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Abstract

The Sesame environment provides modeling and sim-
ulation methods and tools for the efficient design space ex-
ploration of heterogeneous embedded multimedia systems. It
specifically targets the performance evaluation of embedded
systems architectures in which task-level parallelism is avail-
able. In this paper, we present techniques that allow Sesame
to model intra-task parallelism exploited at the architecture
level. Moreover, we describe a case study using a QR de-
composition application to validate our modeling concepts.
To this end, we were able to compare the performance es-
timates of our abstract system models with the results of
an actual FPGA implementation. The results are promising
as they show good accuracy with minimal modeling effort.
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I. Introduction

Modern embedded systems, like those for media and signal process-
ing, often have a heterogeneous system architecture, consisting of compo-
nents in the range from fully programmable processor cores to dedicated
hardware components. Increasingly, these components are integrated as a
system-on-chip exploiting task-level parallelism in applications. Due to the
high degree of programmability that is usually provided by such embedded
systems, they typically allow for targeting a whole range of applications
with varying demands. All of the above characteristics greatly complicate
the design of these embedded systems, making it more and more impor-
tant to have good tools available for exploring different design choices at
an early stage in the design.

In the context of the Artemis (ARchitectures and meThods for Embed-
ded MedIa Systems) project [20], we are developing an architecture work-
bench which provides modeling and simulation methods and tools for the
efficient design space exploration of heterogeneous embedded multime-
dia systems. This architecture workbench should allow for rapid perfor-
mance evaluation of different architecture designs, application to architec-
ture mappings, and hardware/software partitionings and it should do so at
multiple levels of abstraction and for a wide range of multimedia applica-
tions.

In this paper, our focus is on a prototype modeling and simulation envi-
ronment, called Sesame [19]. According to the Artemis modeling method-
ology [20], this environment uses separate application models and archi-
tecture models and an explicit mapping step to map an application model
onto an architecture model. This mapping is realized by means of trace-
driven co-simulation, where the execution of the application model gen-
erates application events that represent the application workload imposed
on the architecture. Application models consist of communicating paral-
lel processes, thereby expressing the task-level parallelism available in the
applications. By mapping the event traces generated by different applica-
tion model processes onto the various system architecture components, this
task-level parallelism is exploited at the architecture level. In addition, the
underlying architecture may also exploit intra-task parallelism inside a sin-
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gle trace. This paper presents the newly added techniques Sesame applies
to model architectures that exploit such intra-task parallelism. Moreover,
using a case study with the QR decomposition algorithm as application,
we demonstrate the effectiveness of our modeling methodology.

The remainder of this paper is organized as follows. Section II briefly
describes related work in the area of modeling and simulation of complex
embedded systems. Section III gives a general overview of the Sesame
modeling and simulation environment, while in Section IV we present a
more detailed description of Sesame’s synchronization layer. In Sections V
and VI, we describe the methods applied to model intra-task parallelism
and discuss their impact on Sesame’s synchronization and architecture
model layers. Section VII presents some validation results we obtained
from the case study with the QR decomposition application. Finally, Sec-
tion VIII discusses several open issues and Section IX concludes the paper.

II. Related work

Various research groups are active in the field of modeling and simulat-
ing heterogeneous embedded systems, of which some are academic efforts
(e.g., [6, 12, 10]) and others commercial [9] and industrial efforts (e.g.,
[5]). Many efforts in this field co-simulate the software parts, which are
mapped onto a programmable processor, and the hardware components
and their interactions together in one simulation. Because an explicit dis-
tinction is made between software and hardware simulation, it must be
known which application components will be performed in software and
which ones in hardware before a system model is built. This significantly
complicates the performance evaluation of different hardware/software par-
titioning schemes since a new system model may be required for the as-
sessment of each partitioning.

