System-Level Runtime Mapping Exploration of Reconfigurable Architectures

Kamana Sigdel® Mark Thompson*

T Computer Engineering Laboratory
EEMCS, Delft University of Technology
The Netherlands

Email: {K.Sigdel, K.L.M.Bertels, C.Galuzzi}@tudelft.nl

Abstract

Dynamic reconfigurable systems can evolve under various
conditions due to changes imposed either by the architecture,
or by the applications, or by the environment. In such systems,
the design process becomes more sophisticated as all the
design decisions have to be optimized in terms of runtime
behaviors and values. Runtime mapping exploration allows
to explore reconfigurable systems at runtime to optimize
task mappings in order to adapt to the changing behavior
of the application(s), the architecture, or the environment.
Performing such explorations at runtime enables a system to
be more efficient in terms of various design constraints such as
performance, chip area, power consumption, etc. Towards this
goal, in this paper, we present a model that facilitates runtime
mapping exploration of reconfigurable architectures. A case
study of an MJPEG application shows that the presented
model can be used to perform runtime exploration of various
functional and non-functional design parameters.

1. Introduction

Reconfigurable computing is gaining popularity in the
embedded system domain due to its ability to provide high
computational power with great flexibility. A reconfigurable
architecture is a flexible architecture able to adapt to the
application - the structure of the architecture can change
at start-up time or at runtime (in case of dynamically
reconfigurable systems) to match the new application. These
architectures are typically formed with a combination of
a General Purpose Processor (GPP) and a reconfigurable
hardware component such as an FPGA. The reconfigurable
component is used to accelerate code fragments from
applications in a processor/co-processor fashion [1]],[2],[3l].

The ever increasing intricacy of the functionalities as well
as increasing use of reconfigurable heterogeneous resources

Andy D. Pimentel*

Carlo Galuzzif Koen Bertels'

Y Computer Systems Architecture Group
University of Amsterdam
The Netherlands
Email: {M.Thompson, A.D.Pimentel} @uva.nl

significantly complicate the design of modern embedded
systems. As a result, to create a good design, it is crucial
to perform Design Space Exploration (DSE) at various
design stages in order to efficiently appraise several design
choices. DSE at the early design stages helps designers to
systematically explore trade-offs between various design
choices such as hardware/software partitioning, architecture—
to—application mapping, task scheduling, task allocation, etc.
As the design progresses, the design space can be gradually
trimmed and pruned of unsuitable design alternatives until
the most suitable solution is obtained.

Towards this goal, we are interested in designing a
system-level modeling and simulation framework for
high level runtime mapping exploration of dynamically
reconfigurable architectures. Dynamic systems evolve under
various conditions to adapt to any changes imposed by the
architecture or by the applications or by the environment. In
such systems, the design process becomes more sophisticated
as all the design decisions have to be optimized in terms of
runtime behaviors and values. Runtime Mapping Exploration
allows to explore various task mappings in reconfigurable
systems at runtime in order to adapt to the changing behavior
of the application(s), the architecture or the environment.
Performing such exploration at runtime enables a system to
be more efficient in terms of various design constraints such
as performance, chip area, power consumption, etc. In this
paper, we present a framework for a two level DSE approach
for runtime mapping exploration. In the first level exploration,
we explore the system under static system conditions and
find the most suitable mapping or set of mappings to address
such conditions. Second level exploration optimizes the
mapping(s) at runtime in order to satisfy the changing system
conditions by learning from its current system information
(the application, the architecture or the environment), from its
historic data or even from the predicted behaviors/conditions
of the system.

In [4]], we presented a model for system-level DSE of
reconfigurable architectures. This model can simulate and
estimate the performance of a reconfigurable architecture at
a high level of abstraction for the applications from the
multimedia domain. In this paper, the model is extended to
support the runtime mapping explorations in order to address
dynamic and adaptive behavior of reconfigurable systems. We
use the Sesame framework [5]] as a modeling and simulation
platform for system level DSE. The Molen architecture [6] is
used as an example of a dynamic reconfigurable architecture.
For this purpose, the Sesame framework has been extended
to support dynamically reconfigurable behavior of the Molen
architecture [4]. The main contributions of this paper are the
following:

o The design of a system level modeling and simulation
framework that supports runtime mapping exploration of
reconfigurable architectures.

e« A two level DSE approach for the runtime mapping
exploration of reconfigurable architectures.

