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a b s t r a c t

The ever-increasing performance demand of modern embedded applications drives the development of

multi-processor system-on-chip (MPSoC) systems in the embedded domain. Today’s MPSoC-based products

increasingly have to deal with multiple application execution scenarios which may change dynamically at run

time. To improve the system performance, a state-of-the-art solution is to dynamically adapting the alloca-

tion of system resources at run time for each execution scenario based on pre-determined resource schemes

that have been optimized at design time. However, such approaches will not work well for MPSoC systems

that have a large number of execution scenarios and/or frequent run-time variations in execution scenario

behavior. In this work, we therefore propose a scalable run-time self-adaptive framework for MPSoC systems

that addresses these problems, thereby considerably improving the system efficiency.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the ever-increasing performance demands of modern
embedded applications, the use of heterogeneous multi-processor
system-on-chip (MPSoC) systems has become increasingly popular
in the embedded systems domain. Today’s MPSoC systems often re-
quire supporting an increasing number of applications and stan-
dards, where multiple applications can run simultaneously and con-
currently contend for system resources. For each single application,
there may also be different execution modes (or program phases)
with different computational and communication requirements. For
example, in Software Defined Radio appliances a radio may change
its behavior according to resource availability, such as the Long Term
Evolution (LTE) standard which uses adaptive modulation and cod-
ing to dynamically adjust modulation schemes and transport block
sizes based on channel conditions. As a consequence, the behavior
of application workloads executing on the embedded system can
change dramatically over time. Here, one can distinguish two forms
of dynamic application behavior: inter-application dynamism and
intra-application dynamism, which are often captured using scenar-
ios [1,2]. This means that there are two different kinds of scenarios:
inter-application scenarios describe the simultaneously running ap-
plications in the system, while intra-application scenarios define the
different execution modes for each application. The combination of
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these inter- and intra-application scenarios are called workload sce-
narios, and specify the application workload in terms of the different
applications that are concurrently executing and the mode of each
application as shown in Fig. 1. The change of workload scenarios over
time on a certain MPSoC system typically depends on environmental
behavior, such as initiated by a user.

The mapping of application tasks onto the underlying system re-
sources plays a crucial role in achieving high performance in MPSoC
systems. The performance of a workload scenario may vary greatly
among different mappings. To enable MPSoC systems to support the
application dynamism more effectively, a state-of-the-art solution
would provide a light-weight resource scheduler that allows for re-
configuring the system at run time based on pre-optimized system
configurations, such as task-to-resource mappings, derived at design
time [3–8]. This type of methods can be divided into two stages. The
first stage is the design-time preparation which determines one or
multiple system configurations for each possible scenario that may
appear on the target system. For example, these configurations could
be different task mappings optimizing the system for e.g. perfor-
mance and/or energy consumption. The second stage is the run-time
stage in which a resource scheduler chooses the appropriate system
configuration from the pre-optimized configurations based on the
current active workload scenario on the system.

However, these state-of-the-art run-time mapping solutions typ-
ically still lack scalability and the capability to throttle adaptivity.
Regarding scalability, future MPSoC systems may need to support a
vast number of workload scenarios. This could result in a design-
time mapping optimization stage that is computationally intractable
and requires an unacceptable amount of memory to store the
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Fig. 1. Definition of a workload scenario.

pre-optimized mappings on the system. The ability of adaptivity
throttling is required when the workload scenarios of a MPSoC sys-
tem are relatively fine grained, which means that different workload
scenarios rapidly succeed one another at run time. In the previously
mentioned dynamic MPSoC solutions, the systems typically always
try to reconfigure when a new workload scenario has been detected
and, doing so, the reconfiguration costs are not explicitly taken into
account. These reconfiguration costs may be substantial as they in-
clude the overhead of application tasks that may need to be migrated
between different processors in the MPSoC. Especially in the case of
fine-grained workload scenarios – which are workload scenarios that
are only active for a short duration – such overheads may easily elim-
inate the benefits of reconfiguring the system: the reconfiguration it-
self may take longer than the performance gain that is obtained af-
ter reconfiguration. Consequently, in the case of fine-grained work-
load scenarios on the target MPSoC system, these dynamic MPSoC
solutions may actually degrade the system performance, especially on
heterogeneous MPSoC systems1. In this paper, we refer to this prob-
lem as blind adaptivity.

