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a b s t r a c t

In this paper, we present a two-phase design space exploration (DSE) approach to address the problem of
real-time application mapping on a flexible MPSoC platform. Our approach is composed of two indepen-
dent phases – analytical estimation/pruning and system simulation – communicating via a well-defined
interface. The strength of the resulting strategy is twofold. On one hand, it is capable of combining the
benefits of analytical models and simulation tools (i.e., speed and accuracy). And on the other hand,
separating pruning and evaluation phases facilitates the integration of different or additional pruning
techniques as well as other existing simulation tools. Finally, we also present several proof-of-concept
DSE experiments to illustrate distinct aspects and capabilities of our framework. These experimental
results reveal that our approach, compared to other approaches based only on analytical estimation mod-
els or simulations guided by e.g. genetic algorithms, not only can explore a large design space and reach a
valid solution in a time-efficient way, but also can provide solutions optimizing resource usage efficiency,
system traffic and processor load balancing.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

The increasing levels of integration are leading to more complex
embedded systems on chip, which can contain multiple and possi-
bly different processing elements, storage elements and network
elements [1]. In this context, these multiprocessor-systems-on-
chip (MPSoC) platforms are emerging as an interesting solution
in the development of modern SoCs, since they can provide a
flexible and re-usable architecture to support different product
versions (or family of products), and an architecture that can be
easily modified in response to market needs, users requirements
and product updates during the product life cycles.

In order to cope with the challenge of designing such complex
MPSoCs under an increasing time-to-market pressure and enor-
mous market competitiveness, Design Space Exploration (DSE) is
becoming a key ingredient for system designers. DSE consists of
exploring a large number of different design decisions (or options)
to find a set of optimal system designs that matches the user spec-
ifications and design constraints (such as power/energy, cost/area,
and throughput). That is, DSE for modern embedded system design
often has to cope with a multi-objective optimization problem.

Different kinds of DSE can be carried out during the whole
system design process (from the initial specifications to the final

design implementation). An example of DSE classification is shown
in Fig. 1, although other classifications can be also found in the lit-
erature [2,3]. The DSE classification illustrated in Fig. 1 is based on
the range of design options explored at different abstraction levels,
where these DSE processes are orthogonal to each other. For exam-
ple, a DSE in the application domain can explore different possibil-
ities of partitioning an application at algorithmic level, while the
exploration of the mapping design space may comprise design
decisions such as HW/SW partitioning and task assignment on pro-
cessing resources. On the other hand, architectural platform DSE
usually concentrates on overall system design (e.g., decisions about
the number and type of components, component allocation in a
platform, etc.) instead of the individual components, while mi-
cro-architecture DSE is focused precisely on exploring this in-com-
ponent configuration space, i.e., refining component parameters
such as cache size, bus arbiter policy, and functional units within
a processor architecture. In this paper, we focus on both mapping
and architectural platform DSE at system level.

Independent of which of the aforementioned design spaces is
explored, any DSE process can be decomposed into two interde-
pendent components [4,5]: the strategy for exploring (i.e., search-
ing) the design space and the mechanism for evaluating a single
design point in that space. In fact, these DSE components have
received significant research attention during the last decades
[3,5–17], since they both heavily influence the efficiency and
accuracy of the DSE process.
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The ultimate goal of exploration strategies is to visit different
design points in a design space in order to find a set of solutions
that best optimizes the multiple and often contradictory design
constraints. These exploration strategies can be divided into two
categories: exact and approximated approaches. An exact approach
(e.g., exhaustive search) is only possible when all the points in a
design space have been characterized in terms of the target metrics
or design objectives. However, the main problem is that the design
space often is prohibitively large for an exhaustive search. In fact,
the higher the abstraction level of the DSE, the more design options
can be explored, and the more design alternatives can be chosen to
satisfy a given set of design constraints (Fig. 1).

When an exhaustive search is infeasible, approximated explor-
ing approaches must be adopted. Basically, an approximated ap-
proach (e.g., random search, techniques based on evolutionary
algorithms and/or heuristics, etc.) proposes to prune the design
space by exploring only a limited number of design points.
Although such design space pruning indeed improves DSE effi-
ciency by reducing the overall analysis time [6–13,18,19], it is
important to note that this approach does not guarantee that opti-
mal solutions are found. Instead, it will identify a set of near-to
optimal (or sub-optimal) solutions.

The efficiency of the DSE process can also be improved from the
perspective of the method used to evaluate design points. As de-
picted in Fig. 1, the evaluation method applied in DSE typically de-
pends on the particular abstraction level and design objectives. For
example, at higher levels of abstraction, estimation techniques
(ranging from analytical models to system-level cycle-approxi-
mate simulation) allow designers to rapidly obtain estimates of
the final characteristics of a design point. At lower levels of
abstraction, evaluation tools such as Instruction Set Simulators
and RTL simulators are capable of carrying out slow(er) but cy-
cle-accurate analysis. As this work addresses system-level DSE,
the rest of the paper will focus on analytical and cycle-approximate
simulation techniques.

The low computational demands of an analytical model enable
it to analyze a large number of design alternatives in a reasonable
amount of time. However, it also suffers from two drawbacks. First,
most analytical models only focus on the importance of a subset of
design variables, while they assume fixed values for other design
options and/or do not model some design parameters that form
the axes of the design space [3,7,9–14,18,20]. As a consequence,
the resulting analytical model is often inflexible and hard to re-
use for different case studies. Second, analytical models often fail
to consider non-deterministic system behavior, such as unpredict-
able arbitration delays of communication architectures due to
simultaneous access requests by multiple competing processors.
As a result, such non-linear system behavior makes an accurate
performance estimation difficult without the use of simulation.

System-level simulation, on the other hand, allows for accu-
rately evaluating the dynamic system behavior and provides de-
tailed system metrics [15–17]. However, it is impractical to use
these simulators to explore large design spaces due to (i) the high
set-up effort for creating different architecture and mapping mod-
els, and (ii) the prohibitively high total run-time. As a consequence,
the simulation tools are often coupled with some kind of pruning
approach in practice [6,9–14,18,21]. However, in spite of the effi-
ciency improvements achieved in those approaches, it should be
noticed that the total run-time of such DSE experiments is usually
still in the order of several hours.

Based on the former analysis, it is clear that efficient DSE for
application mapping onto MPSoC platforms is a non-trivial prob-
lem. First, in order to find a set of optimal mappings under multiple
design constraints, a vast number of design decisions should be ex-
plored. Not surprisingly, this problem is NP-hard [22]. Second, both
analytical models and system-level simulators are not suitable

enough to explore such a large design space of mappings, since
the former is not sufficiently accurate and the latter are too
time-consuming.

