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Abstract— High-level performance modeling and simulation
have become a key ingredient of system-level design as they
facilitate early architectural design space exploration. An impor-
tant precondition for such high-level modeling and simulation
methods is that they should yield trustworthy performance
estimations. This requires validation (if possible) and calibration
of the simulation models, which are two aspects that have not yet
been widely addressed in the system-level community. This paper
presents an initial attempt to provide support for calibrating
various model components of a system-level performance model.
We discuss these model calibration mechanisms in the context of
our Sesame system-level simulation framework. An illustrative
case study will also be presented to indicate the merits of model
calibration.

I. INTRODUCTION

The increasing complexity of modern embedded systems

has led to the emergence of system-level design [1]. A key

ingredient of system-level design is the notion of high-level

modeling and simulation in which the models allow for captur-

ing the behavior of system components and their interactions

at a high level of abstraction. As these high-level models

minimize the modeling effort and are optimized for execution

speed, they can be applied at the very early design stages to

perform, for example, architectural design space exploration.

Such early design space exploration is of eminent importance

as early design choices heavily influence the success or failure

of the final product.

A fair number of promising system-level simulation-based

exploration environments have been proposed in recent years,

such as (Metro)Polis [2], [3], MESH [4], Milan [5], Sesame

[6], [7], and various SystemC-based environments (e.g., [8]).

These environments typically facilitate efficient and flexible

performance evaluation of embedded systems architectures.

However, in the system-level performance modeling domain,

two important and closely related aspects, namely model

validation and model calibration have received relatively little

attention. Figure 1 depicts a conceptual view of these two

aspects in relation to a simulation (performance) model. Model

validation refers to the testing of the extent to which the

model’s performance estimates reflect the actual behavior.

Model calibration entails the fine-tuning of the model pa-

rameters such that the model’s performance predictions more

accurately reflect the actual behavior. Both model validation

and calibration require (detailed) reference information about

the system under study and its performance behavior, which

may originate from datasheets (or other forms of detailed

documentation), low(er)-level simulators, or actual (prototype)

implementations of the system. In addition, model calibration

may also use validation results if available. Since the sources

of (detailed) reference information usually are not abundant

during the early design stages, validation and calibration

of system-level performance models remains an open and

challenging problem.

In this paper, we address the calibration of system-level

performance models. More specifically, we discuss model

calibration in the context of our Sesame simulation framework

[6], [7]. Sesame aims at efficient system-level performance

analysis and design space exploration of embedded multimedia

systems. It allows for rapid evaluation of different architec-

ture designs, application to architecture mappings, and hard-

ware/software partitionings. Moreover, it does so at multiple

levels of abstraction and for a wide range of multimedia and

signal processing applications.

We will present an initial attempt to provide support for

calibrating the model components in Sesame’s system-level

architecture models. To this end, we use ISS-based mecha-

nisms for calibrating programmable model components and

an automated component synthesis approach to calibrate ded-

icated model components. We will also illustrate a case of

model component calibration using a Motion-JPEG encoder

application.

The remainder of this paper is organized as follows. In the

next section, we briefly introduce the Sesame system-level

simulation framework. Section III provides an overview of the

mechanisms used for calibrating Sesame’s architecture model
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Fig. 1. Validation and calibration of architectural simulation models.



components. In Section IV, we present an experiment with a

Motion-JPEG encoder illustrating model calibration, and also

provide some validation results. Section V discusses related

work. Finally, Section VI concludes the paper and discusses

future work.

II. THE SESAME ENVIRONMENT

The Sesame modeling and simulation environment [6], [7]

facilitates performance analysis of embedded (media) systems

architectures according to the Y-chart design approach [9],

[2]. This means that Sesame recognizes separate application

and architecture models, where an application model describes

the functional behavior of an application and the architecture

model defines architecture resources and captures their per-

formance constraints. After explicitly mapping an application

model onto an architecture model, they are co-simulated via

trace-driven simulation. This allows for evaluation of the sys-

tem performance of a particular application, mapping, and un-

derlying architecture. Essential in this methodology is that an

application model is independent from architectural specifics,

assumptions on hardware/software partitioning, and timing

characteristics. As a result, a single application model can be

used to exercise different hardware/software partitionings and

can be mapped onto a range of architecture models, possibly

representing different architecture designs or modeling the

same architecture design at various levels of abstraction. The

layered infrastructure of Sesame is shown in Figure 2.

