographic weighted Chebyshev method [28] works in

two steps. In the first step, we take a reference vector in objective
space with components

where are small positive values. Generally, it is common to
set to the value which makes .
In this step, we solve

(27)

which guarantees weak Pareto optimality [29]. We denote the
set of solutions found in this first step with . In the second
step, solutions in are checked for Pareto optimality using

(28)

and all weakly Pareto-optimal points are eliminated. After this
step, the retained Pareto-optimal solutions form .

In Fig. 2, we illustrate this graphically. The first step in the
lexicographic weighted Chebyshev method can be considered
as drawing probing rays emanating from toward the Pareto

Fig. 2. The lexicographic weighted Chebyshev method can be considered as
drawing probing rays emanating from toward the Pareto front. The points
equidistant from form a family of rectangles centered at .

front.The points equidistant from form afamilyof rectangles
centered at . Moreover, the vertices of these rectangles
lie in the probing ray in the domain of the problem [30]. The
objective in (27) is optimized when the probing ray intersects
the Pareto front. In this step, points , and can be located.
In the second step, weakly Pareto-optimal is eliminated.

C. Multiobjective Evolutionary Algorithms (MOEAs)

Evolutionary algorithms have become very popular in mul-
tiobjective optimization, as they operate on a set of solutions.
Over the years, many multiobjective evolutionary algorithms
have been proposed [31], [32]. In this section, we study two
state-of-the-art MOEAs: SPEA2, which was proposed by
Zitzler et al. [13], and NSGA-II by Deb et al. [12]. Both
algorithms are similar in the sense that they follow the main
loop in Algorithm 1. To form the next generation, they employ
a deterministic truncation by choosing best individuals from
a pool of current and offspring populations. In addition, they
both employ binary tournament selection [33]. Nevertheless,
the main difference lies in their fitness assignment schemes.
Despite the fact that both MOEAs apply a lexicographic fitness
assignment scheme, objectives of which are to give first priority
to nondominance and second priority to diversity, SPEA2 does
so by using a finer-grained and therefore a more computation-
ally expensive approach than its rival NSGA-II. The interesting
question here is whether this additional computation effort
pays off when we look at the overall performance of SPEA2
and NSGA-II. This issue is investigated experimentally in
Section V.

Algorithm 1 A General Elitist Evolutionary
Algorithm

input: : Size of the population
: Maximum number of generations.

output: Nondominated individuals in .
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Step 1) Initialization: Generate a random
initial population , and create
an empty child set . .

Step 2) Fitness assignment: ,
and then calculate the fitness
values of the individuals in .

Step 3) Truncation: Reduce size of by
keeping best individuals ac-
cording to their fitness values.

Step 4) Termination: If , output non-
dominated individuals in and
terminate.

Step 5) Selection: Select individuals from
for mating.

Step 6) Variation: Apply crossover and mu-
tation operations to generate .

and go to Step 2).

The distinctive characteristic of SPEA2 and NSGA-II is that
both algorithms employ elitism, that is to guarantee a strictly
positive probability for selecting at least one nondominated in-
dividual as an operand for variation operators. In both MOEAs,
the following procedure is carried out to introduce elitism: the
offspring and current population are combined and subsequently
the best individuals in terms of nondominance and diversity
are chosen to build the next generation. Unlike single optimiza-
tion studies, elitism has attracted high attention from the re-
searchers in multiobjective optimization. Although it is still a
very active research subject, elitism is believed to be an impor-
tant ingredient in search with multiple objectives. For example,
in [34] and [35], experiments on continuous test functions show
that elitism is beneficial, while in [36], similar results are also re-
ported for two combinatorial (multiobjective 0/1 knapsack and
traveling salesman) problems. Apart from these experimental
studies, Rudolph has theoretically proven that an elitist MOEA
can converge to the Pareto-front in finite number of iterations
[37].

After the mentioned validatory studies, NSGA-II has been
proposed as an elitist version of its predecessor NSGA. Besides
elitism, NSGA-II has additional benefits over NSGA such as:
1) a lower computational complexity; 2) a parameterless mech-
anism for maintaining diversity among nondominated solutions;
and 3) a deterministic selection algorithm to form the next gen-
eration by lexicographically sorting the combination of the cur-
rent population and the offspring.