Novel Contributions and Concept Overview: In order to address
the above challenges, we propose a Scenario-based run-time Adap-
tive Resource Allocation (SARA) framework for MPSoC systems. This
framework involves:

(1) A scalable task mapping approach to solve the scalability
problem. In this approach, there still exist two stages. The
first stage is the design-time preparation stage during which
a performance-optimized task mapping for each execution
mode of each separate application (in isolation) will be derived
using a static Design Space Exploration (DSE) approach. The
second stage is the run-time mapping re-optimization stage.
In this stage, for each detected workload scenario, the pre-
optimized mappings of each isolated active application will be
combined and further optimized to improve the performance
of the entire scenario.

(2) A self-adaptive scheduler for adaptivity throttling. After a new
mapping has been derived for a newly detected workload sce-
nario by our task mapping approach, the scheduler tries to pre-
dict whether or not reconfiguration of the system actually is
beneficial. According to this prediction, the system will either
be reconfigured or not. Due to this adaptivity throttling, our

1 Usually, the reconfiguration overhead on a heterogeneous MPSoC is higher than

the on a homogeneous MPSoC.

scheduler is able to clearly improve the system’s efficiency as
compared to MPSoCs that do not provide such intelligent re-
configuration control.

Paper Organization: The remainder of this paper is organized as
follows. Section 2 gives some prerequisites for this paper. Section 3
provides a more detailed description of a specific instance of SARA
for the target MPSoC system in this work. Section 4 introduces the ex-
perimental environment and presents the results of our experiments.
Section 5 discusses related work, after which Section 6 concludes the
paper.

2. Prerequisites

2.1. Workload scenario

As introduced in the previous section, we use the concept of sce-
narios to capture application dynamism. A workload scenario is de-
fined as one particular instance of the combined execution modes
of a set of active target applications. Here, we denote S as the set of
all possible workload scenarios for the target applications. For n tar-
get applications where each application has m execution modes, the
total number of possible workload scenarios in S is (m + 1)n − 1. In
each workload scenario si ∈ S, the tasks and communication between
tasks are described as a directed graph WSi = (Ti,Ci) where Ti is the
set of tasks in scenario si and Ci represents the set of communication
channels between two communicating tasks. Each element in Ti and
Ci, denoted as tkm

i
and ckn

i
, respectively represents the mth task and

the nth communication channel in application appk which is active in
workload scenario si.

2.2. Architecture model

In this work, we restrict ourselves to heterogeneous MPSoC archi-
tectures with shared memory2. An architecture can be modeled as a
graph MPSoC = (PE, M), where PE is the set of processing elements
used in the architecture and M is a multiset of pairs mi j = (pei, pe j) ∈
PE × PE representing a buffered communication medium, composed
of a network channel (like a Bus, NoC, etc.) and a buffer located in
shared memory, between processors pei and pej. However, our pro-
posed approach is not limited to the architecture we assumed here.

2 In our work, a basic assumption is that the target MPSoC system is over designed

for all the target applications. It means that the system can handle all the application

constraints as a basic requirement.
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It can be applied to any other architecture if the corresponding pre-
dictor needed by the run time scheduler, which will be introduced in
the next section, is changed accordingly.