A number of exploration environments, such as VCC [1], Polis [4] and
eArchitect [2], facilitate more flexible system-level design space explo-
ration by providing support for mapping a behavioral application specifi-
cation to an architecture specification. Within the Artemis project, how-
ever, we try to push the separation of modeling application behavior and
modeling architectural constraints at the system level to even greater ex-
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tents. To this end, we apply trace-driven co-simulation of application and
architecture models. Like was shown in [19], this leads to efficient explo-
ration of different design alternatives while also yielding a high degree of
reusability. The work of [16] also uses a trace-driven approach, but this is
done to extract communication behavior for studying on-chip communi-
cation architectures. Rather than using the traces as input to an architec-
ture simulator, their traces are analyzed statically. In addition, a traditional
hardware/software co-simulation stage is required in order to generate the
traces.

Finally, the Archer project [23] shows a lot of similarities with our work.
This is due to the fact that both our work and Archer are spin-offs from the
Spade project [18]. A major difference is, however, that Archer follows an
entirely different application-to-architecture mapping approach. Instead of
using event-traces, it maps symbolic programs, which are derived from the
application model, onto architecture resources.

III. The Sesame modeling and simulation environment

The Sesame modeling and simulation environment [19], which builds
upon the ground-laying work of the Spade framework [18], facilitates the
performance analysis of embedded systems architectures in a way that di-
rectly reflects the so-called Y-chart design approach [14]. In Y-chart based
design, a designer studies the target applications, makes some initial calcu-
lations, and proposes an architecture. The performance of this architecture
is then quantitatively evaluated and compared against alternative architec-
tures. For such performance analysis, each application is mapped onto the
architecture under investigation and the performance of each application-
architecture combination is evaluated. Subsequently, the resulting perfor-
mance numbers may inspire the designer to improve the architecture, re-
structure the application(s) or modify the mapping of the application(s).

In accordance to the Y-chart approach, Sesame recognizes separate ap-
plication and architecture models within a system simulation. An applica-
tion model describes the functional behavior of an application, including
both computation and communication behavior. The architecture model
defines architecture resources and captures their performance constraints.
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Essential in this modeling methodology is that an application model is in-
dependent from architectural specifics, assumptions on hardware/software
partitioning, and timing characteristics. As a result, a single application
model can be used to exercise different hardware/software partitionings
and can be mapped onto a range of architecture models, possibly repre-
senting different system architectures or simply modeling the same system
architecture at various levels of abstraction. After mapping, an application
model is co-simulated with an architecture model allowing for evaluation
of the system performance of a particular application, mapping, and un-
derlying architecture.

For application modeling, Sesame uses the Kahn Process Network (KPN)
model of computation [13] in which parallel processes – implemented in a
high level language – communicate with each other via unbounded FIFO
channels. In the Kahn paradigm, reading from channels is done in a block-
ing manner, while writing is non-blocking. The computational behavior of
an application is captured by instrumenting the code of each Kahn process
with annotations which describe the application’s computational actions.
The reading from or writing to Kahn channels represents the communi-
cation behavior of a process within the application model. By executing
the Kahn model, each process records its actions in order to generate a
trace of application events, which is necessary for driving an architecture
model. Initially, the application events typically are coarse grained, such
as execute(DCT) or read(pixel-block,channel id), and they may be refined
as the underlying architecture models are refined. We note that in the re-
mainder of this paper, computational application events will be referred to
as execute events.

To execute Kahn application models, and thereby generating the ap-
plication events that represent the workload imposed on the architecture,
Sesame features a process network execution engine supporting Kahn se-
mantics. This execution engine runs the Kahn processes as separate threads
using the Pthreads package. For now, there is a limitation that the Kahn
processes need to be written in C++. In the near future, C and Java support
will be added. The structure of the application models (i.e., which pro-
cesses are used in the model and how they are connected to each other)
is described in a language called YML (Y-chart Modeling Language)[8].
This is an XML-based language which is similar to Ptolemy’s MoML [17]
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Figure 1. Mapping a Kahn application model onto an architecture model.

but is slightly less generic in the sense that YML only needs to support a
few simulation domains. As a consequence, YML only supports a subset of
MoML’s features. However, YML provides one additional feature in com-
parison to MoML as it contains built-in scripting support. This allows for
loop-like constructs, mapping & connectivity functions, and so on, which
facilitate the description of large and complex models.

