
Static Priority Scheduling of Event-Triggered Real-Time Embedded Systems

Cagkan Erbas
Dept. of Computer Science
University of Amsterdam

Amsterdam, The Netherlands
cagkan@science.uva.nl

Selin Cerav-Erbas
Inst. d’Admin. et de Gestion
Univ. Catholique de Louvain
Louvain-la-Neuve, Belgium

Andy D. Pimentel
Dept. of Computer Science
University of Amsterdam

Amsterdam, The Netherlands

Abstract

Real-time embedded systems are often specified as a col-
lection of independent tasks, each generating a sequence
of event-triggered code blocks, and the scheduling in this
domain tries to find an execution order which satisfies all
real-time constraints. Within the context of recurring real-
time tasks, all previous work either allowed preemptions, or
only considered dynamic scheduling, and generally had ex-
ponential complexity. However, for many embedded systems
running on limited resources, preemptive scheduling may be
very costly due to high context switching and memory over-
heads, and dynamic scheduling can be less desirable due
to high CPU overhead. In this paper, we study static pri-
ority scheduling of recurring real-time tasks. We focus on
the non-preemptive uniprocessor case and obtain schedule-
theoretic results for this case. To this end, we derive a suffi-
cient (albeit not necessary) condition for schedulability un-
der static priority scheduling and show that this condition
can be efficiently tested in practice. The latter is demon-
strated with examples, where in each case, an optimal solu-
tion for a given problem specification is obtained within
reasonable time, by first detecting good candidates using
meta-heuristics, and then by testing them for schedulability.

1. Introduction

In general, real-time embedded systems are assumed to
run infinitely on limited resources and the scheduling in this
domain tries to address the problem of finding a set of rules
to schedule independent tasks on these limited resources.
There exists a trade-off between the generality of the task
model (a measure of accuracy) and the analyzability of the
system modeled. As a result of this, many task models have
been proposed in the past which differ in terms of their
expressive power and the complexity to analyze them. In
general terms, a real-time system is a collection of inde-

pendent tasks, each generating a sequence of subtasks asso-
ciated with a ready-time, an execution requirement, and a
deadline. Different task models may specify different con-
straints on these parameters. For example, the multiframe
model [12] permits task cycling but ignores deadlines while
the generalized multiframe [4] adds explicit deadlines to the
multiframe model. Furthermore, the system may be com-
posed of one or more processors and the task execution may
be preemptive or non-preemptive. The schedulability ana-
lysis of such a real-time system is to identify whether it is
possible to guarantee for each task a processor time equal to
its execution requirement within the time duration between
its ready-time and deadline.

For many embedded systems running on limited re-
sources, preemptive scheduling may be very costly and
the designers of such systems may prefer non-preemptive
scheduling despite its relatively poor theoretical results.
This is mainly due to the large runtime overhead incurred by
the expensive context switching and the memory overhead
due to the necessity of storing preempted task states. There
is also a trade-off between static (tasks are given unique pri-
orities offline) and dynamic scheduling (tasks are given pri-
orities online) policies. While static scheduling has a very
low CPU overhead, run-time scheduling may be necessary
for better processor utilization.

Conditional real-time code. Embedded real-time pro-
cesses are typically implemented as event-driven code
blocks residing in an infinite loop. The first step in the
schedulability analysis of such real-time code is to obtain
an equivalent task model which reveals the control flow
information. In the following conditional real-time code,
execution requirement and deadline of subtasks v (repres-
enting code blocks) are shown with the parameters e and
d, respectively. This means that whenever a subtask v is
triggered by an external event, the code block correspond-
ing to that subtask should be executed on the shared pro-
cessing resources for e units of time within the next d units
of time from its triggering time in order to satisfy its real-
time constraints.

0-7803-8509-8/04/$20.00 c© 2004 IEEE

while (external event)
execute v1 / ∗ with (e1, d1) ∗ /
if (X) then / ∗ depends on system state ∗ /

execute v2 / ∗ with (e2, d2) ∗ /
else

execute v3 / ∗ with (e3, d3) ∗ /
end if

end while
The traditional analysis of such conditional codes, which
depends on identifying the branch with the worst case beha-
vior, does not work in this case. The branch with the worst
case behavior depends on the system conditions that are ex-
ternal to the task. Consider the situation (e2 = 2, d2 = 2)
and (e3 = 4, d3 = 5). If another subtask with (e =
1, d = 1) is to be executed simultaneously, then the branch
(e2, d2) is the worst case, whereas if the other subtask is
with (e = 2, d = 5), then the branch (e3, d3) corresponds
to the worst case.