This work presents a DSE strategy that addresses the above
problem. Our final goal is to find the optimal mapping(s) of a
real-time application on an MPSoC platform while considering
multiple design objectives. To this end, our approach is composed
of two phases – analytical estimation/pruning and system simula-
tion –, such that the resulting strategy is capable of combining the
benefits of both analytical models and system-level simulation
tools (i.e., speed and accuracy). In the first phase, we use a set of
analytical methods considering both deterministic and dynamic
system behaviors to rapidly explore design points, as well as to
eliminate those design points that cannot satisfy the user require-
ments. The output of this pruning process is a reduced number of
mapping alternatives, which are evaluated accurately in the second
phase by a system-level simulation tool in order to find the (sub-
)optimal mapping solution(s). The strength of our approach lies
in its flexibility. Separating the pruning and evaluation phases
facilitates the integration of different or additional pruning tech-
niques as well as other existing simulation tools, if they satisfy
the simple interface requirement of our framework.

The remainder of the paper is organized as follows. In the next
section, related work is surveyed. Section 3 provides some concept
definitions used throughout this paper, as well as presents an over-
view of our approach. Subsequently, Section 4 describes various
implementation issues of our approach. In Section 5 we present a
range of experimental results from a case-study with a Visual
Tracking Application. And finally, Section 6 concludes the paper
and discusses future work.

2. Related work

There exist numerous efforts on DSE for MPSoC design, of which
only a representative subset will be discussed in this section. Par-
ticularly, we will put emphasis on approaches addressing the prob-
lem of application mapping on MPSoCs, as well as on strategies for
achieving an efficient DSE.

Jia et al. [18] propose a two-phase approach based on heuristics
to explore distinct mappings of a real-time application on a homog-
enous multiprocessor architecture. Kim et al. [23] also proposed a
framework based entirely on analytical methods for DSE. In this
case, they focused on the exploration of a design space associated
to the HW/SW partitioning and scheduling policy for each process-
ing element, in order to ensure that the application timing require-
ments are met. In the framework presented by Madsen et al. [13],
different mapping alternatives are evaluated (by means of an

Fig. 1. An example of classification for DSE approaches.
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analytical model) for a flexible platform during the exploration pro-
cess. All these works are based on simplified communication archi-
tecture models to estimate the system traffic cost, which may not
be realistic enough for modelling modern embedded systems, as
they may lead to non-optimal solutions.

In order to overcome this lack of realism of the modelling of
communication, analytical approaches considering the dynamic
behavior and resource sharing have been proposed in [20,24]. Basi-
cally, they propose an analytical model for each kind of architec-
tural component that can later be composed to capture and
analyze the complete system. However, the authors of these efforts
also state that, in spite that their models can achieve a good level of
accuracy (with a reasonable estimation error), it is not easy to com-
bine such models for the evaluation of large systems such as those
required in many MPSoC applications.

A system-level simulation tool represents a natural alternative
for a more accurate performance evaluation, and/or the analysis
of more complex design problems in larger embedded systems.
In [6], Sesame [16] was coupled with genetic algorithms (provided
by the PISA framework [3,25]) to address the mapping of multiple
applications (with different timing requirements) executing con-
currently on the same MPSoC. In [19], CASSE [15] was used in
DSE experiments aiming at finding the optimal mapping of a target
application on an MPSoC that works with multiple clock domains.
Lahiri et al. [7] combined PTOLEMY [17] with an iterative algo-
rithm to determine the well-optimized configuration of arbitration
schemes for the different network elements on the architecture,
such that the system performance is maximized. However, in spite
of achieving the desired solutions with a relatively low number of
simulations, a high total run-time – typically in order of hours – of
each DSE experiment still is a common denominator in these
works.

A few approaches combining analytical estimation models and
simulations in a single framework have been proposed. Most of
them are focused on the problem of micro-architecture DSE [9–
12], and their ultimate goal is to minimize the number of simula-
tions executed during the DSE process. To this end, several novel
techniques have been proposed (e.g., estimation based on a hierar-
chical fuzzy system [9], response surface modelling [10], statistical
trace-driven simulations [11], and heuristics [12]), which are often
coupled to evolutionary algorithms to prune the large design space
and provide an acceptable approximation of the Pareto-optimal
front, i.e., a set of sub-optimal solutions. These works are orthogo-
nal to our approach, as we explore the mapping and architectural
platform design spaces at a higher level of abstraction, and the
above approaches can be applied to further refine the parameter
configurations of components used in the architectures found in
our DSE.

Finally, a hierarchical and three-phase DSE methodology was
explained in [8], which has a similar objective as the approach pre-
sented in this paper. However, there are some key differences with
respect to our work. While our approach deploys an analytical esti-
mation model to carry out the pruning phase, the approach pre-
sented in [8] draws a clear boundary between the pruning
process and system performance estimation. That is, their ap-
proach first uses a symbolic constraint satisfaction method to iden-
tify candidate design points meeting the user specified constraints,
and subsequently, the system wide performance of the design
points obtained in that pruning process is individually evaluated
using simulations. On the other hand, unlike our work, the impact
of the resource placement in the architecture, as well as the con-
tention effects on the shared communication architecture are not
explicitly explored in [8].

Lee et al. [14] also presented a framework that determines the
optimal mapping of a given real-time application for MPSoCs. This
two-phase approach first selects an optimal set of processing

elements for the mapping of the target application. Then, by means
of a static estimation method based on a queuing model, they
explore and prune the design space of communication
architectures. And finally, their framework provides a set of
interfaces that facilitate the integration of different simulation
tools, which can be used to accurately evaluate each solution in
the reduced design space. Unlike our approach, they address the
DSE as a high-level synthesis problem. Moreover, their queuing
model is limited to a bus-based topology, while our analytical esti-
mation model is not restricted to a particular architecture, but it is
flexible enough to analyze different kinds of communication
architectures.

3. Problem statement and overview of the proposed approach

3.1. Preliminaries

In this section, we define the concepts and key assumptions
underlying our approach, and follow-up with a formal problem
statement.

Definition 1 (Application model). A real-time application is mod-
elled as a task graph (expressed as a Directed Acyclic Graph)
DAG = {T, L, D}, where T = {t1, t2, . . ., tk} is a set of k periodic tasks
that must be executed in a certain order to produce the desired
results under a real-time constraint (RTC), L = {l12, l13, . . ., ljk}
represents a set of h unidirectional channels or links that connect
the tasks with each other as well as indicate their data dependen-
cies, and D = {d12, d13, . . ., djk} specifies the amount of shared data
associated to each link.

Definition 2 (MPSoC template). In this work, we discuss our DSE
methodology in a context of MPSoC architectures that are com-
posed of respectively p, m and n component holders for Processing
Elements (PEs), Storage Elements (SEs) and Network Elements
(NEs), where the connections between different components as
well as the architectural topology (defined by the number and type
of network elements) are already fixed. More specifically, this
paper focuses on MPSoC templates composed of several homoge-
neous RISC processors completed with a few different hardware
dedicated blocks1, rather than MPSoCs based on various PE types
having different and multiple computational characteristics. As a
consequence, different architecture instances can be derived from
the same MPSoC template by varying the number and type of pro-
cessing elements and storage elements, as well as their allocation
in the component holders of the architecture. New templates can
be also generated by creating new topologies with different network
elements.