« An initial case study to demonstrate the runtime mapping
exploration to address the dynamic conditions of the
system using an MJPEG application.

The paper is organized as follows: Section [] reviews some
related works. Section [3] presents the two level mapping
exploration approach using an example. Section {4 provides a
brief description of the Molen architecture and the Sesame
simulation framework. Section [3] describes the model and
its implementation details. Section [6] provides a case study
and some preliminary results. Finally, Section [/| presents
conclusions and future work.

2. Related Work

System level modeling and simulation for DSE of reconfig-
urable systems has been touted for quite some time. However,
there are not many system-level DSE tools available for
reconfigurable architectures, which can assist designers at very
early stages of a design. Several techniques for high level DSE,
partitioning and mapping of applications on reconfigurable
architectures have been presented in literature for performance
evaluation and rapid exploration of different reconfiguration
alternatives such as [7],[8],[9].[10]. Most of these approaches
basically focus on the static nature of the architecture and/or
applications. Furthermore, these techniques cannot address
the adaptive and dynamic system nature of reconfigurable
systems either from the architectural perspective and/or from
the application point of view. In [[11]], a simple runtime DSE
approach is discussed in which a DSE module dynamically
explores the most frequently executed tasks and maps them
onto a reconfigurable hardware. However, this work is focused
at lower design levels and targets few specific tasks. Similar

approaches for high-level runtime mapping of the application
tasks onto heterogeneous MPSoC are presented in [12] and
[13]. Close to our approach is the approach proposed in [[14]
[[15]], which present customized runtime management for het-
erogeneous MPSoC that combines a design time exploration
together with runtime manager. Unlike them, our focus is to
develop a simulation framework for runtime mapping of the
application(s) onto the dynamic reconfigurable architecture at
early design stages.

3. Dynamic Application Mapping

Dynamic systems can change under various conditions,
while maintaining both functional consistency and non-
functional design constraints such as power consumption,
performance, redundancy, etc. These changes can be imposed
and initiated by an architecture, by an application or by
the environment. For example, an architecture can change
under the following conditions: an increase or decrease
of the available or connected resources, a requirement to
temporarily switch-off one or more parts of the hardware to
reduce the power consumption or a necessity to achieve high
fault tolerant behavior for certain tasks. At the same time,
the application can change to maintain a specified Quality of
Service (QoS) for variable processing load of one or multiple
applications, or due to the arrival of some additional sporadic
tasks. In all these cases, it is necessary or beneficial to change
the mapping of tasks on the various resources at run-time.
Dynamic mapping allows a task to be executed on various
resources at different time intervals during the execution of
the application. As a result, a system needs to support task
migration from one resource to another. Moreover, a system
needs to implement some policies to define which mappings
are used under certain conditions and when a mapping needs
to be changed. Typically, a trade-off has to be made between
the cost and benefits of the migration. In this work, we do
not consider the implementation details of a reconfigurable
system, rather we discuss the modeling and exploration
framework to assist system designers with various design
decisions.

In the presented framework, applications are represented as
a Kahn Process Network (KPN) at the granularity of coarse-
grain tasks [16]. A KPN consists of concurrent processes
with explicit communication over FIFO channels. KPNs
are deterministic and can capture the parallel and dynamic
nature of streaming applications in the multimedia domain.
Therefore, KPNs are suitable for our purpose. For this case,
we only use acyclic KPN application graphs. The architecture
model considered is the Molen architecture [6] [17] which
consists of a GPP and a dynamically Reconfigurable Processor
(RP). Application tasks can be executed on the GPP, on the
RP or on both. Tasks run on the GPP as regular (compiled)

Area

e)

° e D

PP RP o2

o A v

(a) KPN Graph of an Application

owi

(b) Static Mapping

e

(c) Dynamic Mapping

Figure 1. Tasks Mapped onto the RP and the GPP with Static and Dynamic Mapping

microprocessor code or on the RP as a hardware IP core. We
define three types of tasks in the system:

o Software tasks are those tasks that are executed on the
GPP,

e Hardware tasks are those tasks that are executed on the
RP,

o Pageable tasks are those tasks that can switch between
these two processors and thus can be executed on both.

