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Abstract. Modern signal processing and multimedia embedded systems increas-
ingly have heterogeneous system architectures. In these systems, programmable
processors provide flexibility to support multiple applications, while dedicated
hardware blocks provide high performance for time-critical application tasks. The
heterogeneity of these embedded systems and the varying demands of their grow-
ing number of target applications greatly complicate the system design.
As part of the Artemis project, we are developing a modeling and simulation
environment which aims at efficient design space exploration of heterogeneous
embedded systems architectures. In this paper, we present an overview of the
modeling and simulation methodology used in Artemis. Moreover, using a case
study in which we have applied an initial version of our prototype modeling and
simulation environment to an M-JPEG encoding application, we illustrate the
ease with which alternative candidate architectures can be modeled and evaluated.

1 Introduction

Modern embedded systems, like those for media and signal processing, increasingly
need to be multifunctional and must support multiple standards. A high degree of pro-
grammability, which can be provided by applying microprocessor technology as well
as reconfigurable hardware, is key to the development of such advanced embedded sys-
tems. However, performance requirements and constraints on cost and power consump-
tion still require substantial parts of these systems to be implemented in dedicated hard-
ware blocks. As a result, modern embedded systems often have a heterogeneous system
architecture, i.e., they consist of components in the range from fully programmable pro-
cessor cores to dedicated hardware components for the time-critical application tasks.
Increasingly, such heterogeneous systems are integrated on a single chip. This yields
heterogeneous multi-processor systems-on-a-chip (SoCs) that exploit task-level paral-
lelism in applications.

For these modern embedded systems, it becomes more and more important to have
good tools available for exploring different design choices at an early stage in the de-
sign. This is because the heterogeneity of the embedded systems and the varying de-
mands of their target applications greatly complicate the system design, which already
affects the very first design decisions. Common simulation practice for the design space
exploration of heterogeneous embedded systems architectures is unable to cope with



this increase in complexity and is especially becoming unsuited for the early design
stages. Designers typically use only relatively detailed, often cycle-accurate, simulators
for design space exploration of embedded systems architectures. For complex embed-
ded systems, the effort required to build such detailed simulators can be high, making
it impractical to use those simulators in early design stages. Moreover, their low simu-
lation speeds significantly hamper the architectural exploration.

In the scope of the Artemis (ARchitectures and meThods for Embedded MedIa
Systems) project [17], we are developing an architecture workbench which provides
modeling and simulation methods and tools for the efficient design space exploration of
heterogeneous embedded multimedia systems [16]. This architecture workbench should
allow for rapid evaluation of different architecture designs, application to architecture
mappings, and hardware/software partitionings and it should do so at multiple levels of
abstraction and for a wide range of multimedia applications. By allowing simulation at
multiple abstraction levels, the speed, required modeling effort, and attainable accuracy
of the architecture simulations can be controlled. This enables a stepwise refinement
approach in which abstract simulation models are used to efficiently explore the large
design space in the early design stages, while in a later stage more detailed models can
be applied for focused architectural exploration.

Another important requirement for our architecture design space exploration envi-
ronment is that it should be open to reuse of intellectual property, thereby allowing for
reducing the time-to-market of products. For example, simulation models of architec-
ture components, such as microprocessors, busses and memories, must be reusable with
relative ease. This calls for a high degree of modularity when building system architec-
ture models and, as we show later on, a clear separation between specifying application
behavior and architectural performance constraints.

In this paper, we present an overview of the modeling and simulation methodology
used in Artemis and the open research problems it addresses. Using a case study with an
M-JPEG encoding application we illustrate the ease with which different architectural
design choices can be evaluated at a high level of abstraction. To this end, we have
used an initial version of our prototype modeling and simulation environment, called
Sesame, to evaluate three alternative multi-processor target architectures with different
memory interconnects.

The next section describes how Artemis relates to other efforts in the field of simu-
lation of embedded systems architectures. In Section 3, we describe the modeling and
simulation methodology applied in Artemis. In Section 4, the Sesame modeling and
simulation environment is described. Section 5 presents the case study with an M-JPEG
application and Section 6 concludes the paper.