Assumption 1. We assume that there is a library of configurable
resource models for the processing element, storage element and
network elements, which can be instantiated and configured prop-
erly to build the architecture templates mentioned in Definition 2.
These components and their configuration parameters (such as
read/write latency, operating frequency, storage capacity, and net-
work arbitration policy) can also be used by the system designer in
both the pruning phase and simulation phase. For example, using
such parameters, a processing element can be configured as a

1 A hardware dedicated block can represent different types of hardware acceler-
ators or co-processors such as GPU, VLIW processor, and ASIC. How hardware
dedicated block exploits different degrees of parallelism is not explored in this work,
but it can be further conducted in a micro-architectural DSE once a set of optimal
solutions have been found using our approach.

Z.J. Jia et al. / Microprocessors and Microsystems 38 (2014) 9–21 11



generic RISC processor for flexible application support as well as a
dedicated hardware block for accelerating a specific task. While
setting appropriately the access latency and storage capacity
parameters, a storage element can behave as a relatively small
but fast cache memory or as a memory bank of large storage capac-
ity and high access time or memory latency.

Definition 3 (Mapping). The mapping consists of the process of
distributing the application functionality on the available
resources of the target architecture. This process addresses three
sub-problems: (i) partitioning: refers to the selection of a suitable
processing element type for each application task, (ii) assignment:
decides the type and number of instances for processing elements
and storage elements, their locations in the architecture template,
as well as which task and channel should be assigned to which
component instance (if more than one instance of a component
type is present in the architecture), and (iii) scheduling: defines
the order of execution for the different tasks assigned to a process-
ing element.

Assumption 2. We assume that all application tasks are assigned
to a set of processing elements working in a pipeline fashion,
where task duplication and migration are not considered. On the
other hand, the inter-task synchronizations and communications
can be assigned to (i) a storage element: when two communicating
tasks have been assigned to different processing elements, the cor-
responding inter-task channels should be assigned to a shared
storage element accessible by such two processing elements, and
therefore a communication time needs to be taken into account,
or (ii) inside the processing element: if two communicating tasks
(and their associated inter-task channels) reside on the same pro-
cessing element, it is then reasonable to neglect this communica-
tion time, without loss of generality.

Definition 4 (Communication time). The time taken for a commu-
nication transaction between a processing element and storage
element is calculated as the sum of three parts: (i) protocol delay:
latency associated to communication protocol, (ii) contention delay:
waiting time due to simultaneous access attempts to shared
resources, and (iii) SE access delay: time taken to read/write the
data from/to a storage element.

Definition 5 (Computation time). This is the execution time of an
application task on a specific processing element. Thus, all task
timing information in the pt available types of processing elements
(provided by the component library) should be first determined,
i.e., each task has a set of computation times {wcet(ti)1, wcet(ti)2,
. . ., wcet(ti)pt}, where wcet(ti)j is the execution time of task ti on
the processing element type j. To measure the execution time of
a task on a general purpose processor, we use an instruction set
simulator. Note that the execution time of a specific task on a ded-
icated hardware implementation is assumed given, while this
hardware block takes an infinite amount of time to execute any
of the remaining application tasks (i.e., for those tasks that the
hardware block does not implement). As a result, a profile table
with pt rows and k columns can be obtained.

Problem statement. Given a real-time application, an architec-
ture template and a component library, our problem is to find
the (sub-)optimal architecture instance(s) for the mapping of the
target application. The found solution(s) should satisfy different
design constraints and additionally achieve a good trade-off among
these design objectives. Each of the objective functions to be opti-
mized is listed below.

– Max{EPE} = Maximize efficiency in the utilization of processing ele-
ments. The efficiency of a resource usage (epe) determines the
fraction of the overall execution time of a processing element
during which the resource is busy, i.e., the ratio between the
time a processing element is busy and real-time constraint.
Therefore, the global efficiency of all assigned processing ele-
ments in a design (EPE) is calculated as follows:

EPE ¼
P

i2NPEepei

NPE
¼
P

i2NPEðCMPi=RTCÞ
NPE

ð1Þ

where CMPi is the total computation time due to the tasks assigned
to processing element PEi, and NPE is the number of processing ele-
ments actually used for mapping the target application on the
MPSoC platform. The goal of the optimization consists of exploiting
the silicon area as much as possible, and thus avoiding an over-
dimensioned design. That is, a design solution is better than others
if it achieves higher performance at the same cost/area or the same
performance at a lower cost/area.
– Min{LuB} = Minimize the load unbalancing in processing elements.

Load balancing avoids overloading certain resources which
would lead to excessive packet delays in terms of the commu-
nication paths and excessive processing delays at computation
resources. That is,

LuB ¼
P

i2NPEabsðepei $ EPEÞ
NPE

ð2Þ

As demonstrated in [19], a load-unbalanced design could also
generate additional and unproductive traffic (or access to shared
resources) in the communication architecture due to over-syn-
chronization effects. Therefore, this latter also heavily influences
the power consumption.

– Min{IPT} = Minimize the communication traffic. One way to opti-
mize performance and power consumption of storage elements
and network elements consists of minimizing the number of
memory accesses and/or minimizing the system load in net-
work elements. Clustering tightly coupled application functions
into the same processing resource reduces the accesses in stor-
age elements, and often increases the SoC performance. More-
over, reducing the amount of data exchanged via shared
storage elements may also optimize the size of storage ele-
ments, and therefore, cost/area of the design. This can be formu-
lated as:

IPT ¼
P

eqh2VPLseqh
P

dij2Ddij
ð3Þ

where the denominator represents the total amount of data ex-
changed by all tasks of the application, while the numerator indi-
cates the amount of data exchanged between tasks mapped on
different processing elements. This latter is denoted as inter-VP
links, VPLs.

Taking into account the aforementioned mapping problem and
the specified design objectives, our multi-objective optimization
problem can be formulated formally as follows:

ðMaxfEPEg;MinfLuBg;MinfIPTgÞ ð4Þ

subject to the following design constraints: RTC and (NPE, NSE) 6
(p, m), where NSE represents the number of storage elements
actually used in the mapping solution, while p and m indicate the
maximum number of the processing and storage resources available
in the target MPSoC platform, as defined in Section 3.
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3.2. A two-phase DSE strategy

The overall scheme of our approach is depicted in Fig. 2. Two
separated phases can be clearly distinguished: the pruning phase
and simulation phase. This way, our two-phase approach enables
system designers to exploit (i) the benefits of analytical techniques
for a rapid pruning of the large design space, (ii) the accuracy of the
simulators for individual design point evaluation, and (iii) the
ability to integrate different (or additional) analytical models and
simulation tools for system-level design space explorations, aiming
to solve the problem of application mapping onto MPSoCs as for-
mulated in this section.

Basically, the first phase uses a set of heuristic-based algorithms
to rapidly explore the design space associated to the sub-problems
of partitioning, scheduling and assignment. Moreover, an addi-
tional analytical model is used during this process to roughly pre-
dict the performance of each design point. The goal of this
estimation phase is to drastically prune the initial design space,
such that only a reduced number of potential mappings is deliv-
ered to the next phase. The first phase and its experimental results
are the main focus of this paper.