The performance of an architecture can be evaluated by simulating the
performance consequences of the incoming execute and communication
events from an application model. This requires an explicit mapping of the
processes and channels of a Kahn application model onto the components
of the architecture model. The generated trace of application events from
a specific Kahn process is therefore routed towards a specific component
inside the architecture model by using a trace-event queue. This is illus-
trated in Figure 1. Since the application-model execution engine and the
architecture simulator run as separate processes* , these trace-event queues
are currently implemented via Unix named-pipes. Alternative implemen-
tations of the queues, such as using shared memory, are foreseen in the

* Running the application-model execution engine as a separate process also makes it easy
to analyze the application model in isolation. This can be beneficial as it allows for in-
vestigation of the upper bounds of the performance and may lead to early recognition of
bottlenecks within the application itself.
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future. If two or more Kahn processes are mapped onto a single archi-
tecture component (e.g., when several application tasks are mapped onto
a microprocessor), then the events from the different trace-event queues
need to be scheduled. The next section explains how this is done.

An architecture model solely accounts for architectural (performance)
constraints and therefore does not need to model functional behavior. This
is possible because the functional behavior is already captured in the appli-
cation model, which subsequently drives the architecture simulation. An
architecture model is constructed from generic building blocks provided
by a library. This library contains template performance models for pro-
cessing cores, communication media (like busses) and different types of
memory. These template models can be freely extended and adapted. All
architecture models in Sesame are implemented using a small but power-
ful discrete-event simulation language, called Pearl, which provides easy
construction of the models and fast simulation [19]. The structure of ar-
chitecture models – specifying which building blocks are used from the
library and the way they are connected – is also described in YML.

IV. The synchronization layer

When multiple Kahn application model processes are mapped onto a
single architecture model component, the event traces need to be sched-
uled. For this purpose, Sesame provides an intermediate synchronization
layer, which is illustrated in Figure 2. This layer guarantees deadlock-
free scheduling of the application events and forms the application and ar-
chitecture dependent structure that connects the architecture-independent
application model with the application-independent architecture model.
The synchronization layer, which can be automatically generated from the
YML description of an application model, consists of virtual processor
components and FIFO buffers for communication between the virtual pro-
cessors. There is a one-to-one relationship between the Kahn processes
in the application model and the virtual processors in the synchronization
layer. This is also true for the Kahn channels and the FIFO channels in
the synchronization layer, except for the fact that the buffers of the latter
channels are limited in size. Their size is parameterized and dependent on
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Figure 2. The three layers within Sesame: the application model layer,
the architecture model layer, and the synchronization layer which inter-
faces between application and architecture models.

the modeled architecture. A virtual processor reads in an application trace
from a Kahn process and dispatches the events to a processing compo-
nent in the architecture model. The mapping of a virtual processor onto a
processing component in the architecture model is parameterized and thus
freely adjustable. Currently, this virtual processor to architectural proces-
sor mapping is specified in the YML description of the architecture model.
We are working, however, towards an approach in which this mapping is
specified in a separate YML mapping description.

As can be seen from Figure 2, multiple virtual processors can be mapped
onto a single processor in the architecture model. In this scheme, exe-
cute events are directly dispatched by a virtual processor to the proces-
sor model. The latter subsequently schedules the events originating from
different virtual processors according to some given policy (FCFS by de-
fault) and models their timing consequences. For communication events,
however, the appropriate buffer at the synchronization layer is first con-
sulted to check whether or not a communication is safe to take place so
that no deadlock can occur. Only if it is found to be safe (i.e., for read
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events the data should be available and for write events there should be
room in the target buffer), then communication events may be dispatched
to the processor component in the architecture model. As long as a commu-
nication event cannot be dispatched, the virtual processor blocks. This is
possible because the synchronization layer is, like the architecture model,
implemented in the Pearl simulation language and executes in the same
simulation-time domain as the architecture model. As a consequence, the
synchronization layer accounts for synchronization delays of communicat-
ing application processes mapped onto the underlying architecture, while
the architecture model accounts for the computational latencies and the
pure communication latencies (e.g., bus arbitration and transfer latencies).
Each time a virtual processor dispatches an application event (either com-
putation or communication) to a processor in the architecture model, it is
blocked in simulated time until the event’s simulation at the architecture
level has finished.