Our previous model presented in [4] assists designers to
identify a set of hardware tasks and a set of software tasks
such that the design constraints are satisfied. The mapping is
determined statically (at design time) and, as a result, each
task is mapped onto only one resource (either GPP or RP)
during the entire runtime of the application. An example of
such mapping behavior is shown in Figure For the KPN
graph given in Figure the set of SW tasks is {A, B}
and the set of HW tasks is {C, D}. The dynamic mapping
enables identification of the hardware and software task sets at
runtime. An example of dynamic mapping behavior is shown
in Figure For time intervals 1 to 4 the sets are: SW; =
{A, B,C} SWy;={A, B} SW;={A C} SW,={A}
and HW; = {D} HW, = {C, D} HW3 ={B,D} HW, =
{B, C, D} respectively. As can be inferred from the figure, for
this particular example, task B and C change their mapping
during execution from GPP to RP and vice versa. Therefore
the set of pageable tasks is: {B, C}.

3.1. Two Levels Mapping Exploration

Using the model presented in the paper, mapping
exploration can be carried out at two levels. At the first level,
we address exploration of the system under static conditions.
Static, here, refers to the condition of the system where
applications, architectures and the environment do not change
during the exploration. The system constraints imposed in

such conditions are fixed and known during the exploration.
For instance, a condition where a single application is
mapped onto a fixed architecture is an example of a static
condition. In this case, the exploration is performed at design
time by iterative evaluation of different mappings until the
most suitable task sets satisfying the given system constraints
are identified. This is used as a starting point for the second
level exploration.

At the second level, mapping exploration is carried out at
runtime to address the runtime conditions of the system. In
this case, we optimize the pageable task set at runtime by
dynamically changing the mapping to satisfy the given design
constraints. For example, in order to meet the real-time
constraints of a sporadic task with faster execution, some
tasks can be migrated from RP to GPP in order to give
priority to the sporadic task. Similarly, if a sudden increase in
the application load is detected, performance can be enhanced
by moving tasks from the GPP to the RP. These decisions are
made based on the condition and requirement of the running
system.

To perform the runtime adaptation of the task sets, one or
more components in the system have to make “intelligent”
mapping decisions at runtime. Most importantly, the system
should be able to identify which tasks to migrate and when
to change the mapping to perform the migration. Various
information about the runtime condition of the system can
be used: application information such as task priority, real
time constraints and architecture information such as free
resources, timing information, etc. Note that this decision
making process can be implemented in the actual system in
any number of ways: e.g. in the application, in the hardware
or as an operating system policy.

To illustrate the two levels of exploration, let us consider a
scenario with two applications Appl and App2. Application

App2 in this case is sporadic and as a result can go in and
out of the system at random time. The first level exploration
identifies hardware, software and pageable task sets for each
application separately. The exploration starts with an initial
random solution and different task sets are identified by
searching the design space with iterative simulations. Let’s
denote the best task sets for application Appl and App2
as: Applsw, Appluw, Applpage, App2sw, App2uw and
App2,q4.- In the second level exploration the application
model App3 is the combination of Appl and App2. The initial
task sets for the second level exploration is defined as:

App3aw = Applaw U App2rw
App3sw = Applsw U App2sw
App?’Page = ApplPage U AppZPa,ge
In order to address the “dynamic behavior” of the appli-
cation model App3, a number of explorations have to be
carried out at runtime in order to find the best mapping for the
pageable task set. With the new system condition, at certain
times when application App2 starts to execute in the system,
the tasks in App3pqg. have to compete for resources. As
a result, some subset of App3p,g. may predominantly be
executed either on hardware (P) or on software (Q); then
the task sets can be changed accordingly:

App3sw = Applsw U App2sw U Q
App3aw = Applyw U App2pw U P
App3page = (Applpage U App2page) — P — Q

where |P| >0, |Q]>0

Note that although not all the tasks in the HW task and/or
pageable set may fit on the RP at the same time, all tasks can
be executed with a delay after reconfiguring them on the RP. In
such cases, in order to avoid such reconfiguration delays, some
tasks from a HW task set can also be moved to a pageable task
set. At any point during the exploration process the designer
can influence the process by manually setting up these task
sets using his domain knowledge or heuristics. For instance,
he may decide to manually fix some tasks from one task set
to another in order to reduce or enlarge the design space for
iterative simulation.