Subsequently, each detected potential mapping together with
the application model and the architecture template are combined
to generate a system model, which is required and used by a sim-
ulator to evaluate more accurately each potential solution. Finally,
this simulation process is repeated iteratively until a solution or a
set of (sub-)optimal solutions is found.

4. Implementation

In this section, more details about the implementation of
distinct intermediate steps of our approach are explained. In

particular, we provide in Sections 4.1 and 4.2 the details of the
algorithms composing the pruning phase, while the simulation
phase is briefly presented in Section 4.3. A detailed description of
the simulation phase has been reported in [4,5].

4.1. Heuristic algorithms to produce potential mappings

The goal of the estimation phase is to explore and prune the de-
sign space, i.e., identify all potential solutions that meet the design
objectives (listed in Section 3), while eliminating those alternatives
that do not meet the requirements. To this end, an analytical esti-
mation model and three heuristics-based algorithms have been ap-
plied, addressing: (i) HW/SW partitioning, (ii) task clustering, and
(iii) cluster assignment. For the sake of illustration, we will use a
running example to explain different issues related to these
algorithms.

4.1.1. HW/SW partitioning
For a given task graph (DAG) and an available set of processing

elements, this algorithm selects a suitable type of processing ele-
ment for each task, i.e., it decides whether a task is executed as
software on a processor or by using a hardware block to achieve
specific performance requirements. To this end, all tasks are
checked formally by the following condition:

wcetðtiÞproc 6 RTC;8ti 2 T ð5Þ

Thus, if wcet(ti)proc is smaller than the real-time constraint, then
the task ti is selected to run on a processor; otherwise, ti is mapped
to be implemented in a specific hardware block. As a result, this
partitioning algorithm outputs two kinds of information: (i) VNT
describes the type of processing element selected for each task

Fig. 2. Overview of our two-phase DSE methodology.
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(i.e., hardware dedicated block or generic processor), and (ii) VCT
specifies the computation time of each task according to its speci-
fication in VNT.

For example, Fig. 3a depicts a task graph composed of 9 tasks
and 10 channels, where the required timing constraint is 100 time
units. According to the wcet values listed in Fig. 3b, the HW/SW
partitioning algorithm will select the task C and F for a hardware
implementation (HW1 and HW2), while the rest of the tasks will
be run on a generic processor. In this example, we suppose that
the hardware dedicated blocks can achieve a 10% speedup factor
with respect to the SW implementation. Finally, the outputs deliv-
ered by our partitioning algorithm are depicted in Fig. 3c. It should
be noted that no information about architecture topology/platform
is taken into account at this stage.

4.1.2. Task clustering
This step aims at solving the sub-problem of scheduling. To this

end, we have used a modified version of the scheduling algorithm
presented in [18]. For a given task graph and real-time constraint,
the algorithm proposed in [18] enables to schedule the tasks on the
minimum number of Virtual Processors (VPs). A virtual processor is
a logical cluster composed of several tasks, where each task (inside
a virtual processor) is executed according to the order that it was
scheduled in the virtual processor.

A key aspect of this scheduling algorithm is that it tends to clus-
ter the tasks sharing large amounts of data in the same virtual pro-
cessor, while ensuring that the total computation time of each
virtual processor is not greater than the real-time constraint, i.e.,
RTC >

P
8ti2VPk

cðtiÞ;8VP. This way, whenever each virtual processor
is assigned to a single physical processing element, this algorithm
avoids (i) overloading the system communication architecture
with an excessive amount of packets, as well as (ii) introducing
large processing delays at computation resources. As a conse-
quence, both the minimization of inter-PE communication traffic
and load balancing in processing elements are warranted. More de-
tails about this scheduling algorithm can be found in [18].

However, this scheduling algorithm only targets architectures
with homogenous processing elements, and unlike this paper, it as-

sumes that any task satisfies perfectly Eq. (5), i.e., hardware dedi-
cated blocks are not considered. Thus, we propose a modified
version of their scheduling algorithm, where the output of the
HW/SW partitioning step is used additionally as input. Basically,
our algorithm follows the same aforementioned clustering process
to schedule the application tasks, but if a task selected for hard-
ware implementation is found during the scheduling process, such
a task is bound exclusively to a new virtual processor. Once all
tasks have been scheduled, our algorithm outputs a set of virtual
processors VPs = {VP1, VP2, . . ., VPv} and inter-VP links VPLs = {vpl12,
vpl13, . . ., vpljv}, where vplij represents a link or channel between a
task belonging to virtual processor VPi and another task in virtual
processor VPj, and has an associated communication cost, eij, which
specifies the amount of data sharing for this link. All this informa-
tion is used as input in the next step, as will be explained later.

Returning to the example shown in Fig. 3, the result of applying
the task clustering algorithm is depicted in Fig. 4. Here, four virtual
processors and six inter-VP links can be distinguished. Task C and F,
which are selected by the HW/SW partitioning algorithm for hard-
ware implementation, have respectively been assigned to a single
logical cluster (virtual processor VP3 and virtual processor VP4).
The rest of the tasks are clustered in virtual processors VP1 and
VP2 for running on generic processors. As mentioned before, each
task (inside a virtual processor) is executed according to the order
in which it was scheduled. In this example, the execution order of
the tasks in VP1 is A, D and B.

4.1.3. Cluster assignment
4.1.3.1. Virtual processor assignment. The goal of this step is to as-
sign the virtual processors to the processing element holders of
the target MPSoC platform, while the assignment of the inter-VP
links to the storage elements is carried out in a next step (in Sec-
tion 4.2). Note that the number of virtual processors provided by
the tasks clustering algorithm is v, which can be greater than p
(i.e., the number of processing element holders in the MPSoC plat-
form). In our current implementation, we suppose that p P v. Thus,
this cluster assignment process implies two design decisions: (i)
specify which task (or virtual processor) should be assigned to
which particular processing element instance, and (ii) decide the
location of each processing element instance in the processing ele-
ment holder of the MPSoC template.

In order to handle such design decisions, our proposed algo-
rithm firstly assigns the virtual processors to the processing ele-
ment instances using a one-to-one assignment function, K(VP),
i.e., K(VPi) – K(VPj), 8 VPi – VPj As a consequence, the number of
processing element instances to actually instantiate in the MPSoC
template corresponds to the number of virtual processors obtained
in the task clustering algorithm. Once the v virtual processors have
been assigned to v processing element instances, we subsequently
generate all possible combinations of location for these processing

(a) (b)

(c)
Fig. 3. Example of the HW/SW partitioning algorithm. (a) Task Graph and required
real-time constraint. (b) WCET for all tasks. (c) VCT and VNT vectors delivered by
HW/SW partitioning algorithm. Fig. 4. An example of the result obtained with the task clustering algorithm.
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element instances in the target MPSoC template. For example,
Fig. 5a illustrates an MPSoC template composed of five processing
element holders. If we assign the four virtual processors obtained
in our example (Fig. 4) to this template, the total number of alloca-
tion alternatives is 5!/(5–4)! = 120.