For application modeling, Sesame uses the Kahn Process

Network (KPN) model of computation [10]. This implies

that applications are structured as a network of concurrent

communicating1 processes, thereby expressing the inherent

task-level parallelism available in the application and making

communication explicit. The Kahn application models, which

are implemented in C++, are either derived by hand (e.g. from

existing sequential code) or are generated by a tool called

Compaan [11], [12] (which will be discussed later on).

The computational behavior of an application is captured

by instrumenting the code of each Kahn process with anno-

tations that describe the application’s computational actions.

The reading from and writing to Kahn channels represent

the communication behavior of a process within the appli-

cation model. By executing the Kahn model, each process

records its computational and communication actions in order

to generate its own trace of application events, which is

necessary for driving an architecture model. These application

events typically are coarse grained, such as Execute(DCT) or

Read(channel id,pixel-block).

An architecture model simulates the performance conse-

quences of the computation and communication events gen-

erated by an application model. It solely accounts for archi-

tectural (performance) constraints and does not need to model

functional behavior. This is possible because the functional

behavior is already captured in the application model, which

1In the Kahn paradigm, processes communicate via unbounded FIFO
channels. Reading from these channels is done in a blocking manner, while
writing is non-blocking.
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Fig. 2. Sesame’s application model layer, architecture model layer, and
mapping layer which interfaces between application and architecture models.

subsequently drives the architecture simulation. To model the

timing consequences of application events, each architecture

model component is parameterized with a table of opera-

tion latencies (illustrated for Processor 1 in Figure 2). The

table entries could, for example, specify the latency of an

Execute(DCT) event, or the latency of a memory access in the

case of a memory component. This trace-driven simulation

approach allows to, for example, quickly assess different

HW/SW partitionings by simply experimenting with the la-

tency parameters of processing components in the architecture

model (i.e., a low latency for a computational action refers to

a HW implementation while a high latency mimics a SW im-

plementation). Sesame’s architecture models are implemented

in SystemC or Pearl [6]. The latter is a small but powerful

discrete-event simulation language providing easy construction

of high-level architecture models and fast simulation.

To interface between application and architecture models,

Sesame features an intermediate mapping layer. This layer,

which is automatically generated, consists of virtual processor

components and FIFO buffers for communication between the

virtual processors. There is a one-to-one relationship between,

on one hand, the Kahn processes and channels in the applica-

tion model and, on the other hand, the virtual processors and

buffers in the mapping layer. But unlike the Kahn channels,

the buffers in the mapping layer are limited in size, and their

size is dependent on the modeled architecture. The mapping

layer has three purposes [7]. First, it controls the mapping

of Kahn processes (i.e. their event traces) onto architecture

model components by dispatching application events to the

correct architecture model component. The mapping also

includes the mapping of buffers in the mapping layer onto

communication resources in the architecture model. Second,

the event dispatch mechanism in the mapping layer guarantees

that no communication deadlocks occur in the case multiple
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Fig. 3. Calibration of programmable model components. (a) Off-line calibration, and (b) on-line calibration (also referred to as trace calibration).

application tasks (i.e., multiple event traces) are mapped onto a

single architecture model component. In that case, the dispatch

mechanism also provides various application event scheduling

strategies. Finally, the mapping layer is capable of dynamically

transforming application events into (lower-level) architecture

events in order to facilitate flexible refinement of architecture

models [13], [7]. For a more detailed overview of Sesame, we

refer the reader to [7].

III. MODEL CALIBRATION

Calibration (and validation) of Sesame’s system-level ar-

chitecture models plays a continuous and ever-returning role.

The following questions should be asked by the designer

repeatedly:

• ”Are the values specified in the operation latency tables

of Sesame’s architecture model components reflecting

realistic performance behavior?”, and

• ”Is the constellation of model components – constituting

the system-level model – adequately reflecting the actual

system behavior?”.

Calibration of a system-level architecture model as a whole,

i.e. answering the second question, is often not feasible since a

more detailed reference system model/implementation is usu-

ally not available during the early stages of design. Therefore,

we focus on the first question in this paper. Or, in other words,

in the remainder of this section we will address a number of

mechanisms for calibrating the performance parameters (i.e.,

the operation latency tables) of separate model components

in Sesame’s system-level architecture models. These mech-

anisms can be classified into those used for the calibration

of programmable model components and those to calibrate

dedicated model components. Calibration of communication

or memory model components will not be addressed in this

paper.