The idea of concentrating synchronization behavior in a synchroniza-
tion layer and separating it from (the latencies caused by) data transmis-
sion behavior is somewhat similar to the synchronization graph concept of
[21]. However, our synchronization layer seems to be more flexible since
it is dynamically scheduled and behaves like a ”Kahn” process network
in which the FIFO buffers are bounded. As a consequence of the dynamic
scheduling of the synchronization layer and the architecture model (re-
member that they both are executed in the same discrete-event simulation
domain), dynamics at the architecture level such as contention can easily
be taken into account within the synchronization layer.

V. Modeling intra-task parallelism

Initially, Sesame only modeled the architecture’s processing cores as
black boxes which sequentially simulate the timing consequences of the
incoming (linear) trace of application events. However, the architecture
under investigation may also want to exploit intra-task parallelism which
is present in a single event trace from a Kahn application process. For
example, a processing element may have multiple communication units
which allow for performing independent reads and writes in parallel, or
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Figure 3. Refining a virtual processor in the synchronization layer.

it may have multiple execution units for concurrently processing indepen-
dent computations. To support the modeling and simulation of such intra-
task parallelism, we extended Sesame’s model library with component
models that allow for refining the virtual processors in the synchroniza-
tion layer and the processor components within the architecture models.

Figure 3 shows how a virtual processor in the synchronization layer, like
the ones depicted in Figure 2, is refined. The virtual processor component
now acts as a front-end to a range of (virtual) functional units. These func-
tional units consist of read, write and execution units which can operate in
parallel. The new virtual processor component has a symbolic-instruction
window of parameterizable size in which it stores incoming application
events and with which it analyzes them for parallel execution. According to
the event type (execute event type, channel from/to which is read/written,
etc.), the virtual processor dispatches incoming events to the appropriate
functional unit. The number of entries in the symbolic-instruction window
limits the number of outstanding (dispatched but not finished) events in the
virtual processor. A window size of one implies sequential handling of the
application events. In Figure 3, the arrows from the functional units back
to the virtual processor refer to the acknowledgments the functional units
transmit whenever the simulation of an event has finished.
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The read and write units are connected via buffers1 with other virtual
processors, like discussed in Section IV, in order to establish the modeling
of synchronizations between Kahn application processes in accordance to
their mapping onto the underlying architecture. Hence, the read and write
units do not dispatch a communication event to the architecture model un-
less it is safe to do so, i.e., the event cannot cause a deadlock. In addition,
the execution and write units do not dispatch their incoming application
events to the architecture model before all dependencies for these events
are resolved. We will elaborate on this issue in the next section, which
discusses the internal synchronizations within a refined virtual processor
component.

Figure 4 illustrates how the refined virtual processors can be mapped
onto a processor component in the architecture model which has been re-
fined as well. The read units from the virtual processors that are mapped

1 Per read or write unit, there may be multiple buffers connected.
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onto the same processor at the architecture level, are connected to the read
units of the processor in the architecture model. Likewise, the virtual ex-
ecution units are connected to the execution units of the processor archi-
tecture model, and so on. The functional units in the architecture model
may again be black-box models which sequentially account for the tim-
ing consequences of the incoming application events dispatched by the
synchronization layer. Alternatively, they may also be further refined. For
example, a refined execution unit may model internally pipelined execu-
tion of execute events. Furthermore, in the example of Figure 4 all com-
munication units in the architecture model are connected to a bus model.
In reality, communication units within the architecture model may have
different connections with each other (directly across a bus or via shared
memory, point-to-point, etc.).