4.1.3.2. Storage allocation. Although the inter-VP links assignment
is not performed in this step, the different combinations of type
and allocation for storage elements are indeed explored in this
step. Note that this is needed by the analytical estimation model
to determine the optimal combination of the number, type and
location of storage element instances for the assignment of the in-
ter-VP links. In our example of Fig. 5a, if two storage elements can
be instantiated in the MPSoC template and there are two different
types of storage elements (i.e., st = 2: SDR and DDR), then the
resulting number of possibilities for allocating storage elements
is 22 = 4.

4.1.3.3. Generation of all PE-SE scenarios for a given topology. All pos-
sible scenarios are now generated. For a given MPSoC template, a
scenario represents a particular architecture instance and specifies
the processing element holder to which each virtual processor is
assigned. Moreover, it assigns an available type of storage element
to each storage element holder. Note that at this stage inter-VP
links are not assigned yet, but this is done at the performance esti-
mation phase, which involves inter-VP links and network ele-
ments. Referring to our example again, Fig. 5b shows the output
delivered by our cluster assignment algorithm. Considering the
above analysis for allocating both processing elements and storage
elements in the target MPSoC template, it is evident that the total
number of scenarios (or architecture instances) depends directly
on the number of virtual processors, the number of processing ele-
ment holders and the number and types of storage elements.
Therefore, the total number of possible scenarios can be approxi-
mated as: (p!/(p $ v)!) & stm = 120 & 4 = 480.

4.2. Performance estimation for potential mappings

The aforementioned heuristics-based algorithms provide a set
of scenarios that tries to optimize the design objectives such as
efficiency of resource usage and load balancing in processing

elements. Now, this estimation step aims to select analytically
those scenarios that satisfy the real-time constraint and minimize
the system communication traffic. To this end, we propose an ana-
lytical estimation model that includes network element behavior
and takes into account both the static and dynamic behavior dur-
ing the evaluation of each design point. Nevertheless, it should
be noted that the goal of our estimation model is to roughly esti-
mate the performance of different design alternatives, and thereby
rapidly reducing the large number of potential mapping solutions,
since the selected candidates will be evaluated more accurately by
a system-level simulator in a later step (i.e., simulation phase).

4.2.1. Analytical estimation model including Network Elements
4.2.1.1. Estimation model. In our approach, the performance of each
scenario is measured in terms of total processing element time in
order to decide whether the real-time constraint is satisfied, i.e.,
we check formally the following condition for each assigned pro-
cessing element of a scenario:

maxfCMPi þ CMMig 6 RTC; 8i ¼ 1::p ð6Þ

where CMPi and CMMi are the total computation time and total
communication time due to the tasks assigned to the processing
element PEi, respectively. This way, the total processing element
time is calculated for each assigned processing element of the sce-
nario, and thus, a scenario is considered as a potential solution if the
maximum total processing element time (of all total processing ele-
ment time of a scenario) can meet the above condition.

4.2.1.2. Inter-VP link assignment. In order to determine the commu-
nication times for each scenario, the inter-VP links should be first
assigned to the storage element instances. At this point, it is impor-
tant to notice that the location of assigned processing elements in
the platform and the communication delays are closely related
with each other. That is, when the location of a processing element
instance and/or the assignment of a virtual processor changes, the
traffic characteristic of the system and the availability of accessible
resources change as well. Consequently, the latter should be taken
into account during the communication time estimation.

In our case, such availability or accessibility of resources is
made explicit by means of the latency or connectivity table, which
should be created (manually or automatically) by the system de-
signer for the studied MPSoC template before carrying out the
DSE experiments. Basically, a latency table reflects the relationship
between the location of processing element holders and the acces-
sibility of the storage element holders. This latter means, for exam-
ple, when a processing element instance is assigned to a processing
element holder in a particular MPSoC template, its corresponding
latency table shows all accessible storage element holders and
which network elements are available to reach them (from this
processing element holder). In addition, it also shows the remain-
ing storage capacity and access latency of the storage element in-
stance allocated in each of the storage element holders. As a
result, the latency table can be applied recurrently to any scenario
or architecture instance (derived from the target MPSoC template)
during the pruning phase.

4.2.1.3. Communication delays. Using such a latency table, we pro-
pose a modified version of the estimation model proposed in [18]
to calculate the communication delays. Basically, the estimation
model in [18] first assigns iteratively the inter-VP links to a set
of available storage elements, where priority is given to a link (vplij)
with the highest eij value in each iteration. During this process, the
communication protocol delay corresponding to each inter-PE link
is estimated by means of a set of latency parameters associated to
each type of architectural component, which are specified by the

(a)

(b)
Fig. 5. Output delivered by our cluster assignment algorithm. (a) MPSoC used to
map the VPs and VPLs obtained in our example. Each PE holder can allocate a
processing element of types proc, HW1 or HW2, while each SE holder can contain a
storage element of types SDR or DDR. (b) Generation of the possible scenarios for
our example.
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designer. And the storage element access delay is calculated as a
product of the amount of shared data (eij) and the latency of the
storage element to which the inter-VP link is assigned. However,
the calculation of communication delay in [18] explicitly ignores
the contention effects in each communication transaction. There-
fore, we introduce a modification to that algorithm in order to
solve this issue.

4.2.1.4. NE path-contention delay model. In our approach, once all
the inter-VP links have been assigned in their corresponding stor-
age element instances, we identify the network path or network
element assigned to each inter-VP link, i.e., the network element
used by the processing element instance (PE1) to access a storage
element instance (SE1). This process can be done by using the la-
tency table. We first check the available paths to connect both ele-
ments (PE1 and SE1). If there is more than one path, we then
choose the network element with the lowest number of transac-
tions and inter-VP links assigned to it until that moment. This lat-
ter aims at avoiding overloading a particular network element,
which may lead to an increase of the communication time due to
contention delays.

Once all network paths have been determined, the contention
delay can be estimated. In our approach, when several inter-VP
links compete to simultaneously use the same shared network ele-
ment, a communication overhead and contention delay may occur,
which is approximated by:

ccd ¼ ða$ 1Þ & comðNEiÞ ð7Þ

where com(NEi) is the average storage element access delay of all
inter-VP links that share the network NEi, and a is the total number
of inter-VP links that (i) share the same NEi, and (ii) are associated
to different processing element sources and/or processing element
destinations. Our idea is that the contention delay suffered by an in-
ter-VP link is directly proportional to the average storage element
access delay of the inter-VP links competing for the same network
element, such that the more inter-VP links (i.e., a high a value)
share the same path, the more waiting-time (on average) may be
needed to access the data. However, we also would like to note that
this way of estimating the contention delays can introduce a certain
error or difference with respect to the simulation results when (i)
the storage element access delay of inter-VP links (sharing the same
network element) present high deviations with respect to the aver-
age storage element access delay, and/or (ii) the number of inter-VP
links sharing the same network element increases, as will be shown
in Section 5.