Previous results. There is a tremendous amount of work
on scheduling even if we restrict ourselves to the unipro-
cessor case, history of which goes back at least to [10].
While some work in the real-time embedded systems do-
main tried to improve modeling accuracy, in one way or
another generalizing the restrictions in [10] that has very
desirable theoretical results, some other tried to answer
schedule-theoretic questions arising in the generalized mod-
els. Most task models assumed event-triggered independent
tasks. However, there are also heterogeneous models con-
sidering mixed time/event-triggered systems [14] and sys-
tems with data and control dependencies [13]. The recur-
ring real-time task model [2], on which we focus in this
study, is a generalization of the previously introduced mod-
els, such as the recurring branching [1], generalized mul-
tiframe [4], multiframe [12] and sporadic [11] models. It
can be shown that any of these task models corresponds
to a special instance of the recurring task model, which in
turn implies that it supersedes all previous models in terms
of its expressive power. With respect to dynamic schedul-
ing, it has been proved for both preemptive [10] and non-
preemptive uniprocessor cases [5] that Earliest Deadline
First (EDF) scheduling (among the ready tasks, a task with
an earlier deadline is given a higher priority online) is op-
timal. The latter means that if a task is schedulable by any
scheduling algorithm, then it is also schedulable under EDF.
Hence, the online scheduling problem on uniprocessors is
completely solved, we can always schedule using EDF. On
the other hand, analysis of static priority scheduling yields
to two problems [3]:

• Priority testing. Given a hard real-time task system
and a unique priority assignment to these tasks, can
the system be scheduled by a static-priority scheduler
such that all subtasks will always meet their deadlines?

• Priority assignment. Given a hard real-time task sys-
tem, what is the unique priority assignment to these
tasks (if one exists) which can be used by a static-
priority run-time scheduler to schedule these tasks
such that all subtasks will always meet their deadlines?

However, neither of these issues could have been solved
within the context of the recurring real-time task model (for
both preemptive and non-preemptive cases) up to this date
and no optimal solution is known.

Our contributions. The priority assignment problem
can be attacked by simply assigning a priority to each task
in the system, and then checking if the assignment is feas-
ible. However, for a system of n tasks, this approach has a
complexity of n! which grows too fast. Therefore, it does
not provide a polynomial reduction from priority assign-
ment to priority testing. In this paper, we study static pri-
ority scheduling of recurring real-time tasks. We focus on
the non-preemptive uniprocessor case and obtain schedule-
theoretic results for this case. To this end, we derive a suffi-
cient (albeit not necessary) condition for schedulability un-
der static priority scheduling, and show that this condition
can be efficiently tested provided that task parameters have
integral values. In other words, a testing condition is de-
rived for the general priority testing problem, and efficient
algorithms with run-times that are pseudo-polynomial with
respect to the problem input size are given for the integer-
valued case. In addition, it is shown that these results are
not too pessimistic, on the contrary, they exhibit practical
value as they can be utilized within a search framework
to solve the priority assignment problem. We demonstrate
this with examples, where in each case, an optimal priority
assignment for a given problem is obtained within reason-
able time, by first detecting good candidates using simu-
lated annealing and then by testing them with the pseudo-
polynomial time algorithm developed for priority testing.

The paper is organized as follows: next section form-
ally introduces the recurring real-time task model. Sec-
tion 3 presents the schedulability condition for static prior-
ity schedulers. In Section 4, we present a simulated anneal-
ing based priority assignment search framework. Section 5
presents experimental results. Finally, concluding remarks
are given in Section 6.

2. Recurring Real-Time Task Model

A recurring real-time task T is represented by a direc-
ted acyclic graph (DAG) and a period P (T) with a unique
source vertex with no incoming edges and a unique sink
vertex with no outgoing edges. Each vertex of the task rep-
resents a subtask and is assigned with an execution require-
ment e(v) and a deadline d(v) of real numbers. Each dir-
ected edge in the task graph represents a possible control

flow. Whenever vertex v is triggered, the subtask corres-
ponding to it is generated with ready time equal to the trig-
gering time, and it must be executed for e(v) units of time
within the next d(v) units of time. In the non-preemptive
case which we consider, once a vertex starts being executed,
it can not be preempted. Hence, it is executed until its exe-
cution time is completed. Only once it is finished with ex-
ecution, another vertex which has been triggered possibly
from another task, can be scheduled for execution. In addi-
tion, each edge (u, v) of a task graph is assigned with a real
number p(u, v) ≥ d(u) called inter-triggering separation
which denotes the minimum amount of time which must
elapse after the triggering of vertex u, before the vertex v
can be triggered.

The execution semantics of a recurring real-time task
state that initially the source vertex can be triggered at any
time. When a vertex u is triggered, then the next vertex v
can only be triggered if there is an edge (u, v) and after at
least p(u, v) units of time has passed since the vertex u is
triggered. If the sink vertex of a task T is triggered, then
the next vertex of T to be triggered is the source vertex. It
can be triggered at any time after P (T) units of time from
its last triggering. If there are multiple edges from vertex u
which represents a conditional branch, among the possible
vertices only one vertex can be triggered. Therefore, a se-
quence of vertex triggerings v1, v2, · · · , vk at time instants
t1, t2, · · · tk is legal if and only if there are directed edges
(vi, vi+1) and p(vi, vi+1) ≤ ti+1− ti for i = 1, · · · , k. The
real-time constraints require that the execution of vi should
be completed during the time interval [ti, ti + d(v)].

Schedulability analysis of a task system. A task sys-
tem T = {T1, · · · , Tk} is a collection of task graphs, the
vertices of which are triggered independently. A triggering
sequence for such a task system T is legal if and only if
for every task graph Ti, the subsequence formed by com-
bining only the vertices belonging to Ti constitutes a legal
triggering sequence for Ti. In other words, a legal triggering
sequence for T is obtained by merging together (ordered by
triggering times, with ties broken arbitrarily) legal trigger-
ing sequences of the constituting tasks. The schedulability
analysis of a task system T deals with determining whether
under all possible legal triggering sequences of T , the sub-
tasks corresponding to the vertices of the tasks can be sched-
uled such that all their deadlines are met. Particularly, we
are interested in the non-preemptive uniprocessor case.