VI. Dataflow for functional unit synchronization

To properly model parallel execution of application events from a sin-
gle event trace, the dependencies between the events should be taken into
account. For example, an execution unit in the synchronization layer may
only dispatch an execute event to the execution unit in the architecture
model when the read events it depends on have been simulated and de-
livered the required input for the execute. Likewise, a write event may be
dispatched to the architecture model when it is safe to do so and when the
read/execute events it depends on have been simulated.

Consider the example in Figure 5(a) in which a virtual processor is
shown for a processor architecture with a pipeline of two read units, one
execution unit and two write units. In this example, the trace generating
Kahn process reads/writes from/to two channels which are mapped onto
separate read and write units. The execute events in this example are de-
pendent on the two preceding read events, while the two write events are
dependent on the preceding execute event. In Figure 5(b) the resulting
pipeline parallelism is illustrated.

The synchronization between the functional units in order to resolve de-
pendencies is done via buffered token channels. In Figure 5(a), for exam-
ple, the read units have a token channel to the execution unit. A read unit
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Figure 5. Dataflow-based synchronization to resolve dependencies be-
tween functional units in a virtual processor. The architecture shown in (a)
exploits pipeline parallelism, which is illustrated in (b).

sends a token along its token channel whenever a read event finished, i.e.,
has been simulated at architecture level. The size of the token channel’s
buffer determines how far the read unit can run ahead, or in other words,
the amount of internal buffering a read unit has. If the token channel’s
buffer is full, then the read unit stalls until the execution unit has removed
one or more tokens from the channel’s buffer. During such a stall, a read
unit cannot handle new read events.

In our example, the execution unit reads the tokens generated by the read
units. Associated with each execute event type, there are two bitmaps. The
first one describes on which token channels the particular execute event is
dependent, i.e., which read units produce data needed by the execute event.
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The second bitmap describes which functional units are dependent on the
execute event. So, it relates to output token channels.

The execution unit must have received a token from all of the required
token channels, implying that dependencies have been resolved, before the
execute event may be dispatched to the architecture model. Likewise, after
an execute event has been simulated at the architecture level, the execution
unit sends tokens along the required output token channels (as specified
by the second bitmap). As a consequence, the write units, which are wait-
ing for tokens from the execution unit, are enabled to dispatch dependent
write events to the architecture model. To summarize, synchronizations
due to dependencies between functional units in the synchronization layer
are handled using the dataflow principle with token transmissions between
the functional units. To be more specific, this dataflow mechanism adheres
to integer-controlled dataflow [7]. Of course, the placement of token chan-
nels between functional units and their buffer sizes are freely adjustable.
For the time being, however, we slightly restricted the choice of functional
units as we currently assume that there can be only one execution unit per
processor. In Section VIII, we come back to this issue and indicate how our
modeling concepts may be extended to support multiple execution units
per processor.

To give an impression of how the implemented models look like, Fig-
ure 6 shows the Pearl code for a read unit from the synchronization layer
(the variable declarations have been omitted). As Pearl is an object-based
language and architecture components are modeled by objects, the code
shown in Figure 6 embodies the class of read unit objects.

In its main loop, the read unit object waits for (using the block()
primitive) either one of two methods to be called: sig room or read.
The sig room method is called whenever there is room for a new token
in the token buffer that is associated with the read unit. Multiple calls to
this method are queued by the Pearl runtime system. The read method is
called when a read event needs to be processed by the unit. This method
first checks if there is room in the token buffer by waiting until there is at
least one call to the sig room method queued up. It then synchronously
(‘!’) calls the get method in the input buffer object that is connected to
the read unit. This means that the read unit will block in virtual time until
it receives an acknowledgment from the input buffer object, signaling the
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class v_read_unit

[...]