2.3. Task mapping

The task mapping defines the binding of the components in
a workload scenario (including the tasks and the communica-
tion channels) to the underlying architecture resources. Given a
workload scenario and a target MPSoC, a correct mapping is a
pair of unique assignments (µ: T → PE, η: C → M) such that
it satisfies ∀c ∈ C, source(η(c)) = µ(source(c)) ∧ destination(η(c)) =
µ(destination(c)). For each workload scenario si ∈ S, the possible task

mappings are denoted as TMi with each single mapping tm j
i

∈ TMi

complying with the mapping constraint. In this work, we assume that
the task mapping of applications on the target system only can be
changed by task migration. Under these definitions, the computation
cost of task tkm

i
∈ Ti and the communication cost of ckn

i
∈ Ci in work-

load scenario si under the task mapping of tm j
i

is represented as etkm
i j

and eckn
i j

respectively.

2.4. Objective formulation

Our target applications belong to the domain of streaming appli-
cations (like multimedia applications) that continuously process an
incoming stream of data elements. To capture the duration of a work-
load scenario in this case, we use the concept of scenario frames to
define the workload of active applications. Here, we define one sce-
nario frame as the time it takes for each active application within a
specific workload scenario to process at least one unit (frame) of data
(e.g., processing a single MP3 frame, an H264 frame, etc.). Therefore,
the frame execution time of a workload scenario is defined as the
maximum frame execution time among active applications (each
processing its own unit of workload). Using this definition, the frame
execution time of workload scenario si under mapping tm j

i
is formu-

lated as pj
i

which can be calculated by Eq. (1).

pj
i
= max(pk

i j) (1)

where pk
i j

represents the frame execution time of appk which is ac-

tive in si under mapping tm j
i
. Consequently, the execution duration of

workload scenario si under mapping tm j
i

is calculated as pj
i
∗ ni where

ni is the number of scenario frames executed for si on the system.
In our work, we assume that when a new application is started,

it is added to the system using a pre-determined, default task map-
ping. Given a newly detected scenario, the complete task mapping
of those applications that persist in the new scenario and any newly
added applications needs to be reconsidered. Remapping of the ap-
plication tasks in the newly detected workload scenario can be bene-
ficial performance wise (i.e., every workload scenario has an optimal
task mapping) but this depends on both the actual performance gain
of reconfiguring the system and the reconfiguration costs. The recon-
figuration costs include two parts: (1) the overhead of finding a new
mapping and making a reconfiguration decision, and (2) the task mi-
gration cost that may occur during system reconfiguration. Here, we
denote the reconfiguration costs for scenario si to change from map-

ping tm j
i

to tm j′
i

as c j j′
i

, which includes the time of finding the new

mapping tm j′
i

, making the reconfiguration decision for the new map-
ping and task migration during reconfiguration. This implies that the
system reconfiguration benefit B can now be expressed as:

B = (pj
i
− pj′

i
) ∗ ni − c j j′

i
(2)

Our objective is to maximize the system performance for a sequence
of workload scenarios S∗. This means that we want to maximize the

total system reconfiguration benefit
∑

sk∈S∗ bk ∗ Bk, where bk ∈ {0, 1}

is the migration decision made by the run time scheduler and Bk is
the reconfiguration benefit of workload scenario sk ∈ S∗. Obviously,
the solution to this problem is bk = 0 if Bk <= 0 and bk = 1 if Bk > 0.
Consequently, to achieve our objective, the system needs to correctly
predict the system reconfiguration benefit B for each workload sce-
nario.

