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Abstract. The Sesame modeling and simulation framework aims at early and
thus efficient system-level design space exploration of embedded multimedia sys-
tem architectures. So far, Sesame only supported performance evaluation when
mapping a single application onto a (multi-processor) architecture at the time.
But since modern multimedia embedded systems are increasingly multi-tasking,
we need to address the modeling of effects of executing multiple applications
concurrently in our system-level performance models. To this end, this paper con-
ceptually describes two multi-application workload modeling techniques for the
Sesame framework. One technique is based on the use of synthetic application
workloads while the second technique deploys only real application workloads
to model concurrent execution of applications. For illustrative purposes, we also
present a preliminary case study in which a Motion-JPEG encoder application is
executed concurrently with a small synthetic producer-consumer application.

1 Introduction

The increasing complexity of modern embedded systems has led to the emergence of
system-level design [1]. A key ingredient of system-level design is the notion of high-
level modeling and simulation in which the models allow for capturing the behavior of
system components and their interactions at a high level of abstraction. As these high-
level models minimize the modeling effort and are optimized for execution speed, they
can be applied at the very early design stages to perform, for example, architectural
design space exploration. Such early design space exploration is of eminent importance
as early design choices heavily influence the success or failure of the final product.

In recent years, a fair number of system-level simulation-based exploration envi-
ronments have been proposed, such as Metropolis [2], GRACE++ [3], Koski [4], and
our own Sesame [5] framework. The Sesame modeling and simulation framework aims
at efficient system-level design space exploration of embedded multimedia systems, al-
lowing rapid performance evaluation of different architecture designs, application to
architecture mappings, and hardware/software partitionings. Moreover, it does so at
multiple levels of abstraction. Key to this flexibility is the separation of application and
architecture models, together with an explicit mapping step to map an application model
onto an architecture model.

So far, Sesame has only supported the mapping of a single application onto an
architecture model at the time. But since modern multimedia embedded systems are in-



creasingly multi-tasking, we need to address the modeling of effects of executing mul-
tiple applications concurrently in our system-level architecture models. To this end, this
paper presents two multi-application workload modeling techniques. One technique is
based on the use of synthetic application workloads while the second technique deploys
only real application workloads to model concurrent execution of applications. The pre-
sented techniques are currently being implemented in our Sesame framework. This im-
plies that this paper mostly discusses concepts while detailed results will be published
in a follow-up paper. However, for illustration purposes, we do present a preliminary
case study in which a Motion-JPEG encoder application is executed concurrently with
a small synthetic producer-consumer application.

The remainder of the paper is organized as follows. The next section provides an
introduction to the Sesame modeling and simulation framework. Section 3 presents
the two proposed multi-application workload modeling techniques for Sesame. This
section also contains a discussion on how these workload modeling techniques can be
used for the modeling of reactive application behavior. In Section 4, we present a small
case study in which we model the concurrent execution of two applications. Section 5
describes related work, after which Section 6 concludes the paper.

2 Sesame

The Sesame modeling and simulation environment [5], illustrated in Figure 1, addresses
the performance analysis of embedded multimedia system architectures. To this end, it
recognizes separate application and architecture models, where an application model
describes the functional behavior of an application and the architecture model defines
architecture resources and captures their performance constraints. After explicitly map-
ping an application model onto an architecture model, they are co-simulated via trace-
driven simulation. This allows for evaluation of the system performance of a particular
application, mapping, and underlying architecture. Such an explicit separation between
application and architecture opens up many possibilities for model re-use. For example,
a single application model can be used to exercise different hardware/software parti-
tionings or can be mapped onto a range of different architecture models.

For application modeling, Sesame uses the Kahn Process Network (KPN) model
of computation [6], which nicely fits the targeted multimedia application domain [7].
KPNs are structured as a network of concurrent communicating processes, connected
via unbounded FIFO channels. Reading from these channels is done in a blocking man-
ner, while writing is non-blocking. The computational behavior of an application is cap-
tured by instrumenting the code of each Kahn process with annotations that describe the
application’s computational actions. The reading from and writing to Kahn channels
represent the communication behavior of a process within the application model. By
executing the Kahn model, each process records its computational and communication
actions to generate its own trace of application events, which is necessary for driving
an architecture model. There are three types of application events: the communication
events READ and WRITE and the computational event EX(ECUTE). These application
events typically are coarse grained, such as EX(DCT) or READ(channel id,pixel-block).