2 The limitations of traditional co-simulation

System architecture modeling and simulation of heterogeneous systems is a relatively
new research field which has received a lot of attention in recent years. The key con-
cept in most efforts in this field is co-simulation. Like its name already suggests, co-
simulation implies that the software parts (which will be mapped onto a programmable
processor) and the hardware components and their interactions are simulated together



in one simulation [18]. Traditional co-simulation frameworks (e.g., Seamless VCE [11],
Virtual CPU [2], and the work of [7, 4]) often combine two simulators, one for simu-
lating the programmable components running the software and one for the dedicated
hardware. For software simulation, instruction-level processor simulators, host code
execution or bus-functional processor models [18] are typically used. To simulate the
hardware components, HDLs such as VHDL are a popular choice.

A major drawback of such co-simulation is its inflexibility: because an explicit
distinction is made between software and hardware simulation, it must already be
known which application components will be performed in software and which ones
in hardware before the system model is built. This significantly complicates the per-
formance evaluation of different hardware/software partitionings since a whole new
system model may be required for the assessment of each partitioning. For this reason,
the co-simulation stage is often preceded by a stage in which the application is studied
in isolation by means of a functional (behavioral) software model written in a high level
language. This typically results in rough estimations of the application’s performance
requirements, which are subsequently used as guidance for the hardware/software parti-
tioning. In that case, the co-simulation stage is mainly used as verification of the chosen
hardware/software partitioning and not as a design space exploration vehicle.

A number of exploration environments, such as VCC [1], Polis [3] and eArchitect
[2], facilitate more flexible system-level design space exploration by providing support
for mapping a behavioral application specification to an architecture specification. How-
ever, in contrast to these efforts, Artemis pushes the separation of modeling application
behavior and modeling architectural constraints at the system level to its extremes. As
will be shown in the next section, such separation leads to efficient exploration of dif-
ferent design alternatives while also yielding a high degree of reusability.

3 Modeling and simulation methodology

We strongly believe that for the design of programmable embedded systems a clear
distinction should be made between applications and architectures, and that an explicit
mapping step must be supported. This permits multiple target applications to be mapped
one after the other onto candidate architectures for evaluation of their performance.
This approach is referred to as the Y-chart of system design [10, 3]. Typically, the de-
signer studies the target applications, makes some initial calculations, and proposes an
architecture. The performance of this architecture is then quantitatively evaluated and
compared against alternative architectures. For such performance analysis, each appli-
cation is mapped onto the architecture under investigation and the performance of each
application-architecture combination is evaluated. Subsequently, the resulting perfor-
mance numbers may inspire the designer to improve the architecture, restructure the
application(s) or modify the mapping of the application(s).

The Artemis modeling and simulation environment facilitates the performance anal-
ysis of embedded systems architectures in a way that directly reflects the Y-chart de-
sign approach: Separate application and architecture models are recognized for system
simulation. An application model describes the functional behavior of an application,
including both computation and communication behavior. The architecture model de-



fines architecture resources and captures their performance constraints. Essential in this
modeling methodology is that an application model is independent from architectural
specifics, assumptions on hardware/software partitioning, and timing characteristics. As
a result, a single application model can be used to exercise different hardware/software
partitionings and can be mapped onto a range of architecture models, possibly repre-
senting different system architectures or simply modeling the same system architecture
at various levels of abstraction. This clearly demonstrates the strength of decoupling
application models and architecture models: it enables the reuse of both types of mod-
els. After mapping, an application model is co-simulated with an architecture model
allowing for evaluation of the system performance of a particular application, mapping,
and underlying architecture.

3.1 Trace-driven co-simulation

To co-simulate application models and architecture models, an interface between the
two must be provided, including a specification of the mapping. For this purpose, we
apply trace-driven simulation. In our approach, the application model is structured as a
network of concurrent communicating processes, thereby expressing the inherent task-
level parallelism available in the application and making communication explicit. Each
process, when executed, produces a trace of events which represents the application
workload imposed on the architecture by that particular process. Thus, the trace events
refer to the computation and communication operations performed by an application
process. These operations may be coarse grain, such as “compute a Discrete Cosine
Transform (DCT)”.

Since application models represent the functional behavior of applications, the traces
correctly reflect data dependent behavior. Consequently, the architecture models, which
are driven by the application traces, do not need to represent functional behavior but
only need to account for the performance consequences of the application events.