Similar to NSGA-II, SPEA2 is an improved successor of
SPEA which was one of the first MOEAs with elitism. SPEA2
differs from SPEA in terms of: 1) a finer-grained fitness assign-
ment mechanism; 2) a new density estimation technique for
maintaining diversity; and 3) a new truncation method which
prevents the loss of boundary solutions.

In the remainder of this section, we concentrate on problem-
specific portions of MOEAs, and the discussion will be based
on the MMPN problem, our focus of interest in this paper. The
discussion is divided into three parts: individual encoding, con-
straint violations and variation operations. We conclude this sec-

Fig. 3. An example individual coding. The closely related genes are put
together in order to preserve locality.

tion by defining three new metrics in the interest of comparing
MOEAs under different criteria.

1) Individual Encoding: Each genotype consists of two
main parts: a part for Kahn process nodes and a part for FIFO
channels. Each gene in the chromosome has its own feasible set
which is determined by the type of the gene and the constraints
of the problem. For genes representing Kahn process nodes,
only the set of processors in the architecture model form the
feasible set, while for genes representing the FIFO channels,
both the set of processors and the set of memories constitute
the feasible set.

Algorithm 2 Individual Repair
Algorithm
input: (individual)
output: (individual)
for all Kahn process genes do

check if it is mapped onto a
processor from its feasible set.

if mapping is infeasible then
repair: map on a random processor
from its feasible set.
end if

end for
for all FIFO channel genes do

source Kahn process of the
FIFO channel.

sink Kahn process of the
FIFO channel.

processor that is mapped
onto.

processor that is mapped
onto.
if then
repair: map FIFO channel onto .

else
a randomly chosen memory

from .
repair: map FIFO channel on .

end if
end for
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The constraints of the problem may include some limitations
which should be considered in individual coding. For example,
if there exists a dedicated architecture component for a specific
Kahn process, then this architecture component has to be in-
cluded only in the feasible set of this Kahn process.

In Fig. 3, an example chromosome is given. The first three
genes are those for Kahn process nodes, and the rest are those
for FIFO channels. We have placed closely related genes to-
gether in order to maintain locality. The latter is vital for the
success of an evolutionary algorithm [18], [38]. For this gene,
the second Kahn process is mapped onto an application specific
instruction processor (ASIP) while the second FIFO channel is
mapped onto a DRAM. We also see that the feasible sets for
these two genes are different.

2) Constraint Violations: We have developed a repair mech-
anism to deal with constraint violations. Due to randomness in
MOEAs (in initialization, crossover, and mutation steps), con-
straints (1), (2), (3), and (4) are prone to violation. The re-
pair mechanism given in Algorithm 2 first considers whether
each Kahn process is mapped onto a processor from its feasible
set; if not, it repairs by randomly mapping the Kahn process
to a feasible processor. After having finished processing the
Kahn process genes, it proceeds along with the FIFO channel
genes. For the latter, the repair algorithm simply checks for each
FIFO channel whether the Kahn processes it is connected to
are mapped onto the same processor. If this condition holds,
then it ensures that the FIFO channel is also mapped onto that
processor. If the condition does not hold, which means that the
Kahn processes are mapped onto different processors (say,
and ), it finds the set of memories reachable from both and

(mathematically, ). Then, it selects a memory
from this set randomly and maps the FIFO channel onto that
memory. However, it is interesting to note here that if

, then the problem itself may become infeasible.2

Therefore, we exclude these architectures.
With respect to repair, we have developed and tested three

strategies. In the first (no-repair) strategy none of the individ-
uals is repaired during any step; all are treated as valid individ-
uals during the optimization process. Once the optimization is
finished, repair is applied to the invalid individuals and all non-
dominated solutions are output. Although this approach does not
sound very promising as it neglects infeasibility, it is included
here for two reasons: the first reason is that some researchers
have applied this strategy to multiobjective combinatorial prob-
lems and reported positive results [18]; the second reason is to
see the performance gain/loss when constraint handling is taken
into account. In the second strategy, which we call moderate-re-
pair, at the end of each variation (Step 6 in Algorithm 1) all in-
valid individuals are repaired. This allows infeasible individuals
to enter the mutation step. The latter may help to explore new
feasible areas over unfeasible solutions. This is especially im-
portant for combinatorial problems in which the feasible region

2Although it is possible to repair by mapping both the FIFO channel and one
of the Kahn processes onto the processor that the other Kahn process is mapped
onto, this would require the individual to re-enter repair as it may cause addi-
tional infeasibilities for other FIFO channels. In the worst case, this can be an
infinite loop.

may not be connected. The last strategy we employ here is called
extensive-repair, as it repairs all invalid individuals immediately
after every variation step. Hence, all individuals entering muta-
tion are feasible. The experimental results concerning the repair
strategies are discussed in Section V.