4.2.2. Encoding format for describing candidate mappings
When all scenarios have been estimated, our algorithm elimi-

nates all those scenarios that do not satisfy the condition (6). As
a result, the remaining scenarios are ranked in the ascendant order
of the maximum total processing element time, such that a sce-
nario with a small maximum total processing element time is eval-
uated first in the next simulation-based phase. Therefore, these
ranked scenarios are the key to link both pruning and simulation
phases in our framework.

We now explain briefly the interface used to describe each sce-
nario (or candidate mapping), since the encoding format is not the
main focus of this work. In our framework, such an interface en-
ables to symbolically represent the design space composed by
the potential mappings, where each alternative is encoded as
two numeric strings (as shown in Fig. 6). The format of these
strings is described as follows:

fidPE1; idPE2; . . . ; idPEk; idSE12; idSE13; . . . ; idSEjkg

ftPE1; tPE2; . . . ; tPEp; tSE1; tSE2; . . . ; tSEmg

where idPEk indicates that the task tk is mapped on the processing
element holder idPE, idSEjk means that the link ljk is mapped on
the storage element holder idSE, while tPEp and tSEm represent the
processing element instance type and the storage element instance
type allocated in processing element holder p and storage element
holder m, respectively.

Note that there exist many other valid encoding formats, and in
our case, this choice is mainly due to three reasons. First, it allows
us to modularly define a very large design space, where our repre-
sentation scheme guarantees that each potential solution receives
a unique encoding value. Second, both the vector length and the
variable values are not fixed, but they are dynamically updated
for each experiment according to the user specifications, i.e., this
representation scheme has a strong impact on the scalability and
flexibility of the framework. And last but not least important, the
use of this interface itself allows each phase of our approach to
act like an independent black box inside the framework. As a re-
sult, distinct methods based on different pruning techniques and/
or evaluation mechanisms can be integrated in a plug-and-play
fashion.

4.3. Simulation phase

We briefly summarize the simulation phase previously reported
in [4,5]. Although different simulators can be plugged in our
framework, a system-level simulation tool called CASSE [15] has
been used at the moment to more accurately evaluate each poten-
tial solution of the pruned design space. CASSE follows the
Y-Chart methodology [26,27], covering application and architec-
ture modelling, as well as mapping and analysis within a unified
simulation environment. Moreover, this tool enables system
designers to configure numerous design variables, which often
are not taken into account by analytical models, such as bus arbiter
policy, processor scheduler, memory map, different clock domains,
size and number of data packets that can simultaneously circulate
on the network, and so on.

In the simulation phase, each potential solution (produced by
the pruning phase) is simulated in order to find a solution or a
set of solutions meeting the design constraints. Note that when
no potential mapping can achieve such user constraint, no solution
is output by our approach. On the other hand, it should be men-
tioned that in order to simulate each potential solution in CASSE,
a system model (consisting of an application model, architecture
model and mapping model) of each design point should be

Fig. 6. Example of mapping solution description strings.
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generated first. As will be explained later, such a system model is
generated automatically in our approach taking into account the
application source code, components library as well as the map-
ping strings (provided by the pruning phase). As a consequence,
this allows for simulating different design points in a completely
automated way without any human intervention.

CASSE currently only has the capability to gather performance
information during simulation (e.g., processing time, network load
fluctuations, memory accesses, etc.). As a consequence, this limita-
tion of CASSE requires system designers to jointly use (in each DSE
experiment) other tools capable of providing other important
quantitative metrics such as energy/power and cost/area. The cou-
pling of multiple evaluation tools in our DSE framework is, how-
ever, not addressed in this work, but is considered as future work.

Finally, it is important to highlight that besides being a fairly
accurate simulator for early DSE, CASSE also ensures deadlock-free
task mappings and scheduling for feasible design points, which
also makes CASSE particularly suitable for simulations and DSE at
system level. Since the CASSE tool is beyond the scope of this pa-
per, the interested reader is referred to [15] for more information
about the implementation details, speed-accuracy trade off, the
specification method of the system model, etc.

5. Visual tracking case-study: experimental results

In this section, we present several sets of experimental results
aiming to compare our two-phase DSE approach with other DSE
approaches. To this end, we present a comparative analysis (in
terms of run-time and quality of the mapping solutions) between
our DSE strategy and other approaches based only on analytical
models or simulations, and therefore demonstrating the capabili-
ties and benefits of using our hierarchical approach for the kind
of problem addressed in this work.

All these DSE experiments have been carried out using NASA
[4,5], which is a single, generic and modular framework for sys-
tem-level DSE experiments. NASA has three major benefits. First,
this highly modular framework uses well-defined interfaces to
easily integrate different system-level simulation tools as well as
different combinations of search strategies in a simple plug-and-
play fashion. Second, NASA deploys a so-called dimension-oriented
DSE approach, allowing designers to configure the appropriate

number of, possibly different, search algorithms to simultaneously
co-explore the various design space dimensions. Last, NASA inte-
grates a generator capable of automatically converting an abstract
description of a design point (e.g., numeric strings) to the specific
system model required by the simulator plugged into NASA. This
way, the integration of a new system-level simulator in NASA only
requires the adaptation of this module, while all other modules
remain unaffected. As a result, NASA provides a flexible and
re-usable framework for the systematic exploration of the multi-
dimensional design space, starting from a set of relatively simple
user specifications. The overview of NASA framework is presented
in [4], and more details about the implementation of NASA can be
found in [5].

5.1. NASA configurations for Visual Tracking DSE experiments

We now provide details of a particular example or case study.
The studied MPSoC template and real-time application are shown
in Fig. 7. The latency table associated with such a template and
the possible configuration parameters of the different architectural
components are depicted in Fig. 8c and d, respectively. In this case,
we have selected an MPSoC template consisting of several homo-
geneous RISC processors completed with a few different hardware
dedicated blocks in a bus-based architecture. Basically, this partic-
ular MPSoC template may consist of up to 6 processing elements of
types ARM-9 or hardware blocks, up to 3 storage elements of either
single (SDR) or double (DDR) data rate types, and up to 2 AMBA

5

(a)

(b)
Fig. 7. Application and MPSoC template used in our DSE experiments. (a) Task-
graph of the target application model. (b) MPSoC template composed of 6
component holders for PE, 3 component holders for SE, and 2 NE.

(a) (b)

(c)

(d)
Fig. 8. Target application and architecture template parameters. (a) Application
tasks. (b) Application channels. (c) Latency table associated to the target MPSoC
platform. (d) Architecture parameters of the target MPSoC platform.
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busses. Note that although both NASA and CASSE allow designers
to explore the design space of configurations of architectural
components (e.g., the bandwidth in network elements, the size of
storage elements, scheduler policy in processing elements, etc.),
micro-architectural DSE is not the scope of this work. Therefore,
predefined parameters for component configurations are used in
our experiments, as shown in Fig. 8d.