3.2 Application modeling

For modeling of applications, we use the Kahn Process Network (KPN) model of com-
putation [9]. To obtain a Kahn application model, a sequential application (written in
a high-level language) is restructured into a program consisting of parallel processes
communicating with each other via unbounded FIFO channels. In the Kahn paradigm,
reading from channels is done in a blocking manner, while writing is non-blocking.

The computational behavior of an application can be captured by instrumenting the
code of each Kahn process with annotations which describe the application’s computa-
tional actions. The reading from or writing to Kahn channels represents the communica-
tion behavior of a process within the application model. By executing the Kahn model,
each process records its actions in order to generate a trace of application events, which
is necessary for driving an architecture model.

In the field of application modeling, a lot of research has been done on models
of computation (e.g., [6]). We decided to use KPNs for application modeling because
they fit nicely with the multimedia application domain and are deterministic. The latter
means that the same application input always results in the same application output, i.e.,



the application behavior is architecture independent. This automatically guarantees the
validity of event traces when the application and architecture simulators are executed
independently of each other [8]. However, because of the semantics of KPNs which
disallow, for example, the modeling of interrupts, we are currently not able to model
applications with time dependent behavior.

A beneficial side effect of using a separate application model is that it also makes
it possible to analyze the computational/communication needs and the potential perfor-
mance constraints of an application in isolation from any architecture. This can be a
benefit as it allows for investigation of the upper bounds of the performance and may
lead to early recognition of bottlenecks within the application itself.

3.3 Architecture modeling

A model of an architecture is based on components representing (co)processors, mem-
ories, buffers, busses, and so on. A performance evaluation of an architecture can be
achieved by simulating the performance consequences of the incoming computation
and communication events from an application model. This requires an explicit map-
ping of the processes and channels of a Kahn application model onto the components of
the architecture model. The generated trace of application events from a specific Kahn
process is routed towards a specific component inside the architecture model by using
a trace-event queue. The Kahn process dispatches its application events to this queue
while the designated component in the architecture model consumes them. This is illus-
trated in Figure 1. Mapping the FIFO channels between Kahn processes (shown by the
dashed arrows) defines which communication medium at the architecture level is used
for the data exchanges. In Figure 1, one application channel stays unmapped since both
its application tasks are mapped onto the same processing component. Mapping the
trace-event queues from multiple Kahn processes onto a single architecture component
occurs when, for example, several application tasks are executed on a microprocessor.
In this case, the events from the different queues need to be scheduled.

We reiterate that the underlying architecture model solely accounts for architectural
(performance) constraints and therefore does not need to model functional behavior.
This is possible because the functional behavior is already captured in the application
model, which subsequently drives the architecture simulation. An architecture model
is constructed from generic building blocks provided by a library. This library con-
tains performance models for processing cores, communication media (like busses) and
different types of memory. Evidently, such a library-based modeling approach greatly
simplifies the reuse of architecture model components.

At a high level of abstraction, the model of a processing core is a black box which
can model timing behavior of a programmable processor, a reconfigurable component
or a dedicated hardware unit. Modeling such a variety of architectural implementations
is accomplished by the fact that the architecture simulator assigns parameterizable la-
tencies to the incoming application events. For example, to model software execution
of an application event, a relatively high latency can be assigned to the event. Likewise,
to model the application event being executed by dedicated or reconfigurable hardware
one only needs to tag the event with a lower latency. So, by simply varying the laten-
cies for computational application events, different hardware/software partitionings can
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Fig. 1. Mapping a Kahn application model onto an architecture model.

rapidly be evaluated at a high level of abstraction. The latencies themselves can be ob-
tained either from a lower level model of an architecture component, from performance
estimation tools, or they can be estimated by an experienced designer.

In this approach, the communication events from the application model are used
for modeling the performance consequences of data transfers and synchronizations at
the architecture level. These events cause the appropriate communication component
within the architecture model (onto which the communicating Kahn channel is mapped)
to account for the latencies associated with the data transfers. Unlike in the application
model where all FIFO channels are unbounded, writes at the architecture level may also
be blocking dependent on the availability of resources (e.g., buffer space).