3) Variation Operations: As we have already mentioned,
experiments in Section V should give us some feedback about
i) whether the finer-grained computationally expensive fitness
assignment in SPEA2 pays off and ii) the effect of using
different repair schemes (no-repair, moderate-repair, and exten-
sive-repair strategies). Therefore, we have fixed other factors
that may effect MOEA performance. We have used only one
type of mutation and crossover operations in all standard runs.
For the former, we have used independent bit mutation (each
bit of an individual is mutated independently with respect to bit
mutation probability), while for the latter, standard one-point
crossover (two parent chromosomes are cut at a random point
and the sections after the cut point are swapped) is employed.

Many researchers have reported comparative performance re-
sults on different crossover types and mutation for traditional
EAs solving single objective problems [38]–[40]. Therefore, it
may well be interesting to perform similar comparative experi-
ments with some variation operators in the multiobjective case.
In this respect, we have performed additional experiments in
Section V-B for the comparison of different crossover opera-
tors and the effect of mutation usage.

In our analysis with respect to crossover operators, we have
compared the performance of the one-point crossover with that
of the two-point and uniform crossover operators. In two-point
crossover, the individual is considered as a ring formed by
joining the ends together. The ring is cut at two random points
forming two segments, and the two mating parents exchange
one segment in order to create the children. One should note that
the two-point crossover performs the same task as the one-point
crossover by exchanging a single segment; however, it is
more general. Uniform crossover is rather different from both
one-point and two-point crossover; two parents are selected for
reproducing two children, and for each bit position on the two
children it is randomly decided which parent contributes its bit
value to which child.

D. Metrics for Comparing Nondominated Sets

To properly evaluate and compare MOEA performances, one
can identify three important criteria [41].

• Accuracy: The distance of the resulting nondominated set
to the Pareto-optimal front should be minimal.

• Uniformity: The solutions should be well distributed (in
most cases uniform).

• Extent: The nondominated solutions should cover a wide
range for each objective function value.

Unlike single objective optimization problems, where the
single aim is to locate a global optimum without being trapped
at local optima, multiobjective optimization requires multiple
aims to be satisfied simultaneously. Besides the obvious ac-
curacy criterion, that is locating a set of solutions being at
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Fig. 4. Metrics for comparing nondominated sets. For the sake of simplicity, illustrations for the two dimensional case are given. However, the metrics are also
valid for any higher dimension.

minimal distant from the Pareto front, multiobjective opti-
mizers also need to maintain a well distributed solution set (i.e.,
uniformity) for a more complete view of the tradeoff curve and
should catch boundary points (i.e., extent) for a better coverage
of the objective space.

There has been some effort for measuring the performance
assessments of MOEAs [35], [42]. Metrics, in general, can be
classified as: 1) metrics evaluating only one nondominated set;
2) metrics comparing two nondominated sets; 3) metrics re-
quiring knowledge of the Pareto-optimal set; and 4) metrics
measuring single or multiple assessment(s).

In the rest of this section, we propose one metric for each of
the three identified criteria. Due to the fact that every objective
function scales independently, one should map the limits of the
objective function values to a unique interval before doing any
arithmetic operation. Therefore, we first present normalization
of vectors, before defining the performance metrics.

1) Normalization of Vectors in Objective Space: To
make calculations scale independent, we normalize vec-
tors before doing any arithmetic. At the end of normal-
ization, each coordinate of the objective space is scaled
such that all points get a value in the range [0,1] for all

objective values. Assume we have nondominated sets,
. First, we form . Then,

we calculate and
, which correspond to the

minimum and maximum values for the th coordinate of the
objective space. Then, we scale all points according to

(29)

We repeat this process for all coordinates, i.e., . We
show the normalized vector of a vector as . Similarly, the set
of normalized vectors are shown as .