sig_room : ()
{ }

read : ()
{

block(sig_room); // block until there’s room in token buffer
input_buffer ! get(); // model fetching of data from input FIFO
ex_unit !! sig_data(unit_id); // send token to execution unit
virt_proc !! op_done(); // signal completion to virt. processor

}

{
while (1) {

block( read, sig_room ); // main loop
}

}

Figure 6. Pearl code for a read unit object from the synchronization layer.

end of the data retrieval. Hereafter, the execution unit is signaled by means
of an asynchronous method call (‘!!’) to inform it on the availability of the
data, i.e., a token is sent. Finally, the virtual processor is signaled that the
read unit is ready to receive a new read request. A more thorough explana-
tion of the code is beyond the scope of this paper. Therefore, the interested
reader is referred to [19] for a more detailed discussion of a Pearl code
sample.

In our implementation, it is straightforward to change the policy defin-
ing when token buffers can be read from or written to. More specifically,
a functional unit can wait until all of its required tokens are available be-
fore it retrieves the tokens from the buffers or it can retrieve a required
token whenever it becomes available. In the latter case, the producer of the
token may be unblocked earlier and thereby allowing it to proceed with
processing new application events.

We note that the synchronizations between functional units are only per-
formed in the synchronization layer and are not needed within the under-
lying architecture model. This is because once application events are dis-
patched from the synchronization layer to the architecture model, they are
safe to simulate, i.e., they cannot cause deadlocks and their dependencies
have been resolved. This scheme nicely fits our approach in which all syn-
chronization overheads are accounted for in the synchronization layer.
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VII. A case study: QR decomposition

To validate the previously presented concepts on how to model the ex-
ploitation of intra-task parallelism, we have performed a case study using
a set of application model instances of the well-understood QR decompo-
sition algorithm. These application models are the result of the Compaan
work [15] done at Leiden University. The Compaan tool is able to auto-
matically generate Kahn application models from nested loop programs
written in Matlab, which in our case is the QR decomposition algorithm.
In addition, it can perform code transformations such as loop unrolling to
increase task-level parallelism inside applications [22].

The Kahn application models generated by the Compaan tool are suit-
able for a direct implementation in hardware on an FPGA. For this purpose,
application models are translated into VHDL [11]. This gives us the unique
opportunity to validate our abstract architecture models against an actual
FPGA implementation. In the VHDL implementation of a Kahn applica-
tion model, pre-defined node components are connected in a network. This
is done according to the connections between the processes in the applica-
tion model. The node components, which represent the functional behav-
ior of the Kahn processes in the application model, are implemented in a
pipelined fashion that is similar to the one shown in Figure 5. Conceptually,
this means that each node component contains a number of read and write
units and a single execution unit. So, besides exploiting task-level paral-
lelism by the VHDL network of node components, each node component
also exploits intra-task parallelism using its internally pipelined architec-
ture.

Regarding the QR application, we studied five different instances of its
application model generated by Compaan. In each instance, the loops in the
code have been unrolled a different number of times. This loop unrolling
creates new Kahn processes, thereby increasing the task-level parallelism
available in the application [22]. In Figure 7(a), the Matlab code for the
QR decomposition algorithm – which is based on the iterative Givens Ro-
tations method – is shown. Figure 7(b) depicts the Kahn application model
Compaan generates for this Matlab code when loop unrolling is turned
off. Note that the Kahn model does contain processes for input and output
routines (e.g., X in) which were omitted in Figure 7(a). Additional infor-
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Figure 7. In (a), the Matlab code for the QR decomposition is shown,
while (b) depicts the Compaan-generated Kahn process network without
loop unrolling.

mation on the Kahn application model of the QR decomposition algorithm
can be found in [11]. For each of the application model instances, we de-
scribed the structure of the application model in YML to be able to run the
model with Sesame’s application-model execution engine. As a side-note,
it is worth mentioning that the generation of these YML descriptions of the
application model instances is performed fully automatically by means of
a visitor tool.