As design decisions, such as hardware/software partitioning, are made, components
of the architecture model may be refined. This implies that the architecture model starts
to reflect the characteristics of a particular implementation (e.g., dedicated versus pro-
grammable hardware). To facilitate the process of model refinement, the architecture
model library should include models of common architecture components at several
levels of abstraction. For example, there may be multiple instances of a microprocessor
model such as a black box model, a model which accounts for the performance con-
sequences of the processor’s memory hierarchy (e.g., translation lookaside buffers and
caches), and a model which accounts for the performance impact of both its memory
hierarchy and datapath (e.g., pipelining and instruction-level parallelism). Moreover, to
support architecture model refinement, events from the application model should also
be refined to match the level of detail present in the architecture model. Providing flex-
ible support for such event refinement is still largely an open problem [13, 5].

The process of model refinement may continue to the level at which detailed simu-
lators for certain architecture components, e.g., instruction-level simulators or Register
Transfer Level (RTL) simulators, are embedded into the overall system architecture
simulation. For instance, consider the example in which it is decided that a certain
application task will be implemented in software. In that case, instead of using an ab-



stract architecture model of a processor core onto which the Kahn process in question
is mapped, a detailed instruction-level simulator can be used which emulates the actual
code of the application task. The process of embedding more detailed simulators can
be continued such that more and more functionality is gradually incorporated into an
architecture model. In the end, the architecture model can then be used as a starting
point for more traditional hardware/software co-simulation composed of instruction-
level simulators and RTL simulators.

4 The Sesame modeling and simulation environment

For the development of the Artemis architecture modeling and simulation environment,
we currently are developing and experimenting with two prototype simulation frame-
works: Spade (System-level Performance Analysis and Design space Exploration) [14]
and Sesame (Simulation of Embedded System Architectures for Multi-level Explo-
ration) [20]. Both frameworks act as technology drivers in the sense that they allow
for testing and evaluating new simulation models and simulation methods to gain in-
sight into their suitability for the Artemis modeling and simulation environment. Only
those simulation models and simulation methods that have proven to be effective will
be incorporated in Artemis. In this paper, we limit our discussion to Sesame only.

The Sesame framework aims at studying the potentials of simulation at multiple
levels of abstraction and the concepts needed to refine simulation models across differ-
ent abstraction levels in a smooth manner. For example, refinement of one component
in an architecture model should not lead to a completely new implementation of the
entire model. This means that the modeling concepts being studied should also include
support for refining only parts of an architecture model, thus creating a mixed-level sim-
ulation model. The resulting mixed-level simulations allow for more detailed evaluation
of a specific architecture component within the context of the behavior of the whole sys-
tem. They therefore avoid the need for building a complete detailed architecture model
during the early design stages. Moreover, mixed-level simulations do not suffer from
deteriorated system evaluation efficiency caused by unnecessarily refined parts of the
architecture model.

Sesame currently only provides a library of black box architecture models. In the
near future, the library will be extended with models for architecture components at
several levels of abstraction in order to facilitate the performance evaluation of archi-
tectures from the black box level towards the level of cycle-accurate models. This li-
brary will eventually be supplemented with techniques and tools to assist the modeler in
gradually refining the models and performing mixed-level simulations. Currently, these
issues are still largely open research problems.

The architecture models in Sesame are implemented using a small but powerful
discrete-event simulation language, called Pearl, which provides easy construction of
the models and fast simulation [15]. Evidently, these characteristics greatly improve the
scope of the design space that can be explored in a reasonable amount of time. The
architecture library components in Sesame are not meant to be fixed building blocks
with pre-defined interfaces but merely template models which can be freely extended
and adapted. With this approach, a high degree of flexibility is achieved (which can
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Fig. 2. Figure (a) shows a potential deadlock situation due to scheduling of communication
events. The Sesame solution, using virtual processors, is illustrated in Figure (b).

be helpful when refining models) at the cost of a slightly increased effort required to
build architecture models. This effort will however still be relatively small due to the
modeling ease provided by Pearl.

As we have described, multiple Kahn processes of the application model can be
mapped onto a single processing component in the architecture model. In this case, the
incoming event traces need to be scheduled. Scheduling of communication events is,
however, not straightforward as it may cause deadlocks. Such a situation is illustrated
in Figure 2(a). In this example, Kahn process A reads data from Kahn process C, Kahn
process B writes data for process C and Kahn process C first reads the data from B
after which it writes the data for A. Since Kahn processes A and B are mapped onto a
single processor, their read and write events need to be scheduled. Assume that the read
event from Kahn process A is dispatched first to processor 1. Processor 2 receives the
read event from Kahn process C. In this case, a deadlock occurs since both dispatched
read events cannot be carried out as there are no matching write events. As a result, the
processors block.