A. Calibration of programmable model components

To calibrate a Sesame architecture model component such

that it adequately mimics the performance of a programmable

processor (e.g., a general purpose processor core, DSP, etc.),

one could of course use documented performance behavior

of the processor or real performance measurements on the

processor, if these are available. In addition, Sesame also

provides explicit support for calibrating programmable model

components. More specifically, Sesame allows for both off-

line and on-line calibration of model components using an

Instruction Set Simulator (ISS). Both types of calibration are

illustrated in Figure 3, which is based on a more abstract

representation of Figure 2. Currently, Sesame only supports

the SimpleScalar ISS2 [14] for calibration purposes, but other

ISSs could also be added with relative ease.

In off-line model calibration, the ISS is used to statically

(i.e., before system-level simulation) calibrate the values in

an operation latency table according to code-fragment per-

formance measurements on the ISS. To explain this in more

detail, consider Figure 3(a). In this example, we assume that

model component p2 – onto which application process B is

mapped (see Figure 2) – needs to be calibrated using the ISS.

This means that the code of Kahn application process B is

cross-compiled for the ISS (indicated by B’ in Figure 3(a)).

The cross-compiled code is further instrumented such that it

measures the performance of the code fragments that relate

to the computational application events generated by the

application process. For example, if process B can generate

an execute(DCT) event, then the performance of the code

in process B that is responsible for the DCT calculation is

measured. To this end, we instrument the code at assembly

level (currently done manually) to indicate where to start

and stop the timing of code fragments. In the case of the

2We use SimpleScalar’s detailed micro-architectural sim-outorder simu-
lator.



SimpleScalar ISS, we use its annote instruction field for this

purpose.

To perform the actual code fragment timings for application

process B, the code of this process is executed both in the Kahn

application model and on the ISS (the cross-compiled B’). This

allows us to keep the application model to a large extent un-

altered, where B’ runs as a ”shadow process” of B to perform

code fragment measurements. The two executions of B are

synchronized by means of data exchanges – implemented with

an underlying IPC mechanism – which are needed to provide

B’ (on the ISS) with the correct application input-data. These

data exchanges only occur when the Kahn application process

taking part in the calibration (process B in our example)

performs communication. For example, when Kahn process

B reads data from its input channel, it forwards the data to

process B’ on the ISS, i.e., process B’ reads and writes its

data from/to process B instead of a Kahn channel3. During

execution, the ISS keeps track of the code fragment timings,

which are average timings over multiple invocations of a code

fragment. The resulting average timings are then used for

(manually) calibrating the latency values of the architecture

model component in question (in this case p2).

In on-line model calibration, which is illustrated in Fig-

ure 3(b), the ISS is incorporated into the system-level simu-

lation to dynamically ”calibrate an application event trace”

destined for the architecture model. This technique, which

we also refer to as trace calibration, essentially yields a

mixed-level co-simulation of high-level Sesame architecture

model components and one or more low(er)-level ISSs [15].

Rather than using fixed values in the latency tables of model

components, on-line calibration dynamically computes the

latencies of computational tasks using the ISS. In the example

of Figure 3(b), the code from application process B is again

executed both in the Kahn application model and on the

ISS, like is done in off-line calibration. The ISS measures

the cycle count of any computational task in between the

Kahn communications in process B. Subsequently, instead of

generating fixed computational execution events, like Exe-

cute(DCT), application process B now generates Execute(∆)

events, where ∆ equals to the actual measured number of

cycles taken by, for example, a DCT computation (or any other

computation in between communications). More details about

the co-simulation technique behind on-line calibration, which

also allows for easy and transparent distributed simulation of

the different simulators that take part in the co-simulation, can

be found in [15].

B. Calibration of dedicated model components

To calibrate model components that mimic the performance

behavior of a dedicated implementation of a certain task,

Sesame exploits a tool-set that has been developed at Leiden

University. This tool-set, consisting of the Compaan [11],

[12] and Laura [16], [12] tools, is capable of transforming a

3Actually, the mechanism allows to entirely discard the computational
functionality in Kahn process B as this is also simulated by process B’ on
the ISS. In that case, Kahn process B only performs the data exchanges.
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sequential application specification into a parallel application

specification (a KPN to be more specific), and subsequently

allows for producing synthesizable VHDL code that imple-

ments the application specified by the KPN for a specific

FPGA platform.

