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Abstract. Design space exploration plays an essential role in the system-level
design of embedded systems. It is imperative therefore to have efficient and ef-
fective exploration tools in the early stages of design, where the design space is
largest. System-level simulation frameworks that aim for early design space ex-
ploration create large volumes of simulation data in exploring alternative archi-
tectural solutions. Interpreting and drawing conclusions from these copious sim-
ulation results can be extremely cumbersome. In other domains that also struggle
with interpreting large volumes of data, such as scientific computing, data visu-
alization is an invaluable tool. Such visualization is often domain specific and
has not become widely used in evaluating the results of computer architecture
simulations. Surprisingly little research has been undertaken in the dynamic use
of visualization to guide architectural design space exploration. In this paper, we
plead for the study and development of generic methods and techniques for run-
time visualization of system-level computer architecture simulations. We further
explain that these techniques must be scalable and interactive, allowing designers
to better explore complex (embedded system) architectures.

1 Introduction

Chip technology continues to advance along the path predicted by Moore without any
saturation in the exponential growth of transistor density foreseen within the next five
years [1]. This growth is required to satisfy the demands of many diverse computer ap-
plications and has resulted in a steady increase in the complexity of today’s computer
architectures. A noticeable trend illustrating this increase in complexity is the move
towards architectures that exploit parallelism at multiple levels of granularity (e.g. bit-
level, instruction-level, and task-level) by partitioning the system into a multitude of
specialized resources supporting a given level of parallelism. In the embedded systems
domain, this trend is also clearly noticeable with the emergence of Systems on a Chip
(SoCs) – or rather Multi-Processor SoCs (MPSoCs) – that can integrate an entire par-
allel system onto a single chip and start to play a vital role in the embedded systems
market. The complexity of these MPSoCs is aggravated by the fact that – besides of-
fering parallel computing resources – they often have a heterogeneous architecture,
consisting of components that range from fully programmable processor cores to fully
dedicated hardware blocks. Programmable processor technology is used for realizing



flexibility, for example to support multiple applications and future extensions, while
dedicated hardware is used to optimize designs in time-critical areas and for power
and cost minimization. Because of the complexity of these MPSoC architectures, it is
crucial to have good tools for exploring design decisions during the early stages of de-
sign. In recent years, much work has been undertaken in design space exploration and
this paper explores an area that promises to increase the productivity of designers still
further.

System-level simulation frameworks that aim for early design space exploration
can create large volumes of simulation data in exploring alternative architectural solu-
tions. Interpreting and drawing conclusions from these copious simulation results can
be extremely cumbersome. In other domains that also struggle with interpreting large
volumes of data, such as scientific computing, data visualization is an invaluable tool.
Such visualization is often domain specific and has, surprisingly enough, not become
widely used in evaluating the results of computer architecture simulations. Here, results
are usually still presented graphically as a post-mortem but very little research has been
undertaken in the dynamic use of visualization to guide design-space explorations. In
this paper, we advocate the study and development of generic methods and techniques
for run-time visualization of system-level computer architecture simulations. Specifi-
cally, we focus on those simulations that target architectural design space exploration.
We explain that the visualization techniques must be scalable and interactive, allowing
designers to better explore complex architectures that may be heterogeneous in nature
and may exploit various levels of concurrency. To summarize, rather than presenting
concrete research results, this paper tries to identify a challenging new research area.

The remainder of the paper is organized as follows. The next section provides an
introductionary overview of the field of system-level design space exploration. In Sec-
tion 3, we observe that hardly any research is performed on run-time visualization for
architecture simulations, and that this is especially true from the perspective of design
space exploration. In Section 4, we therefore plead for visualization-integrated design
space exploration, in which generality, scalability, and interactiveness are key ingredi-
ents. Finally, Section 5 concludes the paper.