3. Scenario-based run-time adaptive resource allocation
framework

As mentioned in the introduction, our SARA framework [9] is pro-
posed to address the scalability and blind adaptivity issues in self-
adaptive MPSoC systems. This framework consists of three compo-
nents: a Run-time System Monitor (RSM), a Run-time Mapping Gen-
erator (RMG) and a self-Adaptive Resource Scheduler (ARS). The RSM
is in charge of detecting the active workload scenario on the target
MPSoC system and dynamically collecting system statistics. To de-
tect and identify workload scenarios in our Sesame simulation frame-
work, we need to instrument the source code of target applications
with scenario related events such as STARTSCENARIO and ENDSCE-
NARIO. When a processing element in a Seseme system model en-
counters a STARTSCENARIO event of an application, it will register this
application with its execution mode information in the RSM to notify
that a new application has started execution on the system. Similarly,
for an ENDSCENARIO event of an application, the processing element
will unregister the application in the RSM. According to the registered
application information in the RSM, the active workload scenario on
the target system can be identified. The RMG and ARS are responsi-
ble for the system adaptation and address the scalability and blind
adaptivity issues as explained above. Fig. 2 shows the high-level sys-
tem workflow of the SARA framework. When the RSM detects a new
workload scenario, the RMG will generate a new mapping for the de-
tected (active) scenario. Hereafter, the ARS makes an adaptation de-
cision by predicting the benefit of changing the current mapping into
the newly proposed one (by the RMG). According to this decision, the
ARS will then either reconfigure the system based on the new map-
ping or continue the system’s execution under the current mapping.
In this section, we focus on how to improve the efficiency of MPSoC
systems by using SARA’s run-time mapping framework in which the
RMG solves the scalability problem by using a hybrid mapping op-
timization approach and the ARS deploys a history-based scenario
duration prediction mechanism to perform adaptivity throttling, i.e.
decide whether or not to adjust the task mapping. The details of our
proposed SARA framework will be described in details in the follow-
ing subsections.

3.1. Design time preparation

For our SARA framework, we need to prepare several important
information at design time and store these information on the sys-
tem for run-time usage. The first one is the mappings that will be
considered for run-time mapping optimizations. In our framework,
we consider a hybrid task mapping approach where the mapping op-
timization process include a design time application-level mapping
exploration and a run time scenario-level mapping optimization. It
means that, at design time, we need do several mapping explorations
to provide the SARA framework with the required mapping informa-
tion for the target applications. This hybrid task mapping approach
will be introduced in the next subsection.

Besides the pre-optimized mappings, the execution time of each
task on each processor, the communication times between tasks on
different communication channels of the target system and the mi-
grating data size between processors for each task should also be an-
alyzed at design time and stored on the target system for the purpose
of mapping performance prediction and system reconfiguration cost
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Fig. 2. The structure and workflow of SARA framework.

prediction. These design-time prepared information will be used by
the RMG for run-time dynamic mapping optimization and ARS for
adaptivity throttling for the target MPSoC system.

3.2. Scalable run-time task mapping

The problem of optimally mapping a set of tasks onto a set of given
heterogeneous processors for maximal performance (e.g. through-
put) has been known, in general, to be NP-complete. This problem
is exacerbated when mapping multiple applications (i.e., bigger task
sets) onto the target platform. Solutions for this problem can be di-
vided into three categories: static [10–13], dynamic [14,15] and hy-
brid task mapping algorithms [16,17] which, respectively, work at
design time, run time and both design time and run time.

Traditionally, the task mapping problem is solved statically at de-
sign time for which there are many known task mapping algorithms
targeting different application domains and different hardware ar-
chitectures. These algorithms typically use computationally intensive
search methods to find the optimal mapping or near optimal map-
ping for the applications that may run on the system. Dynamic task
mapping techniques, on the other hand, cannot be computationally
intensive as they have to efficiently make task mapping decisions at
run time. Therefore, these techniques typically use heuristics to find
good task mappings. Evidently, static task mapping techniques usu-
ally obtain mappings of higher quality compared to those derived
from dynamic algorithms as the former allow for exploring a larger
design space for the underlying architecture. This, of course, at the
cost of consuming more time. Another drawback of static mapping
techniques is that they cannot cope with dynamic application behav-
ior in which different combinations of applications can be executing
concurrently over time that are contending for system resources. To
overcome the shortcomings of pure static and dynamic task map-
ping algorithms, hybrid (semi-static) approaches have become in-
creasingly popular in recent years. Usually, in this kind of approaches,
multiple mapping solutions are found at design time and applied at
run time based on the current state of the system. However, these
methods typically still suffer from scalability issues when the num-
ber of workload scenarios becomes very large as they need to find
and store one or more optimal task mappings per scenario at design
time (to be used at run time). One solution to address this problem