2.1. Demand Request Function (T.rbf(t))

The results on schedulability analysis in this paper are
based on the abstraction of a task T by its demand request
function T.rbf(t) which is defined as follows [3]: T.rbf(t)
takes a non-negative real number t ≥ 0 and returns the max-
imum cumulative execution requirement by the subtasks of

p(0, 1) = 10

15

(7, 10)

5

20

1 2

(1, 2)

P(T) = 50
(1, 10)3

(e(0), d(0)) = (3, 5)

0
T.rbf(2) = 7
T.rbf(10) = 10
T.rbf(15) = 10
T.rbf(20) = 11

Figure 1. Demand request function for T .

20

7
(1, 10)

0

15

(0, 0)

0

0

(1, 2)

2

1

(7, 10)

15

20
(1, 10)

3
10

(3, 5)

4

10

5

(7, 10)

5

(1, 2)

6

Figure 2. Transformed task graph T ′ for T in
Figure 1.

T that have their triggering times within any time inter-
val of duration t. In other words, demand request function
T.rbf(t) of task T denotes the maximum execution time
asked by the subtasks of T within any time interval of length
t, however all of which is not necessarily to be completed
within t.

In Figure 1, we give an illustrative example. In this
graph, T.rbf(2) = 7 because vertex v1 can be triggered
within 2 units of time. Similarly, T.rbf(20) = 11 due to a
possible legal triggering sequence of v3, v0, v1 at time in-
stants t1 = 0, t2 = 10, t3 = 20 within a time interval of
t = 20. It can be shown by exhaustively enumerating all
possible vertex triggerings of T that there exists no other
sequence of vertex triggerings with a cumulative execution
requirement that would exceed 11 within t = 20. Also no-
tice that in the mentioned vertex triggering, the deadline re-
quirements state that v3 and v0 should be completed by the
time instants t1 + 10 = 10 and t2 + 5 = 15 which are
both within t, while the deadline requirement for v1 is at
t3 + 10 = 30 which is outside t.

2.2. Computing Demand Request Function

First we are going to compute T.rbf(t) for small values
of t in which the source vertex is either not triggered, or

is triggered only once. Then using results of [3], we will
provide an expression for any t. In this way, the effect of
recurring behavior of the task model can be included in the
calculations.

Calculating T.rbf(t) for small t. To obtain all vertex
triggerings, in which the source vertex is either not triggered
or is triggered only once, we take two copies of the ori-
ginal DAG, add an edge from the sink vertex of the first
copy to the source vertex of the second copy (by setting
the inter-triggering separation equal to the deadline of the
sink vertex of the first copy), and then delete the source
vertex of the first copy. To make the resulting graph a
DAG, we add a dummy source vertex to the first copy with
(e, v) = (0, 0). Starting from a transformed task graph
which is not a DAG, [3] enumerates all paths in the task
graph to compute T.rbf(t) which has an exponential com-
plexity while [5] starts from T and neglects the recurring
behavior. Based on dynamic programming, we now give
an incremental pseudo-polynomial time algorithm1 to com-
pute T.rbf(t) for tasks with integral execution requirements
and inter-triggering separations2. Let there be n vertices
in T ′, v0, · · · , vn−1. As shown in Figure 2, the vertex in-
dices of T ′ are assigned such that there can be an edge from
vi to vj only if i < j. Let ti,e be the minimum time in-
terval within which the task T can have an execution re-
quirement of exactly e time units due to some legal trig-
gering sequence, considering only a subset of vertices from
the set {v0, · · · , vi}. Similarly, let tii,e be the minimum
time interval within which a sequence of vertices from the
set {v0, · · · , vi} and ending with vertex vi, can have an
execution of exactly e time units. Apparently, Emax =
(n− 1)emax where emax = max{e(vi), i = 1, · · · , n− 1}
is an upper bound for T.rbf(t) for any small t ≥ 0.

Algorithm 1 computes T.rbf(t) for small t in pseudo-
polynomial time for tasks with integral e(v) ≥ 0. Starting
from the sequence {v0} and adding one vertex to this set in
each iteration, the algorithm builds an array of minimal time
intervals ending at the last vertex added for all execution
requirement values between 0 and Emax, i.e. it computes
tii,e. Then using this result and the result of the previous cal-
culation (ti−1,e), it computes ti,e by taking their minimum.
Once all vertices are processed and an array of minimal time
intervals is built, the algorithm makes a lookup in the array
and returns the maximum execution requirement for a given
small t. It has a running time of O(n3Emax).

Calculating T.rbf(t) for any t. Once T.rbf(t) is
known for small t, the following expression from [3] can

1A pseudo-polynomial time algorithm for an integer-valued problem is
an algorithm whose running time is polynomial in the input size and in the
values of the input integers. See [9] for a nice coverage.

2Computing T.rbf(t) remains NP-hard even if the parameters (i.e. ex-
ecution requirements, deadlines and inter-triggering separations) of the re-
curring real-time task model are restricted to integer numbers [6].