2 System-level Design Space Exploration

The sheer complexity of modern (embedded) computer architectures forces designers
to start with modeling and simulating system components and their interactions in the
very early design stages. This is an important ingredient of system-level design [2, 3].
System-level models typically represent workload behavior, architecture characteristics,
and the relation (e.g., mapping, hardware-software partitioning) between workload(s)
and architecture. These models are deployed at a high level of abstraction, thereby min-
imizing the modeling effort and optimizing the simulation speed required to explore
large parts of the design space. This high-level modeling allows for the early verifica-
tion of a design and can provide estimates of the performance, power consumption and
cost of a design.

Design space exploration (DSE) plays a crucial role in system-level architecture
design. It is imperative therefore, to have good evaluation tools for efficiently explor-



ing different design choices during the early design stages, where the design space is
largest. Consequently, considerable research effort has been spent in the last decade on
developing frameworks for system-level modeling and simulation that aim for early ar-
chitectural exploration. Examples are Metropolis [4], MESH [5], Milan [6], Artemis [7,
8] and various SystemC-based [9] environments such as the work of [10]. This research
has produced significant results in various disciplines of system-level modeling and
simulation. With respect to application modeling, or workload modeling, much work
has been performed in the area of models of computation (e.g.,[11–14]). System-level
modeling and simulation of architectures and their performance constraints has been
addressed by a large number of research groups (e.g., [4, 8, 15, 6, 16]). In many of these
efforts, transaction-level models [17] are applied in which transactions between archi-
tecture components are modeled by atomic transfers of high-level data and/or control.
Various research groups also recognize an explicit mapping step between application
(workload) models and architecture models and subsequently proposed different map-
ping mechanisms (e.g., [8, 18, 4]).

Research on the refinement of (abstract) system-level architecture performance mod-
els to gradually disclose more implementation details is gaining interest but is still in
its infancy. There are several attempts being made to address this issue, such as in the
Metropolis [19], Artemis [8], and Milan frameworks [6], the work of [20], and in the
context of SystemC (e.g., [10]). In [20], for example, a methodology is proposed in
which architecture-independent specification models are transformed (i.e., refined) into
architecture models to facilitate architectural exploration. The majority of the work in
this field, however, focuses on communication refinement only (e.g., [21–23]).

Finally, different methods have been proposed for helping designers to quickly find
good candidate architectures that can subsequently be further evaluated and explored by
means of simulation. These methods usually apply multi-objective optimization tech-
niques (e.g., [24–27]), or in the case of [6], symbolic analysis.

3 Visualization, or the lack of it

System-level simulations may exhibit vast amounts of simulation data on various char-
acteristics (validity, performance, power consumption, reliability, etc.) for the archi-
tecture(s) under investigation. As mentioned before, interpreting and drawing the right
conclusions from such copious simulation results may be extremely cumbersome. Be-
cause of exactly this reason, other domains that also struggle with interpreting massive
amounts of data (or code), such as scientific computing, have embraced data (code)
visualization (both at run-time and post-mortem) as a real aid for analysis and interpre-
tation. As a result, visualization has become a research field in its own right in these
domains. The same is not yet generally true for the computer architecture domain. Run-
time visualization can, however, be extremely helpful to a system designer in identifying
or analyzing dynamic effects that may occur during simulation and which may affect
static performance but which cannot be analyzed at post-mortem. Here, one can think
of, for example, synchronizations, cache behavior and coherency traffic in MPSoCs, or
network contention and congestion in Network-on-Chip [28] based MPSoCs. To briefly
illustrate the usefulness of run-time visualizations in the context of computer architec-
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Fig. 1. XY and Graphical routing in torus and mesh networks

ture simulation, Figure 1 shows a case study from some early visualization work by our
group [29]. The pictures show visualizations of network simulations for eight different
network configurations, i.e., for two types of networks (7 � 7 torus and mesh networks),
two types of routing mechanisms (XY routing based on dimension ordering and Graph-
ical routing based on Bresenham’s line-drawing algorithm), and two network loads (a
uniform network load (= 0% hotspot) and a network load in which 20% of the traffic is
directed towards a hotspot in the middle of the network). The darker cells in Figure 1
indicate a higher network contention. The visualizations show at a glance the differ-
ent behaviors of, for example, the two routing mechanisms. While Graphical routing
performs well in a torus, it clearly suffers from problems in a mesh network.