Figure 4 illustrates how the Compaan and Laura tools can be

applied for the purpose of model calibration. Let us assume

that model component p3 is a dedicated implementation of

application process C. To calibrate this model component, the

(sequential) code from application process C is first converted

into a parallel KPN using the Compaan tool. By means of

automated source-level transformations, Compaan is able to

produce different input-output equivalent KPNs [17], in which

for example the degree of parallelism can be varied. Since

the different KPNs lead to different hardware implementations

in the end, the transformations provided by Compaan are

a mechanism to control the synthesis process. Using the

Laura tool, a Compaan-generated KPN can subsequently be

synthesized to VHDL code which can then be mapped (using

regular commercial tools) onto an FPGA(-based) platform. As

will be shown in the next section, one of the reconfigurable

platforms that Laura uses as a mapping target is the Molen

platform [18].

This automated synthesis trajectory for specific application

tasks can be traversed in the order of minutes. Actually, the

place & route onto the FPGA platform is currently the limiting

stage in the trajectory. Evidently, such synthesis results can

be used to calibrate the performance parameters of Sesame’s

model components that represent dedicated hardware blocks.

In the next section, this will be illustrated using a case study

with a Motion-JPEG encoder application.

IV. EXPERIMENTS

In this section, we present an experiment that illustrates how

model calibration can be performed using the Compaan/Laura

tool-set [11], [12], [16]. To this end, we modeled a Motion-

JPEG (M-JPEG) encoder application and selected the DCT

task from this application to be used for model calibration.
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In other words, the DCT is assumed to be implemented as

a dedicated hardware block, and Sesame’s model component

accounting for the DCT’s performance behavior needs to be

calibrated accordingly. This implies that the DCT task is taken

”all the way down” to a hardware implementation to gain

more insight in its low-level performance aspects. To do so,

the following steps were taken4, which are integrally shown

in Figure 5. The DCT was first isolated from the M-JPEG

code and used as input to the Compaan tool. Subsequently,

Compaan generated a KPN application specification for the

DCT task. This DCT KPN is internally specified at pixel level

but has in- and output tasks that operate at the level of pixel

blocks because the original M-JPEG application specification

also operates at this pixel-block level.

Using the Laura tool, the KPN for the DCT task was con-

verted into a VHDL implementation, in which for example the

2D-DCT component is implemented as a 92-stage pipelined IP

block. This implementation can subsequently be mapped onto

an FPGA platform. In this example, the DCT implementation

was mapped onto the Molen reconfigurable platform [18]. The

Molen platform connects a programmable processor (depicted

as Core Processor in Figure 5) with a reconfigurable processor

(which is based on FPGA technology). It uses microcode

to incorporate architectural support for the reconfigurable

processor (i.e., to control the reconfiguration and execution).

By mapping the Laura-generated DCT implementation on

Molen’s reconfigurable processor and mapping the remainder

of the M-JPEG code onto Molen’s core processor, we can

4The actual mapping of M-JPEG onto the Molen reconfigurable platform,
using the Compaan and Laura tool-set, was done by colleagues of ours at
Leiden University and Delft University of Technology. See the Credits section.

study the hardware DCT implementation, for the purpose of

model calibration, in the context of the M-JPEG application.

For the Sesame system-level simulation part of the experi-

ment, we decided to model the Molen reconfigurable platform

architecture itself. This gives us the opportunity to actually

validate our performance estimations against the real numbers

from the implementation. The resulting system-level Molen

model contains two processing components (Molen’s core

and reconfigurable processors) which are bi-directionally con-

nected using two uni-directional FIFO buffers. Like in the real

Laura→Molen mapping, we mapped the DCT Kahn process

from our M-JPEG application model onto the reconfigurable

processor in the architecture model, whereas the remaining

Kahn processes were mapped onto the core processor compo-

nent.