Mapping layer

OP cycles

X
Y

750
150
1500Z

Architecture model layer

Application model layerevent
trace

Scheduler

processor

Process DProcess A

Process C

Buffer

processor processor
Virtual

Buffer

Buffer
Buffer

processor
Virtual

Process B

= application event trace

Virtual Virtual

FIFO

Bus

P1P0

Shared

P2

Memory

Fig. 1. The three layers in Sesame’s modeling and simulation infrastructure.

An architecture model simulates the performance consequences of the computa-
tion and communication events generated by an application model. To this end, each
architecture model component is parameterized with a table of operation latencies (il-
lustrated for Processor 0 in Figure 1). The table entries could, for example, specify the
latency of an EX(DCT) event, or the latency of a memory access in the case of a memory
component.

To map Kahn processes from an application model onto architecture model compo-
nents and to support the scheduling of application events when multiple Kahn processes
are mapped onto a single architecture component (e.g., a programmable processor),
Sesame provides an intermediate mapping layer. This layer consists of virtual proces-
sor components and FIFO buffers for communication between the virtual processors.
There is a one-to-one relationship between the Kahn processes in the application model
and the virtual processors in the mapping layer. This is also true for the Kahn channels
and the FIFO buffers in the mapping layer, except for the fact that the latter are limited
in size. Their size is parameterized and dependent on the modeled architecture. A vir-
tual processor in the mapping layer reads in an application trace from a Kahn process
and dispatches the events to a processing component in the architecture model. Com-
munication channels – i.e., the buffers in the mapping layer – are also mapped onto the
architecture model. In Figure 1, for example, buffers can be placed in shared memory or
can use the point-to-point FIFO channel between processors 0 and 1. Accordingly, the
architecture model accounts for modeling the communication (and contention) behavior
at transaction level, including arbitration, transfer latencies and so on.

The mechanism used to dispatch application events from a virtual processor to an
architecture model component guarantees deadlock-free scheduling of the application
events from different event traces [5]. In this mechanism, EX(ecute) events are always
immediately dispatched by a virtual processor to the architecture model component



that models their timing consequences. Scheduler components in the mapping layer
(see Figure 1) allow for scheduling the dispatched application events from different
virtual processors that are destined for the same (shared) architecture model resource.
Communication events, however, are not immediately dispatched to the underlying ar-
chitecture model. Instead, a virtual processor that receives a communication event first
consults the appropriate buffer at the mapping layer to check whether or not the com-
munication is safe to take place so that no deadlock can occur. Only if it is found to be
safe (i.e., for read events the data should be available and for write events there should
be room in the target buffer), then communication events may be dispatched. As long
as a communication event cannot be dispatched, the virtual processor blocks. This is
possible because the mapping layer executes in the same simulation as the architecture
model. Therefore, both the mapping layer and the architecture model share the same
simulation-time domain. This also implies that each time a virtual processor dispatches
an application event (either computation or communication) to a component in the ar-
chitecture model, the virtual processor is blocked in simulated time until the event’s
latency has been simulated by the architecture model.

Essentially, the mapping layer can be considered as an abstract RTOS model, in
which the virtual processors are abstract representations of application processes that
are executing, ready for execution or blocked for communication. Here, the scheduler
components in the mapping layer provide the scheduling functionality of the RTOS.

3 Multi-application workload modeling

As mentioned before, Sesame has up to now only supported the mapping of a single ap-
plication onto an architecture model at the time. Modern multimedia embedded systems
are however increasingly multi-tasking. Therefore, we need to address the modeling of
effects of executing multiple applications concurrently in our system-level architecture
models. To this end, we propose two multi-application workload modeling techniques.
One technique, which we will discuss first, is based on the use of synthetic applica-
tion workloads while the second technique deploys only real application workloads to
model concurrent execution of applications.