2) D-Metric for Accuracy: Given two normalized nondom-
inated sets and , , we look for
such that . Then, we compute Euclidean distances from

to all points . We define
to be the maximum of such distances. If

then

(30)
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(a) (b)

Fig. 5. Two multimedia applications and a platform architecture is shown. (a) M-JPEG encoder application and the multiprocessor SoC architecture model and
(b) JPEG decoder process network with 26 processes and 75 FIFO channels.

where is the dimension of the objective space. The D-metric
returns a value in the range [0,1] where a smaller value is better.
As seen in Fig. 4(a), the maximum distance from a dominating
point is taken as a basis for accuracy.

3) -Metric for Uniformity: Given a normalized nondom-
inated set , we define to be the Euclidean distance be-
tween two consecutive vectors, . Let

. Then, we have

(31)

where is the dimension of the objective space. Note that
where zero is the best. The underlying idea is to

first calculate the average distance between any two consecutive
points and then to check all distances and penalize with respect
to the deviation from the average distance. In the ideal case, all
distances in Fig. 4(b) are equal to each other
and the metric gets a value of zero.

4) -Metric for Extent: Given a nondominated set , we
define and

. Then

(32)

where is the dimension of the objective space. For this metric,
normalization of vectors is not needed. As shown in Fig. 4(c),
a bigger value spans a larger portion of the hypervolume and
therefore is always better.

V. EXPERIMENTS

For the experiments, we have taken two media applications
and a platform architecture to map the former onto the latter.

Fig. 6. Pareto front for the M-JPEG encoder case study.

The first application is a modified motion-JPEG encoder which
differs from traditional encoders in three ways: it only supports
lossy encoding while traditional encoders support both lossless
and lossy encodings, it can operate on YUV and RGB video
data whereas traditional encoders usually operate on the YUV
format, and it can change quantization and Huffman tables dy-
namically while the traditional encoders have no such behavior.
We omit giving further details on the M-JPEG encoder as they
are not crucial for the experiments performed here. Interested
readers are pointed to [43].

The second application is a Philips in-house JPEG decoder
from [44]. Regarding this application, we only have the topology
information but not the real implementation. Therefore, we have
syntheticallygeneratedall itsparametervalues.Bothmediaappli-
cationsand the platform architecture are given in Fig. 5.Although
these two applications match in terms of complexity, the JPEG
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(a) (b)

Fig. 7. Convergence analyses of the D-metric for the (a) M-JPEG encoder and (b) JPEG decoder. In the case of the M-JPEG decoder, the reference set is obtained
by CPLEX, while for the JPEG decoder it is obtained by running SPEA2r with .

decoder has a more complex structure since its processes are de-
fined at a finer granularity. In two case studies performed here, we
havemappedthesemediaapplicationssuccessivelyontothesame
platform architecture consisting of a general purpose micropro-
cessor (mP), three ASIPs, an application-specific integrated cir-
cuit (ASIC), an SRAM, and three DRAMs. For these architecture
components, realistic latency values from [43] have been used to
calculate their processing capacities: and . Similarly, for
the Kahn processes and FIFO channels in the M-JPEG decoder,
computational and communicational requirements (namely, the
parameters for the nodes and the parameters and for
the FIFO channels) have been calculated using statistics obtained
from the C++ implementation code of its Kahn process network.

We have implemented the MMPN problem as an optimiza-
tion problem module in PISA—a platform and programming
language-independent interface for search algorithms [45]. In
PISA, the optimization process is split into two modules. One
module contains all parts specific to the optimization problem
such as individual encoding, fitness evaluation, mutation, and
crossover. The other module contains the problem-independent
parts such as selection and truncation. These two modules are
implemented as two separate processes communicating through
text files. The latter provides huge flexibility because a problem
module can be freely combined with an optimizer module and
vice versa. Due to the communication via file system, platform,
programming language, and operating system independence are
also achieved.

For M-JPEG encoder and JPEG decoder mapping problems,
we have utilized the state-of-the-art highly competitive SPEA2
and NSGA-II multiobjective evolutionaryoptimizers.As already
mentioned in Section IV-C2, we have used a repair algorithm
(Algorithm 2) to handle constraint violations. In order to examine
the effect of repair usage on the MOEA performance, we have
utilized three different repair strategies (no-repair, moderate-
repair, and intensive-repair), the details of which have already
been discussed in Section IV-C2. In the rest of this paper, we
present the results obtained under the no-repair strategy with
SPEA2 (NSGA-II), while the results for the moderate-repair and
intensive-repair strategies are shown by SPEA2r (NSGA-IIr)
and SPEA2R (NSGA-IIR), respectively.