is by reducing the number of workload scenarios by means of clus-
tering [2,6]. The clustering based approaches divide the target work-
load scenarios into different clusters, and only explore the best map-
ping solution or several good ones for each cluster. Consequently, the
number of mappings need to be explored and stored can be greatly
reduced. In the extreme case, one can put all the target workload sce-
narios in a cluster and only explore a single mapping which shows on
average the best performance for all scenarios for this cluster. In this
case, only one mapping needs to be found at design time and it will
be used for all the workload scenarios. However, these methods still
suffer from an additional problem of searching for optimal mappings
of (clustered) workload scenarios at design time: it should already be
known at design time which applications can execute on the target
platform. This implies that extending the system with a new applica-
tion would require to redo the entire design-time mapping prepara-
tion for all (clustered) workload scenarios.

In the SARA framework, we address the above problems by us-
ing the EIM algorithm proposed in [7] which prepares partial task
mappings for workload scenarios at design time and completes the
mappings for the entire scenario at run time using the RMG compo-
nent. The middle grey box of Fig. 3 gives an overview of how the RMG
generates a new mapping for the workload scenario detected by the
RSM. At design time, a performance-optimized task mapping (and, if
needed, also a power-optimized mapping) for each execution mode
of each application in isolation is determined by using state-of-the-
art scenario-aware Design Space Exploration (DSE) techniques [18].
This DSE approach uses an genetic algorithm with an domain knowl-
edge optimised mutation operator to speed up the exploration pro-
cess. The optimised mutation operator can guide the genetic algo-
rithm to search the good mapping candidates (smaller makespan and
well balanced) that have a higher probability to be the best mapping
solution3. By using this DSE approach, we can significantly reduces
the time and memory requirements needed for, respectively, finding
and storing the pre-optimized task mappings at design time. For ex-
ample, when considering n target applications with each m execu-
tion modes, the number of mappings that need to be optimized and
stored is m∗n in our case. This number is greatly reduced compared

3 We refer the interested readers to [18] for more details
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Fig. 3. An instance of SARA for the target MPSoC system.

to the (m + 1)n − 1 mappings that need to be optimized and stored
in the case of performing mapping preparation for complete work-
load scenarios. Moreover, if a new application needs to be supported
on the target MPSoC system, this would only require providing the
pre-optimized mappings of this new application to the RMG without
redoing the entire process of design-time mapping preparation for all
possible (new) workload scenarios.

At run time, after the RSM has detected a new workload scenario,
the RMG will first merge the pre-optimized mappings of each sep-
arate, active application in the detected workload scenario to form
a first-order mapping for the entire scenario. Subsequently, the RMG
will then further optimize this first-order mapping by using run-time
mapping optimization heuristics, based on e.g. a load balance algo-
rithm or a dynamic mapping optimization algorithm such as pro-
posed in [6,7]. This run-time mapping optimization focuses mainly
on resolving resource contention problems. This is because the com-
munication between tasks inside each application has already been
optimized at design time, which saves significant run-time effort to
re-optimize the task communications. As a consequence, in RMG’s
mapping optimization process only slight adjustments of the merged
mapping will already lead to a good mapping for the target workload
scenario.

In SARA, the scalability problem is therefore addressed by means
of a divide-and-conquer approach of which the rationale can be ex-
plained as follows. At design time, we divide the mapping problem
of a workload scenario that may contain several applications into
several smaller application-level mapping problems. This greatly re-
duces the complexity of the whole scenario mapping problem and
consequently increases the possibility of finding the optimal results
for each separate application-level mapping problem. Consequently,
the SARA framework is able to handle large numbers of workload
scenarios and also more effectively supports the addition of new ap-
plications to the target MPSoC system. The disadvantages of this ap-
proach mainly exist in two aspects. Firstly, the quality of the map-
pings derived from our approach is slightly worse than the mappings

generated by static task mapping approaches. As the static mapping
approaches can explore a larger or even the entire mapping solution
space to find the exactly optimal mapping solution. Compared with
dynamic on-the-fly task mapping approaches, the complexity of our
approach is higher as we need to prepare the required information at
design time for run-time usage.