Our Sesame architecture model, onto which the QR application model
instances are mapped, is similar to the VHDL implementation of a Kahn
application model in the sense that it also consists of processor components
connected in a network with a topology identical to that of the application
model. Each processor component is modeled with our refined (virtual)
processor model (see Section V) and uses the pipelined architecture as
shown in Figure 5(a). Between processor components in the architecture
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model there are point-to-point FIFO channels.
Recall that the structure of Sesame’s architecture models is described

in YML. Because of YML’s built-in scripting support, this allowed us to
construct a generic reusable template for the refined (virtual) processor
model. The processor network in the architecture model is thus obtained by
repetitively instantiating this template with possibly different parameters
and linking these processor instances together according to the topology
of the application model. This topology information is derived from our
YML description of the Kahn application model.

A. Experiments

Our first experiments were performed using a Sesame synchronization
layer and architecture model with the following characteristics. The size of
the FIFO buffers is 256 elements, which guarantees deadlock-free execu-
tion of the studied application model instances [11]. The functional units
of processor components as well as the FIFO buffers are modeled as black
boxes. Read and write operations to the FIFO buffers take 3 cycles each as
specified in [11], while all execute events2 are handled in a single cycle.
The latter reflects the performance of a fully-utilized internal execution
pipeline with a single-cycle throughput. Moreover, the token channels be-
tween the functional units at the synchronization layer have single-entry
buffers. This means that the read and execution units cannot produce more
than one result before consumption, i.e., they have only limited internal
buffering.

In Figure 8(a), the performance of the FPGA implementation (modeled
in VHDL) of the five QR application instances – with loop unroll factors of
one to five – is shown. The figure also shows the performance estimates of
our black-box Sesame model for these application model instances. These
results are referred to as the base model in Figure 8. As shown in Fig-
ure 8(b), the black-box model yields an average error of 36% and a worst-
case error of 40% with respect to the performance results of the FPGA
implementation. The Sesame (base) performance estimates show the cor-
rect trend behavior but are consistently more pessimistic than those for the

2 In the QR application model, the execute events consist of vectorize and rotate operations.

18



0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5
C

yc
le

s

Unroll factor

QR decomposition

FPGA
Sesame, base

Sesame, perfect dual-ported 
Sesame, slow dual-ported

Sesame, refined dual-ported

(a)

Difference Base Dual-ported model
% model Perfect Slow Refined

FIFO FIFO FIFO

Average 36 -21 32 -3.5
Worst case 40 -22 37 -4.7

(b)

Figure 8. Validation results of our Sesame models for the QR decompo-
sition application against the results from an actual FPGA implementation.
The graph in (a) shows the (estimated) performance for five application in-
stances with different loop unroll factors. The table in (b) shows the differ-
ences (in %) between estimates from our models and the FPGA numbers.

FPGA.
According to [11], the FPGA buffer implementation is based around

a dual-ported RAM, where our base model models single-ported buffers.
This explains why the results of the base model are pessimistic. As a next
step, we ”opened up” the black-box FIFO model and adapted it to include
dual-ported behavior. To this end, we modeled three variants of dual-ported
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FIFO buffers. Two of these variants represent implementation extremes,
while the third one reflects the performance behavior of the actual FPGA
implementation. The results of these three dual-ported FIFO models are
also shown in Figure 8. The curve labeled with perfect dual-ported shows
the performance estimates when modeling the FIFO buffers as being per-
fectly dual-ported. The latter means that read and write operations on a
buffer can be performed entirely in parallel, even when the buffer is empty.
So, when receiving a read request in the empty buffer state, the read is
blocked until a write request is coming in after which the incoming (writ-
ten) data is immediately forwarded to the reading party. Consequently, both
read and write latencies are entirely overlapped.

At the other extreme, the curve labeled with slow dual-ported in Fig-
ure 8 shows the Sesame performance estimates when modeling dual-ported
FIFO buffers which are entirely sequential at the empty state. So, when re-
ceiving a read request in the empty buffer state, the read is blocked until
a write has occurred and finished writing its data into the buffer (in our
model, this takes 3 cycles).