Algorithm 1 Computing T.rbf(t) for small t

input: Transformed task graph T ′, a real number t ≥ 0
output: T.rbf(t)

for e = 0 to Emax do

t0,e ←

{

0 if e(v0) ≥ e
∞ otherwise

t00,e ← t0,e

end for
for i = 0 to n− 2 do

for e = 0 to Emax do
Assume there are directed edges from the vertices
vi1 , vi2 , · · · , vik

to vi+1

ti+1
i+1,e ←

min{t
ij

ij ,e−e(vi+1) + p(vij
, vi+1) such

that j = 1, · · · , k} if e(vi+1) < e
0 if e(vi+1) ≥ e

ti+1,e ← min{ti,e, t
i+1
i+1,e}

end for
end for
T.rbf(t)← max{e | tn−1,e ≤ t}

be used to calculate it for any t.

T.rbf(t) = max{bt/P (T)cE(T) + T.rbf(t′),

(bt/P (T)c − 1)E(T) + T.rbf(P (T) + t′)}, (1)

where E(T) denotes maximum possible cumulative execu-
tion requirement on any path from the source to the sink
vertex of T and t′ = t mod P (T).

3. Schedulability under Static Priority
Scheduling

In this section, we derive a sufficient condition for
schedulability under static priority scheduling. It is based
on the abstraction of a recurring real-time task in terms of
its demand request function.

Theorem 1 Given a task system T = {T1, · · · , Tk}, where
the task Tr has priority r, 0 ≤ r ≤ k, and r < q indicates
that Tr has a higher priority than Tq. The task system is
static priority schedulable if for all tasks Tr the following
condition holds: for any vertex v of any task Tr, ∃τ with
0 ≤ τ ≤ d(v) − e(v) for which

e>r
max + Tr.rbf(t− pTr

min) +

r−1
∑

i=1

Ti.rbf(t + τ) ≤ t + τ,

∀t ≥ 0 (2)

e(v)

0

tasks with > r

tasks with <r

t

v is triggered

t+

v is scheduled

>

t+d(v)t

Figure 3. Scheduling scenario in Theorem 1.

where e>r
max = max{e(v′) | v′is a vertex of Tj , j = r +

1, · · · , k} and pTr

min = min{p(u, u′) | u and u′ are vertices
of Tr}.

Proof: Let v be any vertex of the task Tr with an exe-
cution requirement e(v) and a deadline d(v). Consider the
following scenario which is also depicted in Figure 3:

Let v be triggered at time t and be scheduled at time t+τ .
We assume that t− τ̂ is the first time before time t where the
processor has no task with priority ≤ r to execute. Hence,
at this time the processor is either idle or executing a task
with priority > r. On the other hand, t− τ̂ is also the time
where at least one vertex of a task graph with priority ≤ r
was triggered. Under these conditions, the upperbound for
the total remaining execution requirement before the vertex
v can be scheduled at time t + τ is composed of

• the remaining execution requirement of some task
triggered before time t− τ̂ : e>r

max,

• the execution requirement of the task Tr (excluding v)
during time interval [t− τ̂ , t]: Tr.rbf(τ̂−pTr

min) where
pTr

min is the minimal inter-triggering separation in Tr,

• the total execution requirement of the tasks with < r
during time interval [t− τ̂ , t+τ]:

∑r−1
i=1 Ti.rbf(τ + τ̂).

Therefore, within [t − τ̂ , t + τ], the upperbound for the
total execution requirement is

e>r
max + Tr.rbf(τ̂ − pTr

min) +

r−1
∑

i=1

Ti.rbf(τ + τ̂). (3)

We define I [t − τ̂ , t + τ] to be the processor idle time
during time interval [t− τ̂ , t+τ]. If we show that the lower-
bound for I [t− τ̂ , t + τ] is non-negative, then we can con-
clude that the task system is schedulable. The lower bound
for I [t− τ̂ , t + τ] can be written as,

I [t− τ̂ , t + τ] ≥ (t + τ) − (t− τ̂)

−(e>r
max + Tr.rbf(τ̂ − pTr

min) +

r−1
∑

i=1

Ti.rbf(τ + τ̂)). (4)

By the condition (2) in Theorem 1, (3) is bounded by τ + τ̂ .
Substituting this in (4), we obtain,

I [t− τ̂ , t + τ] ≥ 0. (5)

Algorithm 2 Schedulability under Static Priority Schedul-
ing
input: Task system Tr ∈ T with unique r
output: decision

decision← yes
for all Tr ∈ T and for all v ∈ Tr and for all t ≥ 0 do

flag← 0
e>r

max ← max{e(v′) | v′ ∈ Ti, i > r)}
pTr

min ← min{p(u, u′) | u, u′ ∈ Tr)}
T<r ← T \{Ti | i ≥ r}
τmax ← d(v) − e(v)
for τ = 0 to τmax do

if e>r
max + Tr.rbf(t− pTr

min) +
∑

T∈T<r
T.rbf(t +

τ) ≤ t + τ then
flag← 1

end if
end for
if flag = 0 then

decision← no
end if

end for
return decision

Hence, all tasks scheduled before vertex v meet their dead-
lines at t + τ . The condition 0 ≤ τ ≤ d(v) − e(v) ensures
that v also meets its deadline.