In Figure 2(b), Sesame’s solution to the above problem is depicted. Between the ap-
plication and architecture layers, we distinguish an extra mapping layer. This mapping
layer, which is implemented in the Pearl language and which can be automatically gen-
erated from an application model, consists of virtual processor components and FIFO
buffers for communication between the virtual processors. A virtual processor reads
in an application trace from a Kahn process and dispatches the events to a process-
ing component in the architecture model. The mapping of a virtual processor onto a
processing component in the architecture model is parameterized and thus freely ad-
justable. The FIFO buffers in the mapping layer have a one-to-one relationship with the
FIFO channels in the Kahn application model but they are limited in size. Their size is
parameterized and dependent on the modeled architecture.

As can be seen from Figure 2(b), multiple virtual processors can be mapped onto
a single model of an actual processor. In this scheme, computation events are directly



forwarded by a virtual processor to the processor model. The latter subsequently sched-
ules the events in a FCFS fashion and models their timing consequences. However, for
communication events, the appropriate buffer at the mapping layer is first consulted to
check whether or not a communication is safe to take place. Only if it is found to be
safe (e.g., data is available when performing a read event), then communication events
may be forwarded to the actual processor model.

5 The M-JPEG � case study

To demonstrate the flexibility of modeling in Sesame we have applied its current version
to a modified M-JPEG encoding application, referred to as M-JPEG

�
. This application

has already been studied in the scope of the Spade environment [12, 19], which demon-
strated that the modeling and simulation methodology of Artemis facilitates efficient
evaluation of different application to architecture mappings and hardware/software par-
titionings. In this section, we use the Sesame environment to show the capability to
quickly evaluate different architecture designs.

The M-JPEG
�

application slightly differs from traditional M-JPEG as it can oper-
ate on video data in both YUV and RGB formats on a per-frame basis. In addition, it
includes dynamic quality control by means of on-the-fly generation of quantization and
Huffman tables. The application model of M-JPEG

�
is shown in Figure 3.

The data received in the Video-in Kahn process, which is either in RGB or YUV
format, is sent to the DMUX in blocks of

�����
pixels. The DMUX first determines the

format and then forwards data from RGB frames to the RGB2YUV converter process,
while YUV data is sent directly to the DCT Kahn process. Once the data has been trans-
formed by the DCT process the blocks are quantized by the Q Kahn process. The next
step, performed by the VLE process, is the variable length encoding of the quantized
DCT coefficients followed by entropy encoding, such as Huffman encoding. Finally,
the resulting bitstream is sent to the Video-out process.

In M-JPEG
�
, the tables for Huffman encoding1 and those required for quantiza-

tion are generated for each frame in the video stream. The quality control process (Q-
Control) computes the tables from information gathered about the previous video
frame. For this purpose, image statistics and obtained compression bitrate are trans-
mitted by the VLE to the Q-Control Kahn process. When the calculations by the
Q-Control process are finished, updated tables are sent to both the Q and VLE Kahn
processes.

5.1 The base architecture and mapping

The base M-JPEG
�

target architecture has five processing components connected via
a common bus to a shared memory. In Figure 3, this architecture is shown together
with the mapping of the M-JPEG

�
application onto it. Of the five processing compo-

nents in the architecture, one is a general purpose microprocessor (assumed to be a
MIPS R4000), two are DSPs (assuming Analog Devices’ ADSP-21160s) and two are

1 In M-JPEG � , we assume that Huffman encoding is the default entropy encoding scheme.
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non-programmable components. The non-programmable components are used for input
and output processing and are referred to as respectively the VIP (Video In Processor)
and VOP (Video Out Processor). The two DSPs are used for computationally intensive
tasks. One of them is used for RGB to YUV conversion and the DCT transform. We
refer to this component as the RGB2YUV & DCT component. The other DSP is used
for variable length encoding and is referred to as the VLEP. For the memory we as-
sume DRAM, while the bus is assumed to be 64 bits wide. Communication between
components is performed through buffers in shared memory. A detailed description of
the M-JPEG

�
application, its application model, and the base architecture model can be

found in [19].
To demonstrate the ease of modeling in Pearl (Sesame’s simulation language), Fig-

ure 4 shows the Pearl code of the bus model for the M-JPEG
�

target architecture. This
bus model simulates transactions at the granularity of message transfers of abstract data
types. Extending this model to account for 64-bit transactions is trivial. As Pearl is an
object-based language and architecture components are modeled by objects, the code
shown in Figure 4 embodies the class of bus objects.