Finally, the curve labeled with refined dual-ported, shows the Sesame
results when incorporating more detailed knowledge on the actual FPGA
buffer implementation into our model. Details on the FPGA implementa-
tion indicated that a monolithic 3-cycle read/write latency for the FIFO
buffers does not reflect the actual behavior. In reality, the throughput at
both sides of a FIFO buffer is 1 operation per 3 cycles, while the read la-
tency turned out to be only 1 cycle. In our refined dual-ported model we
have therefore split the 3-cycle delay into three 1-cycle delays and placed
them at the appropriate places according to specification of the FPGA
buffer implementation. This means that we refined the timing within our
model while keeping its abstract structure intact.

Three important conclusions can be drawn from the results in Figure 8.
First, the results reconfirm the modeling flexibility of Sesame. This is be-
cause we were able to model the three dual-ported buffer designs by chang-
ing less than ten lines in the code of the base model. Second, the results
from the ‘perfect’ and ‘slow’ models – representing the two FIFO buffer
implementation extremes – immediately indicate that the average accu-
racy of Sesame’s performance estimates must lie in the range of -21% and
+32%. In fact, our ‘refined’ model demonstrates how close our perfor-
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mance estimates can approximate reality since it yields an average error
of only 3.5% and a worst case error of 4.7%. Knowing that Sesame tar-
gets performance evaluation in an early design stage and therefore models
at a high level of abstraction, these accuracy numbers are very promising.
Third, our results indicate that the studied hardware implementations of the
QR decomposition application are highly sensitive to different FIFO buffer
designs. Since the performance estimates of the ‘perfect’ buffer model
show a speedup of 68% over the results of the ‘slow’ buffer model, the
handling of the empty state in the FIFO buffer seems to be an important
design issue.

Since Sesame targets performance evaluation in an early design stage,
where the design space that needs to be explored typically is very large, the
required modeling effort and the simulation speed of Sesame is worth not-
ing. The architecture models in this case study, including the components
in the synchronization layer, consist of less than 400 lines of Pearl code. It
takes Sesame about 16 seconds on a 333MHz Sun Ultra 10 to perform the
architecture simulation for all five application model instances in a batch.

VIII. Discussion

So far, we have assumed that in the set of functional units of a refined
(virtual) processor there is only one execution unit. Processing cores, how-
ever, might have multiple execution units that can perform computations
in parallel. We are currently investigating whether or not our dataflow ap-
proach is sufficient for dealing with dependencies between execution units.
In any case, for such inter-execution dependencies we need to extend our
dataflow scheme such that tokens are typed, like in the tagged-token model
[3]. With the typed tokens, an execution unit can differentiate between the
production of results from different execute event types. To support such
typed tokens, the bitmaps need to be extended from single-bit values to
multiple-bit values to be able to specify which token types are required for
an application event.

Moreover, we currently use static bitmaps per execute event type. We
found, however, that this causes problems when, for example, execute
events of the same type require data from different read units in different
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stages of the application model’s execution. This can be solved by dynam-
ically adding the bitmap information to the execute events in the traces.

We also intend to investigate whether (aspects from) the work from
[23] can be integrated into Sesame since their mapping approach facilitates
more easy exposure and specification of intra-task parallelism. This could
make the use of explicit bitmaps for execute events entirely redundant.

IX. Conclusions

In this paper, we presented the techniques applied by the Sesame mod-
eling and simulation environment to model intra-task parallelism exploited
at the architecture level for task-parallel applications. To this end, our pro-
cessor models are refined to the level of functional units which can operate
in parallel and which are synchronized to resolve dependencies by means
of a dataflow mechanism. Using a case study, in which we were able to
compare our simulation results with the results from an actual FPGA im-
plementation, we demonstrated that our modeling methodology is flexible
and shows good accuracy.
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