4. Tools and Platforms

The modeling and simulation framework presented in the
paper is not restricted to a particular type of architecture.
For an evaluation purpose, in this paper, we use the Molen
architecture as an example of a dynamically reconfigurable
architecture. We use the Sesame framework as a modeling and
simulation platform for system level DSE. The Sesame envi-
ronment [18][5] is extended in order to model and simulate

the dynamic reconfigurable behavior of the Molen architecture

(4].

4.1. Reconfigurable Architecture

P fef o

Reconfigurable Processor

Core
Processor

Figure 2. The Molen Architecture

The Molen polymorphic processor is established on the ba-
sis of the tightly coupled co-processor architectural paradigm
[6][17]. The two main components in the Molen machine
organization are the Core Processor, which is a GPP and
the Reconfigurable Processor (RP) such as an FPGA. The
GPP and the RP communicate through a shared memory.
The RP is further subdivided into the pu-code unit and one
or more Custom Configured Units (CCU) (see Figure [2).
These two processors are connected to an arbiter [[6][[17)]. The
latter controls the co-ordination of the GPP and the RP by
directing program instructions to either of these processors.
In order to speed up program execution, parts of the code
running on the GPP can be implemented on the CCU(s). The
code to be mapped onto the RP is annotated with special
pragma directives. When the arbiter receives the pragma
annotated instructions, it initiates the CCU unit, gives data
memory control to the RP and drives the GPP into a wait
state. An operation executed by the RP is divided into two
distinct phases: set and execute. In the set phase, the CCU
is configured (i.e. a configuration bitstream is loaded onto
the FPGA) and in the execute phase the CCU(s) starts its
execution. When the RP finishes its execution, it acknowledges
the arbiter. The arbiter releases the data memory control back
to the GPP and then the GPP can resume its normal program
execution.

4.2. Sesame Framework

The Sesame modeling and simulation environment [18][5]
is geared towards fast and efficient exploration of embed-
ded multimedia architectures, typically those implemented
as heterogeneous MPSoCs. Sesame adheres to a transparent
simulation methodology where the concerns of application
and architecture modeling are separated via a mapping layer.
It uses the KPN model of computation [16] for application

: ()
§
HOEG
L2
5 <,
Q.
<
g— ' L Runtime
&| VPA | VPg | | VP | | VPp || VPe k Mapping
[oH Manager
s 1 *
i P
! TN i
) ! et H H
g > PY
3 GPP [ccut][ccuz | | ccus || ccus |
§ ! !
<

Figure 3. Sesame Model to Facilitate Runtime Mapping
of Tasks from GPP to RP and viceversa

modeling. This model is suitable for modeling stream-based
(multi-media) applications. A KPN consists of concurrent
processes that communicate using blocking read/non-blocking
write synchronization over unbounded Kahn channels. The
application model generates event traces containing Read (R),
Write (W) and Execute (EX) events. R and W are communi-
cation events that describe the communication over the Kahn
channels. EX is a computation event that describes the com-
putation behavior of a Kahn process (typically at the function
granularity). These events are collected into event traces and
mapped onto an architecture model using an intermediate map-
ping layer. The mapping layer consists of Virtual Processors
(VP), which can be regarded as representatives of application
processes at the architectural level. The main purpose of
the mapping layer is to schedule the event traces from the
application processes onto the architectural components. In the
architecture model, the architectural timing consequences of
the events are modeled. The processor components model the
processor utilization of the studied application to architecture
mapping. This is done using a lookup table that contains
execution latency for each EX event. The interconnection
and the memory components model the utilization and the
contention caused by the communication events (R and W).

5. The Model

The model presented in this paper is an extension of our
previous model for dynamically reconfigurable architectures
as presented in [4]. This model could not perform dynamic
mapping of tasks to architecture components. In this section,
we describe the new model and the added modeling capabil-
ities.