TABLE II
EXPERIMENTAL SETUP

In the experiments, we have used the standard one-point
crossover and independent bit mutation variators. The popula-
tion size is kept constant. All performance analyzes are carried
out at different numbers of generations, ranging from 50 to
1000, collecting information on the whole evolution of MOEA
populations. The following values are used for the specific
parameters:

• population size ;
• maximum number of generations

• mutation probability3 0.5, bit mutation probability4 0.01;
• crossover probability 0.8.

The D-metric for measuring convergence to the Pareto front
requires a reference set. To this end, we implemented the lexi-
cographic weighted Chebyshev method and solved the M-JPEG
encoder mapping problem by using the CPLEX mixed integer
optimizer.5 The outcome of numerous runs with different
weights has resulted in 18 Pareto-optimal points which are
plotted in Fig. 6. The JPEG decoder is not solved by this exact

3The likelihood of mutating a particular solution.
4The likelihood of mutating each bit of a solution in mutation.
5ILOG CPLEX, http://www.ilog.com/products/cplex.
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(a) ((b)

Fig. 8. Convergence analyses of the -metric for the (a) M-JPEG encoder and (b) JPEG decoder.

(a) ((b)

Fig. 9. Convergence analyses of the -metric for the (a) M-JPEG encoder and (b) JPEG decoder.

method due to its size; instead the result obtained by running
SPEA2 for is taken as the reference set.

Table II summarizes the experimental setup. In the experi-
ments, we have performed 30 runs (varying the random gener-
ator seed from one to 30) for each setup. An MOEA with some
chosen makes up a setup: SPEA2 with or NSGA-IIR
with are two examples. As a result, we have obtained
30 nondominated sets for each setup. All experiments have been
performed on an Intel Pentium M PC with 1.7 GHz CPU and
512 MB RAM running Linux OS.

A. MOEA Performance Comparisons

Table IV in the Appendix presents averages and standard de-
viations of the three performance metrics for each experimental
setup with respect to 30 runs. The results for the same number
of generations are grouped and compared. The best values ob-
tained for all metrics are given in bold. To visualize the met-
rics convergence, we have plotted average metrics values against
the numbers of generations in Figs. 7–9. We have the following
conclusions.

• In terms of all three metrics, SPEA2 and NSGA-II
score very close numbers and overall can be considered
evenly matched. The same is true between SPEA2r and
NSGA-IIr and also for SPEA2R and NSGA-IIR. How-
ever, with respect to run-times, NSGA-II, NSGA-IIr and

Fig. 10. Convergence with respect to time.

NSGA-IIR outperform SPEA2, SPEA2r and SPEA2R
by only demanding on average 44% of their rivals’
run-times. The latter is also demonstrated in Fig. 10,
where we plot D-metric values with respect to wall
clock time. Therefore, the finer-grained computationally
expensive fitness assignment in SPEA2 (also in SPEA2r
and SPEA2R) does not seem to pay off in general.

• In terms of accuracy (D-metric), SPEA2R and NSGA-IIR
clearly outperform SPEA2r and NSGA-IIr. The worst per-
formance is obtained when no repair is used, as clearly ob-
served in Fig. 7. SPEA2 and NSGA-II fail to converge to
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Fig. 11. Notched boxplots showing the distribution of D-metric values for reciprocal comparison of MOEAs. Each nondominated set of a MOEA is compared
with respect to each nondominated set from the other, and the resulting 900 comparisons are plotted. The plots are given for the JPEG decoder case study in
ascending number of generations (50, 100, 200, 300, 500, and 1000) in the order from left to right and top to bottom. Hence, the top leftmost plot corresponds
to MOEA comparisons with , while the bottom rightmost is for comparisons with . The abbreviations , , , are used in place of
SPEA2R, SPEA2r, NSGA-IIR, NSGA-IIr, respectively. Comparisons regarding SPEA2 and NSGA-II are not given as they fail to converge (Section V-A). Since
D-metric is nonsymmetric, i.e., , both comparisons are performed. Note that smaller values are always better.vsk

the Pareto front. Therefore, constraint handling is of cru-
cial importance.

• From D-metric plots in Figs. 7 and 10, we observe that
convergence to the Pareto front accelerates with higher
usage of repair. In this respect, we observe an expo-
nential convergence curve for SPEA2R and NSGA-IIR,
while the convergence of SPEA2r and NSGA-IIr ap-
proximates a linear curve. However, as the number of
generations increase, the difference in terms of D-metric
between SPEA2R (NSGA-IIR) and SPEA2r (NSGA-IIr)
diminishes.