Theorem 1 can be used to construct Algorithm 2 which
solves the priority testing problem as defined in Section 1.
Algorithm 2 simply checks if condition (2) holds for every
vertex in the task system, and relies on Algorithm 1 and
(1) for T.rbf(t) calculations. Algorithm 2 along with Al-
gorithm 1 is again a pseudo-polynomial time algorithm,
since all other steps in Algorithm 2 can also be performed in
pseudo-polynomial time. To see this, given any Tr ∈ T , let
tTr
max denote the maximum amount of time elapsed among

all vertex triggerings starting from the source and ending
at the sink vertex, if every vertex of Tr is triggered at the
earliest possible time without violating inter-triggering sep-
arations. Clearly, it is sufficient to test condition (2) in Al-
gorithm 2 for tmax = max{tTr

max, Tr ∈ T } times, which is
pseudo-polynomially bounded. Therefore, Algorithm 2 is
also a pseudo-polynomial time algorithm.

4. Simulated Annealing Framework

Simulated annealing (SA) can be viewed as a local
search equipped with a random decision mechanism to es-
cape from local optima. It is inspired by the annealing pro-
cess in condensed matter physics. In this process, a mat-
ter is first melted and then slowly cooled in order to ob-
tain the perfect crystal structure. In high temperatures, all
the particles move randomly to high energy states. But as

the temperature is decreased, the probability of such move-
ments is also decreased.

In combinatorial optimization, the energy of a state cor-
responds to the cost function value of a feasible point and
the temperature becomes a control parameter. We start with
an arbitrary initial point and search its neighborhood ran-
domly. If a better solution is found, then it becomes the cur-
rent solution and the search continues from that point. But
if it is a worse solution, then it may still be accepted with
some probability depending on the difference in cost func-
tion values and the current temperature. Initially at high
temperatures, the probability of accepting a worse solution
is higher. The acceptance probability decreases, as the tem-
perature is lowered. As a consequence, SA behaves like a
random walk during early iterations, while it imitates hill
climbing in low temperatures.

One of the strong features of SA is that it can find high
quality solutions independent of the initial solution. In gen-
eral, weak assumptions about the neighborhood and cooling
scheme are enough to ensure convergence to optimal solu-
tions. The key parameters in SA are temperature reduction
rate and neighborhood definition. In most cases, it may re-
quire a lot of trials to adjust these parameters to a specific
problem. We discuss the latter within the context of the
schedulability problem in the next section. In order to util-
ize SA, we first formulate schedulability under static prior-
ity scheduling as a combinatorial optimization problem.

Problem formulation. Assume that we are given an in-
stance (F, c) of an optimization problem, where F is the
feasible set and c is the cost function. In our case F is the
set of all possible priority assignments to tasks in T and c
is the cost of such an assignment. Given a priority assign-
ment f to tasks in T , let cond represent the schedulability
condition in (2), i.e. cond = e>r

max + Tr.rbf(t − pTr

min) +
∑

T∈T<r
T.rbf(t + τ). In this assignment, we define the

cost of assigning priority r to a task, c(Tr, t) as

c(Tr, t)←

0 if t = 0−

c(Tr, t− 1) if ∀v ∈ Tr,
∃τ s.t. cond ≤ t + τ

|A|+ c(Tr, t− 1) if for some v ∈ A ⊆ Tr,
@τ s.t. cond ≤ t + τ

where 0 ≤ τ ≤ d(v) − e(v) and 0 ≤ t ≤ tTr
max. Following

this definition, the cost of a particular priority assignment
to a task system becomes c(f, T) =

∑

Ti∈T
c(Tr, t

Tr
max).

The aim is to find the priority assignment f ∈ F which
minimizes c(f, T).

Corollary 2 A task system T is schedulable under static
priority scheduling if ∃f such that c(f, T) = 0.

Proof: The proof follows from the definition of c(f, T).
Clearly, for each task in T , a violation of schedulability con-
dition given by (2) increments the value of c(f, T) by one.

temp.
<0.1 >0.1output

parent

to parent

SA parameters
solution costs

child

set
temp.

create
parent

search algorithm

heating

set child

<prob cost(c)<cost(p)

cost(c)>cost(p)
>prob rand.problem spec.

parent

sched.
NO

YES

iters. <100

=100

create heating?
heat NO

YES

YES NOprob.

Figure 4. Overview of SA framework.

Hence a value of zero indicates that the schedulability con-
dition is not violated.

5. Experimental Results

In the previous section, we have introduced general char-
acteristics of a simulated annealing framework. We now
continue discussing those parameters of SA that are fine
tuned according to the problem in hand. These paramet-
ers are used in all the experiments reported here. Figure 4
provides an overview for our framework. At first we use
a heating mechanism to set the initial temperature. To do
so, we start with temp = 100 and look at the first 10 itera-
tions. If it is found that prob(p → s) < 0.5 in one of these
early iterations, then the temperature is increased such that
the new solution is always accepted, i.e. current temperat-
ure is increased with temp = |c(p, T) − c(s, T)|/ ln(0.5)
on that iteration. Remember that we are given an instance
of the scheduling problem defined in the form (F, c) (see
Section 4), and at each iteration, we search a neighborhood
N : F → 2F randomly at some feasible point p ∈ F for an
improvement. If such an improvement occurs at s ∈ N(p)
then the next point becomes s. But if c(s, T) > c(p, T)
then s is still taken with a probability prob(p → s) =
e−(c(s,T)−c(p,T))/temp. In our experiments, the number of
such iterations at each temperature is set to 100. The control
parameter temp is gradually decreased in accordance with
a pre-defined cooling scheme. For the latter, we use a static
reduction function temp = 0.9temp. Finally, we stop the
search either when a feasible schedule is found or when the
temperature drops under a certain value (temp = 0.1).