The application that is mapped onto the MPSoC is the visual
tracking algorithm presented in [19]. This is a stream-based data
processing application, and is characterized by a real-time require-
ment and high volume of data and control traffic exchanged among
different application tasks. Basically, this visual tracking algorithm
applies a correlation or block matching technique to continuously
track a specific target in the incoming image frames. The block or
pattern size and frame size used in our experiments are 24 % 24
and 320 % 240, respectively. The task-graph of the application is
depicted in Fig. 7a, where the amount of data associated to both
control flow (represented by dotted lines) and data flow (shown
as black lines) is expressed in bytes (as shown in Fig. 8b), while
the computation time of each task (profiled in ADS [28] for the
ARM-9 processor) is listed in Fig. 8a.

Considering such user specifications, we have performed three
sets of experiments.

– Estimation. Only the pruning phase of our hierarchical approach
has been used to find the (sub-)optimal mapping(s) in this set of
experiments. Since no simulations are needed in this set of
experiments, it can be carried out without using CASSE. Note
that a single solution (or a set of estimated solutions) is pro-
duced in this case.

– Estimation + Simulation. We repeat the experiment using
our two-phase approach. To this end, we have plugged into
NASA our heuristic algorithms, analytical model and CASSE.
Evidently, the interfaces used in our hierarchical DSE strategy
(depicted in Fig. 2) satisfy the interface requirements of NASA
framework.

– Simulation. The last set of DSE experiments is based only on
simulations (i.e., using CASSE). Rather than simulating exhaus-
tively all design points of the design space, we coupled to CASSE
two genetic algorithms (GAs) to guide the searching process
and to address our multiobjective optimization problem. That
is, we plugged into NASA both CASSE and GAs, and we apply a
dimension-oriented DSE methodology [4,5] in order to co-
explore the design space (consisting of the architectural compo-
nents and mapping dimensions).

We use a proprietary implementation of the genetic algorithms
in our experiments, but any existing genetic algorithm such as
SPEA2 or NSGA-II [16] could also have been used. Note that our
interest is not focused on the type of genetic algorithm used in
each experiment. Instead, we aim to analyze and compare the
behavior of the DSE process guided by the genetic algorithms
and by the heuristic algorithms proposed in this work.

Finally, the chromosome of the genetic algorithm, which repre-
sents the mapping solution, is defined with the same string-based
format shown in Fig. 6. The GA parameter values used in our DSE
experiments are listed in Table 1. Note that these parameter values
have been selected after experimenting with different combina-
tions of parameters settings, and resulted to be the best for these
DSE experiments. Basically, our genetic algorithm can perform a
2-point crossover and can randomly mutate the value of only a sin-
gle gene per chromosome/individual, where these operators are
applied according to their associated probabilities (pc: probability
of crossover, and pm: probability of mutation). Moreover, the fit-
ness functions of the genetic algorithms have been formulated as
defined in Section 3.

5.2. Analysis of efficiency and accuracy between different DSE
approaches

In order to compare the experimental results obtained with dif-
ferent DSE approaches, we have selected four metrics:

– (M1): Number of explored design points.
– (M2): Total run-time of the DSE experiment.
– (M3): Performance achieved by the (sub-)optimal solution

found in the exploration.
– (M4): Number of simulations until finding the first (sub-)opti-

mal solution.

5.2.1. Efficiency of the DSE process
For the target application and MPSoC template depicted in

Fig. 7, the size of the design space explored in our case study can
be roughly approximated as follows: 67 & 1112 & 32 ( 7.9 % 1018 de-
sign points. CASSE requires on average 30 s to simulate a single de-
sign point on a PC with a Pentium IV processor at 1.6 GHz (running
Linux) and 2 GB main memory. Then, it is evident that an exhaus-
tive evaluation of such a design space with CASSE is infeasible.

The results obtained with the aforementioned DSE experiments
are summarized in Table 2. At a first glance, it can be seen that for
different timing constraints (RTC = 25 frames/s and RTC = 28
frames/s, i.e., processing 1250 packets/s and 1400 packets/s,
respectively), both the DSE approaches based on only the pruning
phase and our two-phase DSE approach can cover a large number
of design points, and can achieve a valid solution after a reasonable
small number of simulations. On the other hand, the results ob-
tained with the GA-based DSE experiments suggest that genetic
algorithms can also find good solutions after exploring only a re-
duced number of alternatives. However, the genetic algorithms
need (on average) 1800 s and 6000 s (i.e., for 60 and 200 simula-
tions) to reach the first solution that meets the real-time con-
straints of 25 frames/s and 28 frames/s, respectively. That is,
comparing with GA-based DSE experiments, our hierarchical DSE
approach seems to be capable of improving the efficiency of DSE
(in terms of total run-time to reach the first valid (sub-)optimal
mapping) by two orders of magnitude.

5.2.2. Accuracy of the analytical model
To determine the accuracy of the proposed analytical model, we

use CASSE to simulate the potential mapping solutions generated
by the pruning phase, after which we compare the simulated per-
formance with the estimated performance. Such analysis reveals
that the accuracy of our estimations (in these DSE experiments)
varies from 1.1% to 8.2%, as can be deduced from Table 2. For exam-
ple, while our estimation model predicts a performance of 1266
packets/s in the case of RTC = 25 frames/s, the simulated perfor-
mance is 1252 packets/s. Similarly for RTC = 28 frames/s, when
our analytical model delivers a performance of 1425 packets/s,
the simulation only indicates 1308 packets/s.

The above results outline two aspects of our analytical model.
First, the accuracy of our analytical model presents a reasonable

Table 1
GA parameters used in the third set of experiments.

Parameter Number Values

Selector (S) 1 Proportional with elitism
Crossover (C) 1 2-points
C probability (pc) 5 [0.1,0.3,0.5,0.8,1.0]
Mutation (M) 1 Single gene mutation per individual
M probability (pm) 5 [0.1,0.3,0.5,0.8,1.0]
Population size 10 Nr. of individual per iteration
Iterations 21 –
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error margin as compared to the simulations. As already men-
tioned in the introduction section, such margin is inherent in any
analytical estimation model, which emphasizes the need of a sim-
ulation-based phase in our framework. More specifically, this var-
iation of accuracy in our estimation model is mainly due to (i) the
assumptions adopted in our model for estimating contention delay
(i.e., Eq. (7)), and (ii) the lack of other relevant variables that should
be considered in the estimation of communication time (e.g., the
network arbiter actually used in the system design). As a result,
when the number of resources competing for shared resources in-
creases, the occurrence of contention becomes more frequent and
complex. Therefore, our analytical model becomes less accurate,
increasing the error margin between analytically estimated and
simulated results.