• In terms of uniformity, all algorithms perform indiffer-
ently. Although they start from a good initial value, they
all fail to converge toward the optimal value zero. It is
also very difficult to come to any conclusion about their
behaviors from Fig. 8, e.g., it is unclear whether repair has
any positive or negative effect on the -metric. Overall,
all algorithms can be considered as good in terms of uni-
formity, as they all score below 0.06, which is reasonably
close to the optimal value.

• SPEA2r and NSGA-IIr clearly outperform other variants
in terms of the extent metric. The reason behind this may
be the higher explorative capacity of SPEA2r and NSGA-
IIr, as they can locate diverse feasible regions by mu-
tating the invalid individuals. In this metric, SPEA2R and
NSGA-IIR come second. Also from the -metric plot for
JPEG decoder problem in Fig. 9, we observe convergence
behavior for SPEA2r, NSGA-IIr, SPEA2R, NSGA-IIR,
but not for SPEA2 and NSGA-II. Therefore, repair is es-
sential for good extension but there seems to be no linear
relation between the two.

• In the M-JPEG encoder case study, we compare non-
dominated sets generated by the MOEAs against the
exact Pareto set (obtained by the lexicographic weighted
Chebyshev method in CPLEX). As the numbers are very
close to the ideal value zero for , especially for
SPEA2R and NSGA-IIR, we consider them as highly
promising optimizers. Convergence to Pareto front is
also achieved with SPEA2r and NSGA-IIr, but this takes
considerably larger amount of time.
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Fig. 12. Crossover analysis for the JPEG encoder case study.

Fig. 13. Using no mutation results in poor -metric values in the JPEG encoder case study. This is an expected result as the mutation operator is responsible for
exploration of the search space.

• In Fig. 11, we perform reciprocal comparison of nondom-
inated sets at numbers of generations 50, 100, 200, 300,
500, and 1000 for the JPEG decoder case study. To per-
form one comparison at a certain number of generations,
30 nondominated sets from an MOEA is compared one by
one with the 30 nondominated sets from the other. The re-
sultingdistributionof900D-metriccomparisonsisgivenas
asinglenotchedboxplot inFig.11.Thecomparisonsunveil
that SPEA2R and NSGA-IIR beat SPEA2r and NSGA-IIr
in all comparisons; and SPEA2R and NSGA-IIR can be
considered as equally matched. The same is true between
SPEA2r and NSGA-IIr. However, as the number of genera-
tions increase, thedifferenceinD-metricbetweenSPEA2R
(NSGA-IIR) and SPEA2r (NSGA-IIr) diminishes as a re-
sult of the belated convergence of SPEA2r and NSGA-IIr.
This difference in convergence speed is also apparent in
Fig.7,whereweobserveanexponential convergencecurve
for SPEA2R and NSGA-IIR in contrast to a linear curve for
SPEA2r and NSGA-IIr.

B. Effect of Crossover and Mutation

In this section, we have performed two independent experi-
ments with the JPEG decoder case study in order to analyze the

effect of crossover and mutation operators on different MOEA
performance criteria. The purpose of the first experiment is to
examine the correlation between crossover type and conver-
gence to the Pareto front. In this respect, besides the default
one-point crossover operator, we have implemented two-point
and uniform crossover operators (see Section IV-C3 for how
they work). When we look at the resulting D-metric plots in
Fig. 12, we observe a better performance with uniform crossover
in the early generations; however after , all crossover
operators exhibit very close performance. With respect to ex-
tent ( -metrics in Fig. 12), two point crossover shows the worst
performance, while once again one-point and uniform crossover
operators match each other. The relatively fast convergence but
coincidentally poor coverage of the search space in the case
of the two-point crossover implies that the operator is biased
more toward exploitation than exploration. One-point and uni-
form crossover operators seem to find a better balance of the two
in this case.

In the second experiment, we analyze the effect of the
mutation operator on MOEA performance. To realize this we
have taken our original experimental setup (see Section V) and
repeated the experiments without the mutation operator. The
resulting D-metric and -metric plots are given in Fig. 13.
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TABLE III
THREE SOLUTIONS CHOSEN FOR SIMULATION

Fig. 14. Simulation results showing the utilization of architecture components
in all three solutions. The throughput values are 52.2, 47.8, and 51.3 frames/s
for the cplex1, cplex2 and ad hoc solutions, respectively.