To illustrate the practical usefulness of our results, we
have taken task examples from the literature and construc-

Table 1. Task System Specifications

task(T) #ver./ed.(T) #ver./ed.(T ′) P (T) TS1 TS2 TS3 TS4 TS5 TS6 TS7
hou c1 4/3 9/10 300 o o o o o o o
hou c2 4/4 8/9 200 o o o o o o o
hou c3 3/2 7/8 200 o o o o o o o
hou c4 3/2 6/5 200 o o o o o o o
yen1 5/4 11/12 300 o o o o o o o
yen2 4/3 9/10 300 o o o o o o o
yen3 6/5 14/18 400 - o o o o o o
dick 5/5 11/14 400 - - o o o o o

hou u1 10/13 21/30 700 - - - o o o o
hou u2 10/16 20/33 500 - - - - o o o
hou u3 10/15 22/41 600 - - - - - o o
hou u4 10/14 22/36 700 - - - - - - o

Table 2. Experimental Results
ES (secs.) SA (secs.)

task system #tasks (tmin , tmid, tmax) sol. density ES1 ES2 search test total
TS1 6 (10, 100, 189) 2.5% 4, 511 333 22.15 6.25 28.40
TS2 7 (10, 100, 188) 2.14% - 2, 856 32.75 7.90 40.65
TS3 8 (10, 100, 184) 0.89% - 23, 419 64.40 9.30 73.70
TS4 9 (10, 100, 428) - - - 88.60 37.80 126.40
TS5 10 (10, 100, 429) - - - 170.75 53.40 224.15
TS6 11 (10, 100, 427) - - - 311.05 62.80 373.85
TS7 12 (10, 100, 430) - - - 331.45 86.45 417.90

ted new task systems using their different combinations.
The first column in Table 1 refers to tasks used; tasks
starting with hou c and hou u are Hou’s clustered and un-
clustered tasks [8], respectively. Tasks starting with yen
are Yen’s examples on p.83 in [15]. Task dick is from [7].
These tasks were originally defined in different task models
and do not posses all characteristics of a recurring real-time
task. Topologically, some tasks have multiple source and/or
sink vertices. In such cases, we have added dummy ver-
tices (with null execution requirements) when necessary. In
most cases, originally a deadline for each task was defined,
contrary to recurring real-time task model in which a dead-
line is defined for each vertex (subtask). Therefore, we have
defined deadlines for all vertices in all tasks (same in all task
sets) using a random generator. Then in all task systems, we
have tried to give maximal execution requirements to ver-
tices in order to minimize the number of feasible priority
assignments. We have achieved this by gradually increas-
ing execution requirements until a small increase yielded
an unschedulable task system.

In the appendix, Figure 7 and Table 3 provide original
task graphs and values of task parameters in our experi-
ments, respectively. What is more, the details of trans-
forming task graphs with multiple source and/or sink ver-
tices is explained on illustrative examples given in Figure 8.
We provide a summary of most important parameters in
columns 2, 3 and 4 of Table 1. The former two columns

give the number of vertices and edges in task and trans-
formed task graphs, while the latter provides task periods.
As already stated, run-times of Algorithms 1 and 2 are
pseudo-polynomially bounded with task sizes. The rest of
the columns in Table 1 give task system specifications.

For numerical results, we have integrated Algorithms 1
and 2 as C functions into the introduced SA framework
which was also implemented in C. The experiments re-
ported here have been performed on a Pentium 3 PC with
600 MHz CPU and 320 MB RAM running Linux OS. For
each task system scenario, we have performed 20 runs (with
seeds from 1 to 20 for the random generator) searching for
feasible schedules using the SA framework. All results
given in Table 2 are arithmetic means of 20 runs. During
the experiments, we observed that schedulability condition
is more sensitive to small values of t, and in most cases, it
is enough to test up to the first tmin times to find a majority
of non-optimal solutions. Therefore, in order to decrease
search run-times by means of spending less time on non-
optimal solutions, we have used a combination of tmin and
tmid values instead of the actual value tmax. In most cases,
it was enough to test for the first tmin times to find a ma-
jority of non-optimal solutions. In the search, if a feasible
solution for tmin was found, it was further tested for times
up to tmid. Only if the solution also passed this second
test, it was output as a candidate for an optimal solution
and the search was stopped. We call this CPU time spent on

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

t_min t_mid t_max

C
P

U
 T

im
e

(s
ec

s.
)

t

Schedulability Test Times

TS 1
TS 2
TS 3
TS 4
TS 5
TS 6
TS 7

Figure 5. Schedulability test times.

search as SA search and report their averages in column 7 of
Table 2. Since SA tests many non-optimal solutions until it
reaches an optimal one, using tmin instead of tmax at each
iteration dramatically decreased run-times. In Figure 5, we
plotted CPU times of schedulabilility tests with tmin, tmid

and tmax in all task system scenarios. If we compare CPU
times of tmin and tmax, the difference lies between 15 to
25 times for TS1, TS2 and TS3, while for relatively larger
task systems TS4, TS5, TS6 and TS7, it is between 45 to 60
times. Finally, all candidate solutions found has been tested
once with tmax. We call the CPU time spent on this last step
as SA test, and similarly report their averages in column 8
of Table 2. If a candidate solution fails in the last step, SA
is started again and the next solution found is taken as the
new candidate. However, it is interesting to note here that in
our experiments, all first candidate solutions passed the last
test, and therefore none of the SA search or test steps were
repeated.