Another critical aspect of our analytical model points out that
the estimations cannot always satisfy the real-time constraints.
In fact, this issue is an immediate consequence of the above expla-
nations, and it is also visible in the results shown in Table 2. For
example, in the case of a real-time constraint RTC = 28 frames/s,
the estimated performance of the first potential solution
(generated by our pruning phase) is 1425 packets/s, while the
simulation reveals that the actual performance is under the real-
time constraint (i.e., M3 = 1308 < 1400 packets/s). Moreover, three
potential solutions (M4 = 3) were simulated before reaching the
first valid mapping. Therefore, this latter suggests that the
potential solutions provided by our pruning phase may include in-
valid mappings (i.e., incapable of achieving the required perfor-
mance). These invalid mappings are identified and discarded in
the simulation phase.

5.3. Analysis of the quality of the optimal solutions

Although our proposed approach and GA-based DSE can provide
solutions satisfying different user constraints and design objec-
tives, the quality of such solutions can be also radically different.
Many metrics can be used in these comparisons. In this paper,

we measure the quality of the solution in terms of the different de-
sign objectives and constraints defined in Section 3:

– (O 1): Maximize the efficiency of resource usage.
– (O 2): Minimize the load unbalancing between processing ele-

ments actually used in the solution.
– (O 3): Minimize the total communication traffic in the system.
– (R 1): Real-time constraint of the target application.
– (R 2): Constraint on the maximum number of processing ele-

ments and storage elements that can be used in the mapping
solution.

Before analyzing these results, it should be noticed that genetic
algorithms are extremely sensitive to their parameters such as the
initial population, probability associated to crossover (pc) and
mutation (pm) operator, etc. [3,5,16]. This last aspect can be illus-
trated in Fig. 9, where the gray dotted lines indicate the top and
lower boundaries closing the results obtained with 40 different ini-
tial populations and combinations of pc and pm. The black line rep-
resents the average performance in each iteration reached by the
individuals of all GA-based experiments, while the gray lines are
two particular examples extracted from this set of experiments.
It can be clearly seen that, the experiment labelled pc0.8pm0.8
(i.e., pc = 0.8 and pm = 0.8) not only needs fewer simulations to
reach a valid solution, but can also converge progressively to high-
er performance solutions, while the other experiment labelled
pc0.5pm0.1 can hardly reach the minimum real-time constraint
after 20 iterations.

Table 3 lists the mapping solutions obtained with our DSE ap-
proach, as well as the first (sub-)optimal mapping solution reached
in the GA-based experiment pc0.8pm0.8 for different real-time con-
straints. More specifically, we indicate the type of processing ele-
ments and storage elements allocated in the component holders
actually used in each solution, as well as the tasks and channels
mapped on each of them. Examining the data in Table 4, it can
be seen that for both real-time constraints, our approach can
provide solutions using fewer processing elements and storage ele-
ments. The number of assigned processing elements also has a di-
rect impact on the system communication traffic: the more
processing elements are used, the fewer inter-VP links are assigned
inside processing elements, and thereby, increasing the volume of
exchanged data via shared resources and lengthening the actual
execution time of the tasks.

Note that these results do not mean that genetic algorithms
cannot reach the (sub-)optimal mapping (or even other optimal
alternatives different than) solutions obtained with our approach.
As demonstrated in our previous work [5], the multi-dimensional
DSE based on several genetic algorithms can progressively
converge towards the optimal solutions of the design space when
the number of iterations is increased. However, this implies a

Table 2
Comparison of the DSE efficiency between the three sets of experiments.

DSE approach RTC = 25 frames/s

Nmbr. of explored design
points

Total runtime of the
experiment (s)

Performance of the optimal
solutiona

Nmbr. of simulations until first optimal
solution

Estimation 16,875 % 106 30 1252 (1266) –
Estimation + Simulation 16,875 % 106 30 1252 (1266) 1
Simulation 210 1800 1263 (–) 60

RTC = 28 frames/s

Estimation 253,125 % 106 30 1308 (1425) –
Estimation + Simulation 253,125 % 106 90 1401 (1411) 3
Simulation 210 6000 1408 (–) 200

a Performance obtained in the simulation (estimation).
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Fig. 9. Results obtained in GA-based DSE experiments.
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higher total run-time, therefore highlighting even more the poten-
tial efficiency achieved with our hierarchical approach.

Another alternative is to replace the heuristic algorithms used
in our pruning phase by a genetic algorithm, since both our heuris-
tic algorithms and a genetic algorithm (or any other approximated
exploring strategy) visit only a limited number of design points to
provide a set of near-to optimal solutions. However, the variation
of the results achieved in experiments with different GA parameter
configurations, or even between different GA executions due to the
GA’s stochastic behavior, can represent an inconvenience for using
a genetic algorithm in the pruning phase. As shown in Fig. 9, the
margin of variation between the maximum and minimum can be
up to 65% (measured in the sixth iteration). In our point of view,
these results could suggest that, in order to find out the well-tuned
configuration of the GA parameters for each studied case, the sys-
tem designers should repeat the experiments several times with
different combinations of GA parameters settings, therefore
decreasing the attractiveness (in terms of time and effort) of using
genetic algorithms in DSE experiments.

6. Conclusions and future work

In this work, we have focused on the problem of mapping a real-
time application on a MPSoC architecture. More specifically, we
have presented a two-phase DSE strategy and we have elaborated
a set of analytical methods deployed in our approach. Basically, the
first phase prunes the design space by using a set of analytical
models. Our objective is to reduce the number of potential solu-
tions that should be accurately simulated in the second phase, in
order to find the (sub-)optimal mapping solution(s) satisfying the
user constraints and design objectives.

The proof-of-concept DSE experiments presented in this paper
are aimed to demonstrate and illustrate the key properties of our
framework for a target application and a particular MPSoC plat-
form template. The results obtained in our experiments are ana-
lyzed in terms of both efficiency of the DSE process and quality
of the optimal solutions found in the DSE process. Compared to
the traditional DSE based on simulations guided by a genetic algo-
rithm, the promising experimental results of our approach reveal a
potential efficiency increase of two orders of magnitude. Regarding
quality, our approach seems also to be capable of reaching map-
ping solutions with a significant quality increase, i.e., solutions
satisfying real-time constraints while optimizing other design
objectives such as resource usage efficiency, system traffic load
and processor load balancing.

Our future work is oriented toward three objectives. First, we
plan to carry out more experiments using more applications (e.g.,
large real and/or synthetic task graphs) and a wide range of archi-
tectures. This will lead to validate the suitability and scalability of
our approach for exploring larger and more complex MPSoC design
spaces. Second, we intend to demonstrate the flexibility of our
overall framework to integrate different kinds of pruning/explora-
tion algorithms and evaluation methods. To this end, we are cur-
rently deploying new case studies by using a trace-driven
simulator called Sesame [16] along with the PISA optimization
framework [25]. Finally, we would like to point out that currently
our analytical models do not directly optimize design objectives
such as power/energy and/or cost/area. This is a limitation of our
approach, since both power/energy and cost/area metrics are key
issues in the design and optimization problems of any modern
MPSoC. Therefore, we aim to extend our analytical models to fur-
ther trade off these non-linear and contradictory design objectives
in our DSE strategy.
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