Figure [3] shows an overview of the components in the
different layers of the model. The architecture model consists
of the actual system components - Processors, Memory and
Interconnection Networks and the components such as Arbiter,
Resource Manager (RM) and Runtime Mapping Manager

(RMM), which implement some model behavior. In the real
system, RM and RMM can be implemented either at operating
system level or at architectural level. There is one GPP and
one RP which, in turn, may consist of multiple CCUs. The
GPP and all CCUs are connected to the shared memory by
a bus network component. A CCU represents the hardware
implementation of a task. Since the RP is dynamically re-
configurable, the number and type of CCUs on the RP may
change at runtime. The RM component is connected to all the
CCUs. Its basic functionality is to keep track of which CCUs
are configured on the RP at any given time. A CCU can only
process events when it has been configured; if it is not, then
it requests the RM to be scheduled for configuration. The RM
configures the CCUs according to the policy implemented (eg.
as soon as area becomes available). The Arbiter component
performs synchronization between the GPP and the RP. It
supports either mutual exclusive operation of GPP and RP
(traditional co-processor model) or parallel operation.

Note that, in the mapping layer the communication channels
are not shown in order to simplify the picture. The mapping
layer — among other things — implements an elaborate synchro-
nization mechanism for the events generated by the application
layer, e.g. it makes no sense to un-configure a CCU from the
RP after it has read data, but before performing a function
on it (because the data would be lost). Therefore specialized
synchronization in the mapping layer groups R, W and EX
events for processing on a CCU. For more details we refer to

(4.
5.1. Runtime Application Mapping

In order to facilitate runtime application mapping onto the
architecture, the VPs can be connected to multiple processor
resources. The trace events from the application model can
now be forwarded to any connected processor in the hardware
layer. Figure [3| shows an example where a virtual processor
VPp is connected to the GPP and CCUIL. A hardware or a
software task requires only one connection to a CCU or GPP
respectively. However, a pageable task has a connection to
both processors. In many scenarios, it is conceivable that there
exists multiple CCU implementations for one pageable task.
However, for the sake of simplicity, we currently restrict it to
one. The VP forwards events, but does not make the mapping
decision by itself. This is done by the RMM to which all VPs
are connected.

5.2. Runtime Mapping Manager

The RMM is the central intelligent component which per-
forms dynamic mapping decisions. It can use all information
available in the model (application, mapping and architecture)
as inputs for its decision making policy. For example, Figure
Bl shows the connection between the RM and the RMM

since the availability of resources on the RP is an important
consideration for the RMM.

The complexity of RMM implementations can be relatively
simple as well as extremely complicated. RMM can use any
available method or heuristic to perform the mapping decision
based on current, historic or even predicted dynamic condi-
tions of the system. The RMM bears the ability to learn from
its environment, from its previous data, or the current situation.
The application information, e.g. priority of tasks, real time
constraints and the architectural information e.g. resources or
timing information can be used as an input information for
the RMM. Based on these values and behaviors, the RMM
can make mapping decision for each task. Since the dynamic
mapping policy is implemented as a separate component,
it is easy to plug-in different RMM policies for different
experiments.

5.3. Component Interaction

|RM| |GPP||CCU|

| |
get_res() w—getmap) '
1 1
set res(area) ! set map(GPP) |

i > R EXW

1 —_——
get_res() detmap()
1
M(&)_,; set_map(CCU)
1

AL 4 bt NG
|
'

| R | [v |

R.EX. W .

Figure 4. Interaction Between Various System Compo-
nents to Enable Runtime Application Mapping

To summarize the interaction between different compo-
nents, consider Figure |4 It shows an example time-interaction
diagram of the components that are involved in processing
application trace events for the GPP and a CCU. Before
forwarding any events, the VP asks the RMM onto which
processor the trace event has to be executed. Based on the
policy implemented, the RMM returns a target processor
identifier (either CCU or GPP) and the VP forwards events
accordingly. To support its decision making process, the RMM
may request additional information about the system or the
environment. In this case it requests the current available area
from the RM. If there is available area on the RP, RMM maps
the task onto the CCU otherwise to the GPP.

6. Case Study and Preliminary Results

In this section, we present a case study using the presented
model and discuss some preliminary results. The main focus
of this case study is to demonstrate an experimental validation
of two level mapping explorations using the presented model.
Therefore, the actual calibration of the model or the evaluation
of several mapping algorithms is left as future work.