We have also performed exhaustive searches (ES) in
cases where the size of task systems permitted to do so. The
main reason behind this was to find out solution density, i.e.
the number of optimal solutions in the feasible set. As a res-
ult of ES runs (given in column 4 in Table 2), we found out
that solution densities in TS1, TS2 and TS3 scenarios are
less than or equal to 2.5%. Two exhaustive searches ES1
and ES2 are given in columns 5 and 6 of Table 2. In ES1,
all points in the feasible set were tested with tmax which
took 4, 511 secs. for TS1. In ES2, we first tested all points
with tmin, then only tested those points which passed the
first test with tmax. Using this method, ES CPU time for
TS1 decreased from 4, 511 to 333 secs. and we could also
perform ES runs for TS2 and TS3.

Finally, we have taken one optimal solution for TS3 and
examined all its 28 neighbors. The costs of these points are
plotted in Figure 6. Despite a significant number of other

 0

 2

 4

 6

 8

 10

 12

0 0<c<1 1<c<2 2<c<3 3<c<4 4<c<5 5<c<6

N
um

be
r o

f S
ol

ut
io

ns

Cost Function Values (*1000)

Neighborhood Analysis

Figure 6. Neighborhood analysis.

optimal solutions around this solution, there are also some
points with moderate to very high costs. This shows us that
the distance from an optimal point and the value of the cost
function are not strongly correlated. The latter may sub-
stantially increase SA run-times.

6. Conclusion

In this paper, we have derived a sufficient (albeit not ne-
cessary) condition to test schedulability of recurring real-
time tasks under static priority scheduling. It was shown
that this condition can be tested in pseudo-polynomial
time, provided that task execution requirements and inter-
triggering separations have integral values. Furthermore,
these results were not too pessimistic and had also practical
value. The latter was demonstrated in terms of experiments
performed with different task systems, where in each case,
an optimal solution for a given problem specification could
be reported within reasonable time.

7. Acknowledgement

This work is partly supported by the Dutch Technology
Foundation STW under grant AES 5021.

References

[1] S. K. Baruah. Feasibility analysis of recurring branching
tasks. In Proc. of the Euromicro Workshop on Real-Time
Systems, June 1998.

[2] S. K. Baruah. A general model for recurring real-time tasks.
In Proc. of the Real Time Systems Symposium, Dec. 1998.

[3] S. K. Baruah. Dynamic- and static-priority scheduling of
recurring real-time tasks. Real-Time Systems, 24(1), 2003.

[4] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Gener-
alized multiframe tasks. Real-Time Systems, 17(1), 1999.

[5] S. Chakraborty, T. Erlebach, S. Künzli, and L. Thiele.
Schedulability of event-driven code blocks in real-time em-
bedded systems. In Proc. of the Design Automation Confer-
ence, June 2002.

[6] S. Chakraborty, T. Erlebach, and L. Thiele. On the com-
plexity of scheduling conditional real-time code. In Proc.
of the 7th Int. Workshop on Algorithms and Data Structures,
LNCS 2125. Springer-Verlag, 2001.

[7] R. P. Dick and N. K. Jha. MOCSYN: Multiobjective core-
based single-chip system synthesis. In Proc. of the Design,
Automation and Test in Europe, Mar. 1999.

[8] J. Hou and W. Wolf. Process partitioning for distributed
embedded systems. In Proc. of Int. Workshop on Hard-
ware/Software Codesign, Mar. 1996.

[9] J. Hromkovic̆. Algorithmics for Hard Problems (Introduc-
tion to Combinatorial Optimization, Randomization, Ap-
proximation, and Heuristics). Springer-Verlag, 2002.

[10] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the
ACM, 20(1), 1973.

[11] A. K. Mok. Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment. PhD thesis,
Massachusetts Institute of Technology, 1983.

[12] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. IEEE Trans. on Software Engineering, 23(10), 1997.

[13] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for sys-
tems with data and control dependencies. In Proc. of Eur-
omicro Conference on Real-Time Systems, June 2000.

[14] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for dis-
tributed heterogeneous time/event-triggered real-time sys-
tems. In Proc. of Euromicro Conference on Real-Time Sys-
tems, July 2003.

[15] T. Yen and W. Wolf. Hardware-Software Co-Synthesis of
Distributed Embedded Systems. Kluwer Academic Publish-
ers, 1996.

A. Task Systems

Original task graphs for tasks used in the experiments
are given in Figure 7. In all task graphs, a vertex with no in-
coming edge is a source vertex, and similarly a vertex with
no outgoing edge is a sink vertex. In the recurring real-
time task model, tasks have single source and sink vertices
in their task graphs and transforming such a task graph was
already shown in Figure 2. However as seen in Figure 7,
a number of tasks taken from the literature were defined in
earlier task models and they have multiple source and/or
sink vertices. In Figure 8, we show how these task graphs
are transformed so that the transformed task graphs have
single source and sink vertices. There exist three different
cases: (1) tasks with multiple sink vertices, (2) tasks with
multiple source vertices, and (3) tasks with multiple source
and sink vertices. In Figures 8(a), 8(b) and 8(c), one ex-
ample of a transformed task graph is given for each case.

hou_c2

dick

hou_u2hou_u1

0

1

0 1 2

2 4

31

0

1 2

3

0

0 2

3

4

5 2

0

1 3

4

6

8

9

7
9

6

3

0

1

2

4

5

1

2

4

5 7

8

7

4

3

2

1

6

7

5 8

9

hou_c1

0

1

3

2

2

3

hou_c3 2

0

1

hou_c4

yen1

yen2

yen3

1

3

0

hou_u3

0 1

2

3 4

5 6

8 9

hou_u4

0

Figure 7. Original task graphs taken from the
literature. Some of the task graphs have mul-
tiple source and/or sink vertices.