A bus object has two object variables, mem and setup. These variables are initial-
ized at the beginning of the simulation, and more specifically, at the instantiation of a
bus object. The mem variable references the memory object that is connected to the bus,
while the setup time of a connection on the bus is specified by setup. A bus object has
two methods: load and store. The storemethod is not shown here since it is iden-
tical to the load method. To explain how the load method works we first need to give
some background on the blockt() function. Pearl is equipped with a virtual clock



class bus

mem : memory
setup : integer

load : (nbytes:integer, address:integer)->void
{

blockt( setup );
mem ! load(nbytes, address);
reply();

}

// [ store method is omitted ]

{
while(true) {
block(load, store);

};
}

Fig. 4. Pearl code for the common bus object.

that holds the current simulation time. When an object wants to wait for an interval in
simulated time it uses the blockt() function. In our example, the bus object uses the
blockt() function to wait for setup time units in order to account for the connec-
tion setup latency. The statement “mem ! load(nbytes, address)” calls the
load method of the memory object mem by sending it a synchronous message. Since it
is synchronous the bus has to wait until the memory has explicitly returned a reply mes-
sage. The latter is done by the reply() primitive. In our example, the synchronous
message passing also causes the virtual clock to advance in time, because the memory
object accounts for the time it takes to retrieve the requested data before replying to the
bus. After having received a reply from the memory object, the bus itself executes a
reply() to return control to one of the processor objects (which are connected to the
bus object) that has called the load method. At the bottom of Figure 4 is the main loop
of the object which does nothing until either the load or store method is called (by
one of the processor objects).

In the bus model of the M-JPEG
�

case study, we have not explicitly modeled bus
arbitration. Instead, we use Pearl’s internal scheduling, which applies a FCFS strategy to
incoming method calls for the bus object. We note, however, that an arbiter component
which implements other strategies than FCFS can be added to the model with relative
ease.

In the Pearl language, the instantiation of objects and the specification of the con-
nections between objects are done using a so-called topology file. In Sesame, this file is
also used for specifying the mapping of the incoming application traces from the Kahn
model to the components in the architecture model. Figure 5 shows the topology file
for the M-JPEG

�
base architecture and mapping as shown in Figure 3. For the purpose

of brevity, we left out a number buffer specifications. The first column of the topology
file contains the names of the objects that need to be instantiated, while after the colon
the object class is specified. Together with this class-name, a number of parameters are
specified. The different classes and their parameters are explained below.



commonbus() {
vidin : virt_proc(6,2,[header,buf1],vip)
rgbyuv : virt_proc(4,2,[buf2,buf3],rgbdct)
dct : virt_proc(1,4,[buf3,xx,type,buf4],rgbdct)
dmux : virt_proc(2,7,[header,buf1,fsize,buf2,xx,type,numof],mp)
quant : virt_proc(3,4,[buf4,qtable,qcmd,buf5],mp)
control : virt_proc(0,7,[numof,stats,qtable,qcmd,hcmd,htable,info],mp)
vle : virt_proc(5,6,[buf5,hcmd,htable,stats,flag,stream],vlep)
vidout : virt_proc(7,4,[fsize,flag,info,stream],vop)
vip : processor(bus,10,[0,0,20,0,0,0,0,0,0,0])
rgbdct : processor(bus,10,[0,200,0,0,0,0,0,192,0,0])
mp : processor(bus,10,[180,0,0,0,154,1,23,0,2,154])
vlep : processor(bus,10,[0,0,0,0,154,0,0,0,0,154])
vop : processor(bus,10,[0,0,0,20,0,0,0,0,0,0])
header : buffer(1, 7, 1)
info : buffer(1, 672, 2)
qtable : buffer(1, 128, 2)
qcmd : buffer(0, 1, 150)
hcmd : buffer(0, 1, 150)
htable : buffer(1, 1536, 2)
stats : buffer(1, 514, 1)

[ ... ]
bus : bus(mem, 1)
mem : memory(10,8)

}

Fig. 5. Topology definition for the M-JPEG � simulation: this shows how Pearl objects are instan-
tiated and connected.