3.3. Adaptivity throttling

In current state-of-the-art run-time task mapping approaches for
MPSoCs, the system will typically be reconfigured (i.e., the task map-
ping will be adapted) when a new workload scenario appears on the
system, irrespective of the trade-off between reconfiguration costs
and benefits. This implies that task migration might occur during this
reconfiguration process of which its cost cannot be ignored, espe-
cially for heterogeneous MPSoC systems and those cases where the
duration of workload scenarios are relatively short.

According to the derivation of Eq. (2) in Section 2.4, it is evident

that only if (pj
i
− pj′

i
) ∗ ni is larger than c j j′

i
– implying that the system

actually benefits from the reconfiguration – then the system should
re-map the application tasks to improve system efficiency, and other-
wise not. This can be seen as throttling the adaptivity. Although a sim-
ilar trade-off for costs and benefits of reconfiguration can be made in
terms of power consumption, we will focus on performance in the re-
mainder of the discussion. To make the adaptivity support in MPSoC
systems more effective, the resource scheduler should be capable of
explicitly making these reconfiguration decisions (i.e., provide sup-
port for adaptivity throttling) whenever workload scenarios change.
In the SARA framework, this is taken care of by the ARS component.

To determine a reconfiguration decision, three parameters are re-
quired: the performance improvement of re-mapping tasks (p − p′),
the scenario execution duration in scenario frames (n), and the re-
configuration cost (c). These three parameters are, however, un-
known before the system reconfiguration. As a consequence, predic-
tion models should be used to predict each of these values. The right
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grey box of Fig. 3 illustrates how the ARS component conditionally re-
configures the target system based on the outcome of the prediction
models (i.e, (p − p′) ∗ u > c).

The prediction models in ARS cannot be computationally inten-
sive as they have to efficiently make a reconfiguration decision at run
time. For the performance and reconfiguration cost prediction, rela-
tively simple regression models or analytical models such as the per-
formance model from [19] can therefore be applied. The prediction
of scenario execution duration is the most important part of the ARS.
It is a dynamic parameter that could be heavily influenced by user
behavior. A commonly used predictor for such kind of parameters,
which has also been used in our ARS component, is the history-based
predictor such as a last value predictor, table-based predictor and the
Statistical Metric Model (SMM) [20]. They can predict the future value
of a parameter – in our case the duration of a newly detected work-
load scenario – based on its history information. According to the tar-
get architecture, we consider the following prediction models for the
above three parameters [21].

3.3.1. Mapping performance prediction
For our target heterogeneous MPSoC system with shared memory,

at design time, the execution time of each task and the communica-
tion time between tasks for one unit of workload of each application
have been analyzed and stored on the target system. Using this in-
formation, the performance of a certain workload scenario si under a

target task mapping tm j
i

is derived by Eq. (1) where the performance
of each active application appk is predicted by Eq. (3).

pk
i j = CCk

i j + BKk
i j (3a)

CCk
i j =

∑

0≤m<t

etkm
i j +

∑

0≤n<l

eckn
i j (3b)

BKk
i j =

∑

q ̸=k

∑

tqs
i

∈T qk
i j

etqs
i j

+
∑

q ̸=k

∑

cqs
i

∈Cqk
i j

ecqs
i j

(3c)

where CCk
i j

represents a conservative estimate (no concurrency is

taken into account) of the total execution time of appk in scenario

si under mapping tm j
i

of all t tasks and l communications in appk. We
assume all the tasks and communications are executed in sequential
when calculating CCk

i j
. Under this assumption, we can simply add to-

gether the overhead of tasks and communications under the target
mapping. BKk

i j
is the total time of tasks tqs

i
∈ T qk

i j
and communications

cqs
i

∈ Cqk
i j

from other active applications that contend resources with

appk. Here, T qk
i j

and Cqk
i j

is the set of tasks and communications from

appq that are mapped onto the same resource (under tm j
i
) with any

task and communication of appk respectively. BKk
i j

represents the pos-

sible blocking time for the target application because of the resource
contention between applications. Combining CCk

i j
and BKk

i j
together,

we can predict a worst case execution time for the target application.