M-JPEG2

Figure 5. Application Model

We use an MJPEG application as an application model.
Frames are divided in blocks and each task performs a differ-
ent function on each block as it is passed from one task to an-
other. There are two implementations of the model: MJPEG1
operates on the blocks (partially) in parallel, MJPEG2 operates
on the blocks sequentially (see Figure [5). MJPEGI and
MIJPEG?2 are combined together in order to create an example
of dynamic application behavior in the system. MJPEG2 can
be considered as a sporadic application that appears in the
system randomly and competes with MJPEG1 for the available
resources. This behavior is implemented such that at unspec-
ified times MJPEG2 starts encoding a frame simultaneously
with MJPEGI. Figure [5| shows the application model used for
this case study.

We instantiate an architecture model with 10 CCU units.
For illustration purposes, we use estimated values of computa-
tional latencies for the GPP and CCUs. Similarly, we also use
estimated values for the area occupancy on the FPGA and the
reconfiguration delay for each task. We have the assumption
that, no task can have a size larger than the total FPGA area.
For carrying out these experiments, we fix the size of each
task to 50% of the available area on the FPGA. Therefore,
two tasks can execute on the FPGA at the same time, however,
after reconfiguration, more than two tasks can execute on the
FPGA, as a result, there can be more than two tasks in the HW
and/or pageable task set. Our final assumption is that there is
no delay associated with the dynamic mapping such as task
migration time, context switching time, delay associated with
the RMM, etc.

The first level of static exploration is carried out with
the model we presented in [4]. MJIPEG1 and MJPEG2 are
separately mapped onto the given architecture and a range
of different mappings are evaluated. At the end of this ex-
ploration, the most suitable mapping is recorded which has
the following set of HW, SW and pageable tasks for each
application. For MJPEG1: HW; = {DCT;, DCT,, DCTs,
DCT4, Ql, QQ, Q3, Q4}, SW1 = {Videolnl, VLEl, VideoOutl,
Init; } and Page; = {@}. Similarly, for the MJPEG2, HW, =
{DCT, Q}, SW5 = {VideolIn, VLE, VideoOut, Init} and Pages
= {@}. Note that, only a subset of these tasks can fit on the
FPGA at the same time, but other tasks can also be executed

Elapsed Time

DCT1, DCT2, DCT3, DCT4, DCT, Q, Q1
DCT1, DCT2, DCT3, DCT4, DCT, Q, Q1, Q2
DCTI1, DCT2, DCT3, DCT4, DCT, Q, Q1, Q2, Q3

Pageable Task Set used as input to the Runtime Explo- | Tasks added to SW task set after the | Dynamic i/}zg;ing i/izg;ing
ration Runtime Exploration Mapping (GPP) (CCU)
DCT1 None 250299094 | 255014646 | 219436393
DCT1, DCT2 None 289329064 | 292241251 | 219436393
DCT1, DCT2, DCT3 DCT2 292183820 | 335035856 | 219436393
DCT1, DCT2, DCT3, DCT4 DCT2 346752251 | 374238416 | 219436393
DCT1, DCT2, DCT3, DCT4, DCT DCT2, DCT4 357931106 | 449243536 | 219436393
DCT1, DCT2, DCT3, DCT4, DCT, Q DCT2, DCT4 334587257 | 482804304 | 219436393

DCT2, DCT3, DCT4

DCT2, DCT3, DCT4, Q1

DCTI1, DCT2, DCT3, DCT4, Q1, Q2
DCT1, DCT2, DCT3, DCT4, DCT, Q, Q1, Q2, Q3, Q4 | DCTI, DCT2, DCT3, DCT4, Q1, Q2, Q3 | 425876433 | 556725840 | 219436393

377277865 | 501284688 | 219436393
392565665 | 519765072 | 219436393
407599184 | 538245456 | 219436393

Table 1. Experimental Results

on the FPGA after the reconfiguration of the FPGA for these
tasks. The second level of exploration can help to optimize
these task sets and can find an efficient set of tasks at runtime.
This can possibly also improve performance by avoiding the
reconfiguration delay for a task running on the GPP.

In order to carry out the second level of mapping explo-
ration at the runtime, the combined application model shown
in Figure [3 is considered. The initial task sets used as input
for this exploration are the combination of task sets from the
first level exploration as discussed in Section [3.1] These task
sets are as follows: HW = {DCT;, DCT,, DCT3, DCTy, Q,
Q2, Qs, Q4, DCT, Q}, SW = {VideoInl, VLE;, VideoOut;,
Inity, VideoIn, VLE, VideoOut, Init} and Pageable = {@}.