– The virt proc class implements the virtual processor components as described
in Section 4. This class has four parameters of which the first one is an identifier
used for identifying the event trace queue to read from. The second one gives the
number of FIFO buffers connected to a virt proc object, after which these FIFO
buffers are specified in an array. The last parameter defines to which actual proces-
sor a virtual processor is linked: this is the application to architecture mapping.

– The processor class has three parameters. The first one describes to which mem-
ory interconnect it is connected. The second parameter gives the size of the instruc-
tion set, being the different application events for which the timing behavior needs
to be modeled. This is followed by the latencies of each of these instructions. By
adapting these latencies, one can easily change the speed of a processor.

– The buffer class has three parameters. The first one specifies whether communi-
cation is performed over the interconnect or internally. When a buffer connects two
virtual processors which are mapped onto the same (actual) processor, communi-
cation is assumed to be performed internally. When the two virtual processors are
mapped on different processors, communication is performed through shared mem-
ory, resulting in bus traffic. The second parameter of the buffer class specifies
the size of the tokens in the buffer while the third parameter specifies the maximum
number of these tokens that can be in the buffer at one time.

– The bus class has two parameters. The first one specifies the memory it is con-
nected to and the second one defines the time for setting up a connection.

– The memory class takes two parameters. The first specifies the delay for reading
or writing one word and the second specifies the width in bytes of the memory
interconnect it is attached to.



Obviously, the topology file allows for easy configuration of a Pearl simulation. It
is simply a matter of changing a few numbers to change the application architecture
mapping or to change the characteristics of a processor. For example, replacing a DSP
for a dedicated hardware component in our M-JPEG

�
base architecture model can be

achieved by reducing the instruction latencies of the processor object in question.

5.2 Design space exploration

To illustrate that Sesame and its Pearl simulation language facilitate efficient evaluation
of different candidate architectures, we have performed an experiment [20] in which
we modeled, simulated and briefly studied two alternative communication structures
for the M-JPEG

�
architecture: a crossbar and an Omega network. To avoid confusion,

the original M-JPEG
�

architecture will be referred to as the common bus architecture.
In our experiments, the input video stream consists of images captured in a resolu-

tion of ���
� �

���
�

pixels with RGB color encoding. For the architecture, we have as-
sumed conservative timings: The bus-arbitration overhead when a request (at the level
of abstract data types) is granted access to the bus equals to 10ns, while it takes 100ns
to read/write a 64-bit word from/to DRAM. The instruction latencies for the micropro-
cessor and DSP components were estimated using technical documentation. Figure 6(a)
shows the simulation results in terms of the measured number of frames per second for
all three candidate architectures (using a common bus, crossbar or Omega network).
Below, the results for each of the communication structures are explained in more de-
tail.

In Figure 6(b), a description is given of the activities of the various architecture
components during simulation of the common bus architecture. For each component, a
bar shows the breakdown of the time each component spends on I/O, being busy and
being idle. As Figure 6(b) shows, the common bus architecture has a high memory
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Fig. 6. Fig. (a) shows the measured frames per second for all three interconnects. Fig. (b) depicts
a breakdown for the common bus showing busy/io/idle statistics for all architecture components.



M

µProc

VIP

VOP

µ

VIP

DSP1

Proc

VOP

M

M

DSP2 M

M

M

MMMM

I

I

O

S S

S S S S S

SSS

SS S

SSS

S

S S

O O O

S

O

S S S S S

S

S S S

S S

SSS

S S S

I

I

I

I

I

I

I

I O

O

O

O

O

O

O

O

I

I

I

(b)(a)

S = Switch
O = Output interface
I = Input interface
M = Memory

DSP1

DSP2

Fig. 7. The crossbar (a) and Omega (b) memory interconnects used in our experiments.

utilization while the various processors have low utilization and spend a lot of time
doing I/O. Figure 6(a) shows that the common bus architecture obtains a framerate
of 82 frames per second. While this is more than enough for real time operation, this
is for a low resolution. Such performance is roughly equivalent to only 3 frames per
second in full resolution PAL television ( � ��� ��� ��� ). The common bus interface to the
memory is clearly a bottleneck and therefore a candidate for further exploration. Similar
conclusions about the M-JPEG

�
architecture were drawn from experiments using the

Spade environment [12].