3.1 Synthetic multi-application workload modeling

Multi-application modeling using synthetic application workloads is illustrated in Fig-
ure 2. Note that the FIFO buffers between virtual processors are not depicted in Figure 2
for the sake of simplicity. On the left-hand side, a Sesame system-level model with a
single, primary application is shown. The three processes in this application are mapped
onto two processing cores (P0 and P1) in the underlying architecture. Since processes
A and B are mapped onto the same resource, a scheduler named Local-Scheduler (or
L-Scheduler) is used for scheduling the workloads (i.e., application events) from both
processes. However, a second level of scheduling hierarchy is added by introducing
so-called Global-Schedulers (or G-Schedulers). These global schedulers are basically
equivalent to local schedulers in terms of functionality but instead of intra-application
events they schedule application events from different applications. Evidently, the local



and global schedulers can also deploy different scheduling policies. When, for exam-
ple, the interleaving of processes inside an application is statically determined at com-
pile time, the local scheduler can model this by ‘merging’ the events from the event
traces according to this given static schedule. At the same time, the global scheduler
can schedule application events from different applications in a dynamic fashion based
on, for example, time slices, priorities, or a combination of these two. Here, we would
like to note that although the schedulers support preemptive scheduling, this can only
be done at the granularity of application events. The simulation of a single application
event is atomic and thus cannot be preemted in Sesame. Furthermore, we currently do
not model any overheads caused by the context switching itself (e.g., OS overhead,
cache misses, etc.). This is considered as future work.
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Fig. 2. Multi-application modeling using syn-
thetic application workloads.

In synthetic multi-application mod-
eling, the application events external
to the primary application (see Fig-
ure 2) are generated by a stochastic
event generator. Hence, this event gen-
erator mimics the concurrent execu-
tion of one or more application(s) be-
sides the primary application. Based
on a stochastic application description,
which will be discussed later on, the
application generator generates traces
of EX(ecute), READ and WRITE ap-
plication events and issues these event
traces to special virtual processors, in-
dicated by VPS in Figure 2. Multi-
ple instances of these event generators,
each with their own stochastic applica-
tion description, can be used to model
concurrent execution of more than two
applications.

The virtual processors (VPS) used for the trace events from the stochastic event
generator are special in the sense that they, unlike normal virtual processors, are not
connected to each other according to the application topology (see Section 2). Rather
than explicitly modeling communication synchronizations, a VPS models synchroniza-
tion behavior stochastically. To illustrate the interactions between the event generator,
a VPS and a global scheduler of a system-level model, consider Figure 3. The figure
shows these interactions in the case an ”EX(A) , EX(B) , READ , WRITE ” event se-
quence is generated by the event generator. At (simulation) time t0, the EX(A) event is
consumed by the VPS. The VPS immediately forwards this event to the global sched-
uler it is connected to, and waits for an acknowledgment from the scheduler. After
the EX(A) event has been scheduled for execution on the architectural resource (tak-
ing T(sched) time units) and the actual execution (taking T(A) time units), control is
returned to the VPS by sending it an acknowledgment. Hereafter, the VPS can con-
sume another application event again. In the case of the example in Figure 3, the VPS
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Fig. 3. Interaction between Virtual Processor (VPS) and G(lobal)-Scheduler in synthetic multi-
application modeling.

now consumes the EX(B) event which is handled in an identical fashion as the EX(A)
event. However, VPS handles the READ and WRITE events, which are consumed at
times t2 and t3 respectively, in a slightly different way. Instead of directly forwarding
these events to the global scheduler, like is done with EX events, VPS now first models
a synchronization latency. This latency refers to the time the read and write transactions
need to wait for data or room in the buffer from/to which is read/written. The synchro-
nization latency, indicated by T(sync) in Figure 3, is a stochastic parameter of VPS, as
discussed below.

Table 1. Parameters for the synthetic application workload generation.