The reconfigurable processor component in our architecture

model was also refined – using our dataflow-based architecture

model refinement methodology as discussed in [13], [7] –

such that it models the pixel-level pipelined DCT from the

Compaan/Laura implementation. Here, we used low-level in-

formation – such as pipeline depth of the Preshift and 2D-DCT

units, latencies for reading/writing a pixel from/to a buffer

and so on – from the Compaan/Laura/Molen implementation

to calibrate the reconfigurable processor component in our

system-level model. The core processor component in the

architecture model was not refined, implying that it operates

(i.e., models timing consequences) at the same (pixel-block)

level as the application events it receives from the application

model. The performance parameters of this model component

have been calibrated using several simple timing experiments

performed on Molen’s core processor. Here, we would like

to note that the resulting system-level architecture model is

mixed-level since the reconfigurable processor component is

modeled at a lower level of abstraction (i.e., it has been refined

to account for the pipelined DCT implementation) than the

core processor component.

To check whether or not the resulting model, which was

calibrated at model component level, produces accurate per-

formance estimates at the system level, we compared the

performance of the M-JPEG encoder application executed on

the real Molen platform with the results from our system-

level performance model. Table I shows the validation results

for a sequence of sample input frames. The results from

Table I include both the cases in which all application tasks are

performed in software (i.e., they are mapped onto Molen’s core

processor) and in which the DCT task is mapped onto Molen’s

TABLE I

VALIDATION RESULTS OF THE M-JPEG EXPERIMENT.

Real Molen Sesame simulation Error
(cycles) (cycles) (%)

Full SW
implementation 84581250 85024000 0.5

DCT mapped onto
reconf. processor 39369970 40107869 1.9



reconfigurable processor. Here, we would like to stress that we

did not perform any tuning of our system-level model with

Molen’s M-JPEG execution results (i.e., we did not perform

multiple validation↔calibration iterations, see Figure 1). The

results from Table I clearly indicate that Sesame’s system-

level performance estimations are, with the help of model

calibration, quite accurate.

V. RELATED WORK

Model calibration is a well-known and widely-used tech-

nique in many modeling and simulation domains. In the

computer engineering domain, the calibration of performance

models is mostly applied in cycle-accurate modeling of system

components like processor simulators (e.g., [19], [20]). So far,

the calibration of high-level performance models that aim at

(early) system-level design space exploration has not been

widely addressed yet. The work in [5] proposes a so-called

vertical simulation approach that shows some similarities with

our calibration approach. It is unclear, however, whether or not

vertical simulation has ever been realized. In [21], a high-level

communication model is discussed which is calibrated using

a cycle-true simulator.

The back annotation technique is closely related to model

calibration. In back annotation, performance latencies mea-

sured by a low-level simulator are back annotated in a higher-

level model. For example, an un-timed behavioral model could

be back annotated such that it tracks timing information for

a specific implementation. So, rather than calibrating a fixed

set of performance model parameters, back annotation adds

architecture-specific timing behavior (usually by means of

code instrumentation) to a higher-level model. Back annotation

is a widely-used technique for (high-level) performance mod-

eling of software [22]. In the context of system-level modeling,

various research efforts (e.g., [23], [24], [25]) also refer to back

annotation as a technique for adding more detailed timing

information to higher-level models in the case lower-level

models are available. But these efforts generally do not provide

insight of how back annotation is applied during the early

stages of design where lower-level models typically are not

abundant. In a way, our calibration methods can be considered

as a form of back annotating the latency tables in Sesame’s

architecture models using results from ISS simulation and/or

automated component synthesis.

VI. CONCLUSIONS

High-level performance modeling and simulation has be-

come a key component in system-level design. Although many

promising system-level modeling and simulation frameworks

have been proposed, the aspects of model validation and

calibration have not yet been widely addressed in this domain.

This paper presented the mechanisms currently available in our

Sesame simulation framework for the calibration of its system-

level performance models. These mechanisms can be classified

into ISS-based calibration for calibrating programmable model

components, and synthesis-based calibration (exploiting an

external synthesis tool-flow) for calibrating dedicated model

components. To show the merits of model calibration, we also

presented an illustrative case study with a Motion-JPEG en-

coder application. Currently, we are performing additional case

studies, which include ISS-based calibration, to evaluate our

model calibration mechanisms. Also, we intend to incorporate

more types of lower-level models for model calibration in

Sesame. These also include, for example, low(er)-level models

for the calibration of Sesame’s high-level interconnection

network models.
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