Based on analysis of the previous result, we choose some
of the HW tasks as pageable tasks for runtime exploration.
Note that, it is possible to mark all the tasks as a pageable
tasks. However some tasks are better fixed either as hardware
or as software to avoid several delays (reconfiguration delay
and/or change in mapping delay, etc) associated with them.
First level exploration provides such indications for creating
an efficient task set for runtime mapping exploration. At the
same time, the designers can impact these decisions based on
his/her knowledge and preferences. During the second level
exploration, the behavior of the pageable tasks at runtime is
noticed. For this, in each successive simulation, one task from
HW task set is marked as a pageable task and the performance
numbers are recorded. This result is listed in Table [II The
first column in the table shows the pageable tasks before
performing the runtime mapping exploration. Note that, the
software task set given in this case is fixed. The second column
in the table shows the pageable tasks which change their
execution behavior and become SW tasks after performing the
runtime exploration, other tasks than these tasks stay pageable.
The third column in the table shows the simulated execution
time when the task mapping is changed at runtime between the
GPP and the RP. The last two columns of the table show the
simulated execution time when the tasks are statically mapped
onto the GPP (column 4) and the RP (column 5) respectively.

The mapping policy implemented by the RMM is very
simple. The manager tries to allocate tasks to the RP, if
area is available, otherwise the tasks are allocated to the
GPP. As it can be inferred from Table [T} after performing
runtime exploration, the pageable tasks either move to the
GPP or to the RP based on the availability of chip area on the
latter. This process is highly affected by number of pageable
tasks specified in the system. When there are less pageable
tasks, these tasks are mapped onto the RP, however when this
number increases, many of these tasks are pushed onto the
GPP. In the first experiment, as shown in the first row of the
table, we consider only DCT; from HW task set as a pageable,
the rest of the tasks in the HW set are fixed to be HW. In this
case, the DCT; stays pageable and executes on the GPP and
the RP. However, in the last experiment, as shown in the last
row of the table, we consider all the tasks of the HW set as
pageable tasks and, as a result, many tasks move to the GPP
and become SW tasks. This is due to the fact that the RP has
limited area.

Another observation that can be made from Table [T] is in
terms of execution cycles. When all the tasks are mapped
onto CCUs, the performance is higher (column 5 of the table)
than when they are mapped on to GPP (column 4 of the
table). This happens because of the lower execution latency of
CCUs as compared to the GPP. With the dynamic mapping,
the performance has ranged between these two values (column
3 of the table). Note that, executing all the tasks on CCUs
can obtain the best performance but CCUs are limited in
terms of area and they also have penalty associated with
reconfiguration overhead. With the runtime mapping, we can
obtain performance improvement if RMM takes into account
these factors. Nevertheless, in this case study, we do not
see any performance improvements due to two main reasons.
First, the policy implemented by RMM is very simple and
it does not take into account the performance evaluation,
configuring delay, etc., for mapping decisions (it only looks
at available area). Second, for this particular experiment,
we used a fixed and very roughly estimated reconfiguration

delay for all the application tasks. Another reason for not
measuring speedups might be the fact that the area of all
tasks is fixed as 50% of the FPGA. A larger diversity of
size may give other results. We believe that, in the future,
we can see real performance improvements when realistic
values of reconfiguration delays/area are used and/or the RMM
implements intelligent policies based on a learning algorithm.

7. Conclusion and Future Work

In this paper, we presented a framework for two level DSE
for runtime mapping explorations of the reconfigurable archi-
tecture. A case study of an MJPEG application demonstrated
that the model can be used to explore the pageable task set
and optimize the task set at runtime by either moving them
to the HW set or the SW set. Due to the area constraints of
the RP, when the number of pageable tasks in the system
increased, more and more of them moved onto the GPP.
The model presented in this paper is flexible and can be
easily extended to incorporate various system information and
evaluate different mapping exploration methodologies. As a
result, in our future work, we will implement and evaluate
various runtime mapping exploration methodologies in order
to evaluate dynamic reconfigurable systems. Moreover, we
will validate the model against a real implementation to allow
for final calibration of the model in order to increase its
accuracy.