Despite the clear benefits, very little research is being conducted into generic meth-
ods and techniques for run-time visualization of (system-level) computer architecture
simulations. Even more so, research on run-time visualization support to aid the DSE
process is basically non-existing. Existing visualization work in the context of computer
architecture simulation mainly focuses on visualization technology for educational pur-
poses (e.g., [30, 31]), tightly couples visualization to one particular, often lower than
system-level, architecture simulation environment (e.g., [32–34]), or only provides sup-
port for post-mortem visualization of simulation results (e.g., [35, 36]). To the best of
our knowledge, only the recent research efforts of [37, 38] and especially [39] target
generic visualization support in the domain of computer systems’ analysis. Although
the work of [37, 38] provides generic visualization support, it does so for a wide range
of computer system related information which may not necessarily be applicable to
computer architecture simulation, with its own domain specific requirements. Here, the
data is generated dynamically and the goals are normally to refine a design space with
minimum computer resources and elapsed time.
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Fig. 2. Evaluation criteria for visualization methods for DSE.

The Vista work from [39] aims at generic support for visualization of computer
architecture simulations, but it does not target system-level simulation of systems that
may comprise a large number of architectural components. As will be pointed out in the
next section, this will have impact on the scalability requirements of the visualization. In
addition, none of the above research efforts addresses the needs for visualization from
the perspective of DSE, in which different trade-offs regarding, for example, perfor-
mance, power, area, etc., need to be studied. Finally, the aforementioned visualization
efforts do not provide the level of interactivity that is desired for effective DSE. In this
respect, we envision a visualization-integrated DSE process in which the designer is
allowed to provide (interactive) feedback to the simulation environment in order to ac-
tively explore and investigate the simulation results, or even to steer the simulation (as
will be discussed later on). We believe that such visualization-integrated DSE is critical
for improving the effectiveness of (future) system-level DSE approaches, which will
eventually lead to reductions of design times.

4 Visualization-integrated DSE

We plead for the development of generic methods and techniques to provide scalable
and interactive run-time visualization of system-level computer architecture simula-
tions for DSE. This section will shed some light on what we exactly mean with each
of these requirements – generality, scalability, and interactiveness – for the run-time
visualization methods. More specifically, we propose to evaluate visualization methods
for DSE according to three quantifiable criteria, illustrated as three separate dimensions
in Figure 2. Two of these dimensions relate to scalability, while the third refers to in-
teractiveness. The aforementioned requirement of generality can be seen as a fourth
criterion, but this one is less easy to quantify.

4.1 Generic visualization support

To optimize re-use of visualization building blocks, it must be identified what types of
generic visualization building blocks are required to compose run-time visualizations
for a wide range of computer architecture simulations. Because characteristics other



than just performance, like power consumption and even cost, also are major design
goals in the embedded computing domain, it should be taken into account that a visual-
ization can be applied to different dimensions of the data produced. That is, visualiza-
tion building blocks must allow for effective employment in the context of performance
analysis, the analysis of power consumption, etc. The choice of visualization building
blocks is also influenced by the type of data values to be visualized. In this respect,
a simple classification of two types of values can be made [29]: snapshot values that
relate to a particular moment in simulation time (e.g., the signaling of a cache hit/miss)
and integrated values that relate to the simulation over some time interval (e.g., the
cache hitrate). In many occasions, a designer will be interested in, for example, per-
formance behavior over some period of time. This may therefore require that snapshot
values from the simulator are first transformed into integrated values before visualizing
them. This can be established by defining a number a basic transformations on (raw)
data values. Examples of such transformation are smooth (smooth a value by calculating
the weighted average of the old smoothed value and the current value), history (keep
a history of value samples), and average (calculate the average of a history of value
samples). Flexible support for composing a wide range of such transformations on data
before they are visualized, is therefore needed.