Alternative to the examples in Figure 8, we could
also add dummy vertices to original task graphs and sub-
sequently use the standard procedure (explained in Sec-

d d

0

2

1

3

5

4

6

(a) Case 1: Task with multiple sink
vertices.

8

0

d
1

2 3

4

5

6 7

(b) Case 2: Task with multiple source vertices.

6

1

4

0

d

2

3 5

8

7

10

9

12

11

13

d

(c) Case 3: Task with multiple source and sink vertices.

Figure 8. Three example transformed task
graphs for tasks with multiple source and/or
sink vertices. In all transformed task graphs,
dummy vertices added are labeled with "d".
(a) Transformed task graph for hou c3 which
has multiple sink vertices. (b) Transformed
task graph for yen2 which has multiple source
vertices. (c) Transformed task graph for yen3
which has multiple source and sink vertices.

tion 2.2) to transform them. However, this would unneces-
sarily increase the number of dummy vertices in the trans-
formed task graphs, which in turn would increase run-times
for T.rbf(t) calculations.

Although not explicitly mentioned previously, it should
be clear from its input that Algorithm 2 actually operates
on the original task graphs. Hence, the schedulability con-
dition is tested only once for all vertices (i.e. subtasks) on
each iteration of the algorithm.

Finally, in Table 3 we provide values used in the experi-
ments for each task system that we have synthesized using
tasks in Figure 7. The values are given with respect to ori-
ginal task graphs rather than transformed task graphs. In
addition, we should also note that during all experiments,
inter-triggering separations were set equal to deadlines, i.e.
p(u, v) = d(u) for all u, v ∈ T in all task systems.

Table 3. Experimental Data

e(v)
T v TS1 TS2 TS3 TS4 TS5 TS6 TS7 d(v)

hou c1

0 7 3 6 5 5 5 5 71
1 9 5 6 5 5 4 5 56
2 10 6 6 5 5 4 5 63
3 4 1 1 1 3 1 3 50

hou c2

0 5 4 2 2 3 4 3 80
1 8 7 6 5 5 4 5 99
2 10 9 6 5 4 6 5 99
3 10 9 5 4 3 2 2 46

hou c3
0 6 5 8 5 4 5 4 64
1 8 6 5 4 6 2 3 93
2 10 9 8 5 4 4 4 53

hou c4
0 4 4 5 4 5 6 4 78
1 8 8 5 4 5 4 4 74
2 8 7 5 3 4 3 4 57

yen1

0 1 6 6 5 5 5 4 73
1 1 1 1 1 3 1 3 72
2 6 4 6 5 5 5 4 82
3 8 6 6 5 4 4 4 82
4 8 6 6 5 4 5 4 77

yen2

0 9 7 6 6 5 4 2 80
1 9 7 6 6 4 3 3 57
2 8 6 5 5 4 4 3 66
3 8 6 6 6 4 3 3 61

yen3

0 - 4 4 4 4 2 4 53
1 - 5 5 5 4 4 4 61
2 - 2 2 2 3 1 5 89
3 - 6 6 5 5 4 5 82
4 - 1 1 1 2 1 5 97
5 - 4 4 4 3 2 3 32

dick

0 - - 4 4 4 2 3 96
1 - - 5 5 2 3 3 48
2 - - 7 6 3 4 4 59
3 - - 7 6 3 4 4 85
4 - - 3 3 1 1 1 36

hou u1

0 - - - 4 4 4 3 58
1 - - - 6 5 4 4 98
2 - - - 2 2 2 3 52
3 - - - 1 3 1 3 59
4 - - - 1 3 1 1 64
5 - - - 1 1 1 1 62
6 - - - 4 5 4 4 88
7 - - - 4 4 4 2 63
8 - - - 4 4 4 3 68
9 - - - 5 5 4 3 54

hou u2

0 - - - - 4 4 4 85
1 - - - - 3 1 1 89
2 - - - - 3 3 2 66
3 - - - - 4 4 4 78
4 - - - - 4 4 3 97
5 - - - - 3 1 1 80
6 - - - - 3 3 2 74
7 - - - - 4 4 4 82
8 - - - - 4 4 4 56
9 - - - - 6 4 4 95

hou u3

0 - - - - - 4 4 72
1 - - - - - 1 1 62
2 - - - - - 4 4 92
3 - - - - - 2 1 88
4 - - - - - 4 4 81
5 - - - - - 4 3 85
6 - - - - - 4 4 86
7 - - - - - 2 1 95
8 - - - - - 3 2 70
9 - - - - - 4 4 77

hou u4

0 - - - - - - 1 71
1 - - - - - - 4 80
2 - - - - - - 4 96
3 - - - - - - 4 72
4 - - - - - - 2 78
5 - - - - - - 1 96
6 - - - - - - 4 82
7 - - - - - - 3 68
8 - - - - - - 4 97
9 - - - - - - 3 91