Acknowledgement: This research has been funded by the
hArtes project EU-IST-035143, the Morpheus project EU-IST-
027342 and the Rcosy Progress project DES-6392.

References

[1] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk,
and P. Cheung, “Reconfigurable computing: architectures and
design methods”, IEEE proceedings of Computers and Digital
Techniques, vol. 152, June 2005, pp. 193-207.

[2

—

K. Compton and S. Hauck, “Reconfigurable computing: A
survey of systems and software”, ACM Computing Surveys,
vol. 35, June 2002.

[3] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Recon-
figurable Computing, S. Vassiliadis and D. Soudris, Springer,
2007, vol. XVI.

[4

—

K. Sigdel, M. Thompson, A. Pimentel, T. P. Stefanov, and
K. Bertels, “System-level design space exploration of dynamic
reconfigurable architectures”, Proceeding of International Sym-
posium on Systems, Architectures, MOdeling and Simulation,
July 2008, pp. 279-288.

[5] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic ap-
proach to exploring embedded system architectures at multiple
abstraction levels”, IEEE Trans. Comput., vol. 55, no. 2, pp.
99-112, 2006.

[6] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuz-
manov, and E. M. Panainte, “The molen polymorphic pro-
cessor’, IEEE Transactions on Computers, pp. 1363— 1375,
November 2004.

[7

—

J. Noguera and R. M. Badia, “System-level power-performance
trade-offs in task scheduling for dynamically reconfigurable
architectures”, Proceedings of the international conference on
Compilers, architecture and synthesis for embedded systems,
pp. 73-83, October 2003.

[8] P.-A. Hsiung, C.-S. Lin, and C.-F. Liao, “Perfecto: A systemc-
based design-space exploration framework for dynamically re-
configurable architectures”, ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 1, no. 3, pp. 1-30, 2008.

[9] T.Rissa, M. Vasilko, and J. Niittylahti, “System-level modelling
and implementation technique for run-time reconfigurable sys-
tems”, Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2002, pp
295.

[10] Y. Qu and J.-P. Soininen, “Systemc-based design methodology
for reconfigurable system-on-chip”, Proceedings of the 8th
Euromicro Conference on Digital System Design, 2005, pp.
364-371.

[11] G. Stll, R. Lysecky, and F. Vahid, “Dynamic hardware/software
partitioning: A first approach”, Proceedings of the Design
Automation Conference, 2003.

[12] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Yajun,
“Resource manager for non-preemptive heterogeneous multi-
processor system-on-chip”, in Proceedings of the Workshop on
Embedded Systems for Real-Time Multimedia, 2006, pp. 33-38.

[13] O. Moreira, J. J.-D. Mol, and M. Bekooij, “Online resource
management in a multiprocessor with a network-on-chip”, in
Proceedings of the 2007 ACM symposium on Applied comput-
ing, 2007, pp. 1557-1564.

[14] C. Ykman-Couvreur, E. Brockmeyer, V. Nollet, T. Marescaux,
F. Catthoor, and H. Corporaal, “Design-time application explo-
ration for mp-soc customized run-time management”, Proceed-
ings of International Symposium on System-on-Chip, 2005, pp.
66—69.

[15] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corpo-
raal, “Run-time management of a mpsoc containing fpga fabric
tiles”, IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 1,
pp. 24-33, 2008.

[16] G. Kahn, “The semantics of a simple language for parallel
programming”, in Proc. of the IFIP Congress 74, 1974.

[17] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M. Panainte,
“The molen programming paradigm”,Proceeding of Interna-
tional Symposium on Systems, Architectures, MOdeling and
Simulation, July 2003, pp. 1-10.

[18] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra,
“A framework for system-level modeling and simulation of
embedded systems architectures”, EURASIP J. Embedded Syst.,
vol. 2007, no. 1.

	Introduction
	Related Work
	Dynamic Application Mapping
	Two Levels Mapping Exploration

	Tools and Platforms
	Reconfigurable Architecture
	Sesame Framework

	The Model
	Runtime Application Mapping
	Runtime Mapping Manager
	Component Interaction

	Case Study and Preliminary Results
	Conclusion and Future Work
	References