To reduce the communication bottleneck of our M-JPEG
�

architecture, we have im-
plemented a Pearl simulation model of a

� ���
crossbar switch, shown in Figure 7(a),

and replaced the common bus model in M-JPEG
�

with this crossbar model. The mem-
ory in this architecture is distributed over five banks. Therefore, a mapping of buffers
to memories is defined in the topology file. This mapping is, like the application to
architecture mapping, easy to configure. In our crossbar model, the delay to set up a
connection is identical to the bus-arbitration delay in the common bus model (10ns).

As the results in Figure 6(a) show, there is a substantial gain in frames per second
compared with the common bus. When we look at the architecture component statistics
in Figure 8(a) we see that all the components spend more time doing work and less
time waiting for I/O. Since the memory load is now divided over five memories, the
memory utilization is at about 20% for most memories. Note that memory 5 is still
busy for almost 80% of the time. The reason for this is that one buffer takes 53% of
memory bandwidth. This buffer contains the statistics needed for the (re)calculation of
the Huffman and quantization tables. For every block of image data in the M-JPEG

�

application, these statistics are sent from the VLE process to the Q-control process.

As an alternative to the crossbar we have also modeled the Omega network as shown
in Figure 7(b). The main difference is that the crossbar is a single-stage network whereas
the Omega network is a multi-stage network. This means that the Omega network does
not provide a direct connection between a processor and the memory, and thus requires
routing. The Omega network is generally cheaper to implement than a crossbar because
it has less switches, but the setup of a connection costs more (we account for a setup
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Fig. 8. Results for the crossbar (a) and Omega network (b) showing busy/io/idle statistics for all
architecture components.

latency of 10ns per hop) and connections may be blocking. The latter means that it is
not always possible to connect an idle input to an idle output.

The results in Figure 6(a) show that the Omega network is about 5% slower than
a crossbar. Detailed statistics show that the processing cores spend a little more time
waiting for I/O compared to the crossbar, leading to a slightly lower utilization. This is,
however, hardly noticeable in Figure 8(b). So, when considering both cost and perfor-
mance, the Omega network might be the better choice for replacing the common bus.
Nevertheless, the simulation results indicate that, with the applied (multi-processor) ar-
chitecture and mapping, the performance is highly communication bound. Therefore,
mapping more application tasks to a single processing component (thereby reducing
communication) or reducing the memory latency will certainly lead to improvements,
which has already been demonstrated in [12, 19].

5.3 A note on modeling and simulation efficiency

Due to the simplicity and expressive power of Sesame’s Pearl simulation language,
modeling and simulating the three candidate architectures was performed in only a
matter of days. This includes the construction of the crossbar and Omega network mod-
els, which had to be implemented from scratch, as well as the realization of a run-time
visualization of the architecture simulations. Pearl is an object-based language, which
means that we could exploit features such as “class sub-typing” to easily exchange
the models for the different communication/memory architecture components. Making
these models a sub-type of a generic interconnect type, the models could be replaced in
a plug-and-play manner.

Models are not only constructed quickly in Pearl, but the actual simulation is also
fast. For example, the simulation of M-JPEG

�
mapped onto the crossbar-based archi-



tecture takes just under 7 seconds. This was done on a 270Mhz Sun Ultra 5 Sparcstation
with a video input stream of 16 frames of ���

� �
���
�

pixels with RGB encoding.

6 Conclusions

In this paper, we have described a modeling and simulation methodology that allows for
the efficient architectural exploration of heterogeneous embedded media systems. The
presented methods and techniques are currently being realized in the Sesame modeling
and simulation environment. Using an initial version of Sesame and an M-JPEG encod-
ing application, we have illustrated the ease and swiftness with which the performance
of different candidate architectures can be evaluated. More specifically, we have ex-
plored three shared-memory multi-processor target architectures, each with a different
memory interconnect (common bus, crossbar and Omega network).

Research on Sesame will be continued along the lines described in this paper, with
an emphasis on techniques for model refinement. In particular, the support for mixed-
level simulation introduces many new research problems that need to be addressed. In
addition, we intend to perform more case studies with industrially relevant applications
to further demonstrate the effectiveness of the methods and tools we are developing.
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