Stochastic event generator parameter Description
AEx Set of possible Ex(ecute) application events

PExi , with ∑
i∈AEx

PExi = 1 Probabilities of the different events in AEx

rcomp:rcomm Computation to communication ratio
rread :rwrite Read to write ratio

M Set of possible message sizes

PMi , with ∑
i∈M

PMi = 1 Probabilities of the different message sizes

NP Number of communication ports

Pporti , with
NP

∑
i=0

Pporti = 1 Probabilities of the different port usages

VPS parameter Description
SyncRead Mean synchronization latency for reads

σRead Standard deviation of read latencies
SyncWrite Mean synchronization latency for writes

σWrite Standard deviation of write latencies



Table 1 lists the parameters used by the stochastic event generator as well as a
VPS. These parameters can be specified both globally – describing the behavior for
all traces (for the event generator) or ports (for a VPS) – and on a per-trace/per-port
basis. Descriptions on a per-trace/per-port basis overrule global descriptions, in the case
there is an overlap of both types of descriptions. The parameter AEx specifies the set of
possible EX events that can be generated. For example, AEx = {DCT,V LE} specifies
that EX(DCT) and EX(VLE) events can be generated. PExi describe the probabilities
of the events in AEx. The ratio’s rcomp:rcomm and rread :rwrite specify the computation to
communication ratio and read to write ratio, respectively. So, for example, by increasing
the rcomp:rcomm ratio, the application behavior can be made more computationally or
communication intensive. The parameter M specifies the set of possible message sizes
that can be used in communications. In multimedia applications, application data is
often communicated in fixed data chunks (e.g. pixel blocks) from one application phase
to the other. PMi specify the probabilities of the different message sizes. NP denotes the
number of communication ports for which read and write transactions can be generated.
Pporti are the probabilities of the different port usages. Again, all of the above parameters
can be specified globally (valid for all event traces) or on a per-trace basis.

The VPS parameters SyncRead and SyncWrite specify the mean synchronization la-
tency for read and write transactions, respectively. σRead and σWrite contain the stan-
dard deviations of the two aforementioned means. By default, a VPS uses an Erlang
distribution to determine synchronization latencies. These VPS parameters can again be
specified globally (valid for all communication ports of a VPS) or on a per-port basis.

3.2 Realistic multi-application workload modeling

In our second multi-application workload modeling technique, we realistically model
the concurrent execution of multiple applications. That is, multiple Kahn application
models are actually executed concurrently, as shown in Figure 4, and produce realistic
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event traces that are again scheduled on the underlying architectural resources using
the global schedulers. In contrast to synthetic workload modeling, the secondary KPNs
use normal virtual processors in the mapping layer. Hence, synchronization behavior
in the parallel applications is modeled explicitly for all participating KPN applications
(i.e., there is no difference between primary and secondary applications). This implies
that, when considering Figure 3, the T(sync) now refers to the actual synchronization
times between application processes. Moreover, the secondary KPNs also require L-
schedulers to ’merge’ (i.e. schedule) event traces when multiple application tasks are
mapped onto a single architecture resource. Naturally, the policies of the L-schedulers
can vary between the different KPN applications taking part in the system simulation.
When considering Figure 3, we now have T(sched) = T(L-sched) + T(G-sched) for all
participating KPNs.

3.3 Modeling reactive behavior

Because of its deterministic behavior, the KPN model of computation is relatively un-
suited for modeling reactive application behavior, such as the occurrence of interrupts
(e.g., a user presses a button on the TV’s remote control after which teletext is started
as a picture-in-picture application on the screen). Several researchers have proposed
extensions to the KPN model of computation to resolve this [7–9]. Our two multi-
application workload modeling techniques support the modeling of reactive behavior
between applications, which could each be specified as a regular KPN. This can be
achieved in a transparent manner by adding a ‘SLEEP(N)’ application event, which ba-
sically indicates that an application process is not active during a period of N time units.
More specifically, a SLEEP event causes a virtual processor to sleep (i.e. block in vir-
tual time) for the specified period. This event would not be simulated by the underlying
architecture model. Evidently, the SLEEP events provide the opportunity to freeze the
issuing of application events for a while, which basically mimics sporadic or periodic
execution behavior of applications. To give an example in the case of synthetic multi-
application modeling, the (stochastic) application event generator could model periods
of inactivity (i.e., generating SLEEP events for all application processes) alternated with
periods of application activity (i.e., generating EX, READ , and WRITE events). Clearly,
this approach would allow us to assess a variety of different scenarios or use cases [10].
However, further research is needed to gain more insight about the qualitative and quan-
titative aspects of this modeling mechanism.