Furthermore, an efficient and effective mechanism, including a generic API defini-
tion, is needed that allows the placing of probes in an architecture simulator to capture
the events or variables that need to be visualized. The probing mechanism should min-
imize intrusion and pollution of the target architecture simulation code. This could be
achieved by devising a descriptive language with which a designer can describe how
the events/variables captured from a simulator need to be transformed (applying the
aforementioned transformations) and visualized (the type of visual used). We believe
that an XML-based language may be a good candidate for such visualization descrip-
tions since XML is already used extensively to describe the structure of (system-level)
models [40, 41]. By applying visualization descriptions, we establish a strict decoupling
of the visualization and the simulator code, which minimizes intrusion and pollution of
simulator code and maximizes the potentials for re-use of the composed visualizations.
The latter includes both re-use within a single simulation environment as well as shar-
ing visualization components between different simulation environments. This should
considerably improve the current situation in which designers typically need to develop
their own proprietary visualization support.

4.2 Scalable visualization

In the envisioned run-time visualization technology, the visualizations should be highly
scalable, both horizontally and vertically (see also Figure 2). By horizontal scalability
we mean that the visualization methods and techniques should be capable of visual-
izing simulations of architectures with possibly very large numbers of computational
elements, memory and communication components (assuming that sufficient computa-
tional resources are provided to perform the visualization). This is an important criterion
since future MPSoCs may scale up to systems that integrate hundreds to thousands of
processing elements.
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Fig. 3. Two types of steering in interactive visualization for DSE: (a) starting (and stopping)
instances of an architectural simulation with different parameters, and (b) run-time manipulation
of simulation parameters.

With vertical scalability, we refer to the capability of visualizing computer archi-
tecture simulations at multiple levels of abstraction. This is analogous to the gradual
refinement of system-level architecture simulation models to exhibit more implemen-
tation details. It should, for example, be possible for visualizations to follow a similar
refinement trajectory, i.e., gradually showing more detailed information. Therefore, it
needs to be investigated whether or not such refinements can be formalized in transfor-
mations that move the visualization perspective through different levels of abstraction.

4.3 Interactive visualization

Since the objective is support for DSE, the envisioned visualization technology should
not be restricted to a one-way flow of information, namely from simulation to visual-
ization. Rather, the designer should be able to provide interactive feedback to the visu-
alization environment, thereby allowing the designer to actively explore and investigate
the simulation results and maybe even steer the simulation. In our view, three different
types of interactive feedback can be provided by a designer. First, a designer can change
the view of a visualization. This might be done by changing the way data is visualized
but retaining the same abstraction level, or by changing the level of abstraction in a
visualization (as discussed in the above).

The two remaining types of feedback both deal with steering the simulations. This
steering is based on the idea of computational steering [42, 43] that is commonly ap-
plied in the field of scientific computing. In the second type of feedback, simulations
can be steered – or orchestrated – by interactively starting up (and stopping) parallel
instances of a simulation with different parameters, according to the findings of the de-
signer. With the proper support for visualization, these parallel instances of a simulation
and, in particular, the differences between them, aid the architect in the DSE process.
This steering mechanism is illustrated in Figure 3(a).

The third type of feedback, which is illustrated in Figure 3(b), comprises the steer-
ing of a simulation by changing its parameters at run-time. For (relatively) long-running
simulations, it may be too time-consuming to start up a new simulation with different



parameters to reach a certain interesting point in execution again. Therefore, the poten-
tials for manipulating a running architectural simulation (changing its parameters) also
need to be investigated.

Finally, we would like to mention that both forms of interactive steering are orthog-
onal. So, they can complement each other in order to improve the process of DSE even
further.

5 Conclusions

In this paper, we advocated the development of generic methods and techniques for
run-time visualization of system-level computer architecture simulations. More specif-
ically, we argued that especially visualization support to aid the process of architectural
design space exploration deserves more attention. It was also explained that general-
ity, scalability, and interactiveness are key ingredients in our envisioned visualization
technology. Eventually, the proposed visualization-integrated design space exploration
should lead to reductions in design times, and hopefully result in better designs. Of
course, a logical next step is to give the ideas presented in this paper a more concrete
form.
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