With respect to both metrics, omitting the mutation operator has
resulted in very poor performance. MOEAs without mutation
seem to converge toward the local optima and fail to collect
variant solutions. Both observations imply that insufficient
exploration has been realized in the search. These implications
are in accordance with the widely accepted role of mutation
as providing a reasonable level of population diversity in
the standard EAs [39]. This experiment suggests that the
explorative role of mutation is of high importance for MOEAs
as well.

C. Simulation Results

In this section, we use the Sesame framework in order to eval-
uate three selected solutions of the M-JPEG encoder problem
by means of simulation. Two of the solutions are taken from the
Pareto-optimal set (referred here as cplex1 and cplex2), while
the third solution is an ad hoc solution (referred as ad-hoc)
which is very similar to those proposed and studied in [43] and
[46]. It is clear from their objective function values in Table III
that Pareto-optimal cplex1 and cplex2 outperform the ad-hoc so-
lution in all objectives. The outcome of simulation experiments
is also in accordance with optimization results, as the results in

Fig. 14 reveal that similar performance can be achieved using
less processing cores (cplex1 and cplex2 use three while ad hoc
uses four processors), which in turn results in less power con-
sumption and cheaper implementation.

VI. CONCLUSION

In this paper, we studied a multiobjective design problem
from the multiprocessor system-on-chip domain: mapping
process networks onto heterogeneous multiprocessor archi-
tectures. The mathematical model for the problem takes into
account three objectives, namely, the maximum processing
time, power consumption, and cost of the architecture, and is
formulated as a nonlinear mixed integer programming. We have
used an exact (lexicographic weighted Chebyshev) method and
two state-of-the-art MOEAs (SPEA2 [13] and NSGA-II [12]) in
order to locate the Pareto-optimal solutions. To apply the exact
method, we first linearized the mathematical model by adding
additional binary decision variables and new constraints.

Three new performance metrics have been defined to measure
three attributes (accuracy, uniformity, and extent) of nondom-
inated sets. These metrics are subsequently used to compare
SPEA2andNSGA-IIwitheachotherandalsowith thePareto-op-
timal set. The two elitist MOEAs mainly differ in their fitness
assignment schemes. SPEA2 uses a finer-grained and com-
putationally more expensive scheme with respect to its rival
NSGA-II. Performing two case studies, we have shown that
SPEA2 is not superior than NSGA-II in any of the three de-
fined metrics. Therefore, regarding the MMPN problem, the
computationally more expensive fitness assignment scheme of
SPEA2 does not seem to pay off, as NSGA-II is on average
2.2 times faster. Comparing the two MOEAs with the exact
set in the M-JPEG encoder case study, we have shown that
both SPEA2 and NSGA-II find solution sets very close to the
Pareto-optimal set.

Constraint violations have been tackled by three repair strate-
gies differing in terms of repair intensity, and the outcome of
each strategy is evaluated with respect to the defined metrics.
The main result is that using sufficient amount of repair is neces-
sary for good convergence, but allowing some infeasibility may
help the MOEA to explore new feasible regions over infeasible
solutions. Thus, a balance should be established in terms of re-
pair frequency.

Additionally, one-point, two-point, and uniform crossover
operators have been comparatively evaluated in terms of accu-
racy and extent. To summarize, one-point and uniform crossover
operators seem to find a good balance of exploitation vs. ex-
ploration, while two-point crossover is more biased toward
exploitation. With respect to mutation usage, the experiments
reveal that mutation retains its importance for exploration.

We have also compared and simulated two Pareto-optimal so-
lutions and one ad hoc solution from previous studies [43], [46].
The results indicate that multiobjective search of the design
space improves all three objectives, i.e., a cheaper implemen-
tation using less power but still performing the same in terms of
system throughput can be achieved.
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TABLE IV
PERFORMANCE COMPARISON OF THE MOEAS FOR THE M-JPEG ENCODER AND JPEG DECODER APPLICATIONS. BEST VALUES ARE IN BOLD

APPENDIX

PERFORMANCE METRICS

Table IV presents the mean values and the standard deviations
for the three metrics obtained in the M-JPEG encoder and JPEG
decoder case studies. Best values are shown in bold.
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