4 A preliminary case study

For illustrative purposes, we performed a small experiment using the multi-application
workload modeling support that has already been realized in Sesame. More specifi-
cally, we modeled two Kahn applications that execute concurrently. The first (and pri-
mary) application is a Motion-JPEG (M-JPEG) encoder, and the other one is a syn-
thetic ‘producer-consumer’ application transferring data from producer to consumer.
The M-JPEG application encodes 8 consecutive 128x128 resolution frames, while the
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Fig. 5. Estimated execution times of concurrent execution of M-JPEG and producer-consumer
applications. The latter is parameterized in both computation and communication grainsize.

producer-consumer application is parameterizable in both computational and commu-
nication load. That is, the producer iteratively models a parameterizable computing
latency after which it sends a parameterizable chunk of data to the consumer. In our
system-level model, both applications are mapped onto a multi-processor SoC, contain-
ing 4 processors with distributed memory and connected through a crossbar switch. We
applied a simple round-robin policy for scheduling tasks from both applications at the
G-schedulers (see Section 3.2).

Figure 5 shows the estimated system-level execution times (combined for both ap-
plications) when varying the computation and communication grainsizes of the producer-
consumer application. As can be seen from Figure 5, the results show a quite pre-
dictable behavior, which helps to gain trust in our multi-application modeling method.
That is, the system performance is only marginally affected for small computation
and communication grains of the producer-consumer application. But after a certain
threshold, the producer-consumer application starts to dominate the system perfor-
mance (computation-wise, communication-wise, or both). As a next step, we plan to
actually validate these results using the ESPAM system-level synthesis framework [11],
which would allow us to compare our simulation results against an actual system im-
plementation.

5 Related work

The modeling of (parallel) workloads for the purpose of performance analysis is a well-
established research domain, both in terms of realistic and synthetic workload modeling
(see e.g. [12–14]). A recent focus area is, for example, statistical simulation for micro-
architectural evaluation [15]. In this technique, a stochastic program description, which
is a collection of distributions of important program characteristics derived from execu-



tion profiles, is used to generate synthetic instruction traces. These synthetic traces are
subsequently used in trace-driven processor and/or memory-hierarchy simulations. An-
other area in which synthetic workload modeling has recently received a lot of attention
is network workload modeling for network-on-chip simulations [16–18].

In [19, 20], multimedia application workloads are described and characterized an-
alytically using so-called variability characterization curves (VCCs) for system-level
performance analysis of multi-processor systems-on-chip. These VCCs allow for cap-
turing the high degree of variability in execution requirements that is often present in
multimedia applications.

A fair number of research efforts addressed the high-level modeling of a RTOS to
be used in system-level models for early design space exploration [21–23]. Rather than
focusing on how to model multi-application workloads, these efforts mainly address
abstract modeling of RTOS functionality, efficient simulation of this functionality, and
refinement of these abstract RTOS models towards the implementation level.

6 Conclusions

In this paper, we addressed the extension of our Sesame modeling and simulation frame-
work to support the modeling of multi-tasking between applications for the purpose of
system-level performance analysis. To this end, we proposed two mechanisms for mod-
eling multi-application workload behavior: one based on synthetic workload modeling
and the other using only real application workloads. In addition, we indicated how re-
active behavior at application granularity could be modeled. All presented methods are
currently being implemented in Sesame. Using a small preliminary case study, however,
we were already able to show an example of multi-application workload modeling using
two applications. Future work needs to study the scope of application scenarios or use
cases that can be modeled with these techniques. For example, it should be investigated
to what extent the synthetic workload modeling technique allows for capturing the vari-
ability in execution requirements that is typically present in multimedia applications.
Possibly, this technique could be extended with variability characterization curves such
as proposed in [19, 20].
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