3.3.2. Reconfiguration cost prediction
As mentioned in Section 2.4, the reconfiguration cost on our tar-

get MPSoC system includes two parts: the overhead of our SARA
framework and the task migration cost during system reconfigura-
tion. The overhead of SARA is determined by means of measurements
and the task migration cost is calculated by Eq. (4b). The model used
for the task migration overhead prediction is a simple linear analytic
model. The rationale behind this model is based on the task migration
mechanism we assume for the target MPSoC system in which the mi-
grating data is transferred via the MPSoC’s shared memory and the
ARS sequentially controls task migrations. Here, we label the over-
head of SARA as CSara and the task migration cost as CMig. Conse-
quently, for a certain workload scenario si with an original task map-

ping tm j
i

and a newly generated mapping tm j′
i

, the reconfiguration

cost can be derived by the following equation. Notice that, the over-
head of this specific SARA instance (CSara) includes the time of deriv-
ing a new mapping in the RMG, estimating mapping performance for
both the old mapping and the new mapping, calculating task migra-
tion cost CMig and updating the system run-time information (e.g.,
actual scenario execution duration) in SARA.

c j j′

i
= CSaraj j′

i
+ CMigj j′

i
(4a)

CMigj j′

i
=

⎛

⎝ ∑

tk∈T j j′
i

msk

⎞

⎠
/

rmem (4b)

where T j j′
i

is the set of tasks in workload scenario si that need to be

migrated from mapping tm j
i

to tm j′
i

, msk represents the amount of
migrating data for task tk, and rmem is the memory access speed.

3.3.3. Reconfiguration decision prediction
For the scenario execution duration n, which is a dynamic param-

eter that relates to the user/system behavior, we do not try to predict
the exact value. As in most MPSoC systems (except for systems with
periodic workload scenarios), it is hard to accurately predict the ex-
act value of this parameter based on history information. However,
we can avoid this problem by approaching our goal slightly differ-
ently. Our purpose is to derive a reconfiguration decision based on
the reconfiguration benefit B. If the execution duration of the de-
tected workload scenario is higher than a certain value (boundary),
then the system can be reconfigured. Consequently, there is no need
to directly predict a concrete value for the scenario execution dura-
tion but, instead, it is sufficient to predict the probability that the exe-
cution duration is higher than the given boundary. The details of how
to predict a reconfiguration decision for a newly detected workload
scenario will be explained in the following.

For a newly detected workload scenario si, according to the pre-
dicted performance improvement and the system reconfiguration
cost4, the ARS can determine a lower bound bni for the execution du-
ration of this workload scenario:

bni = c j j′

i
/(pj

i
− pj′

i
) (5)

In this work, we propose an Accumulated Statistical Metric Model
(ASMM), which is based on the Statistical Metric Model (SMM) [20],
to predict a reconfiguration decision based on the derived lower
bound of scenario execution duration. The SMM is a probability dis-
tribution over application patterns of varying length. It models the
conditional distribution on the identity of the ith (quantized) sample
given the identities of all previous (quantized) samples in a metric
sequence. The difference between our ASMM and the original SMM
concerns the way of how the prediction value is generated, as will be
explained below.

Using our ASMM, we build a metric model based on the probabil-
ity distribution of scenario execution duration for each workload sce-
nario, which means each workload scenario has its own ASMM. When
a new workload scenario is detected, the system scheduler uses the
ASMM of this workload scenario to predict its duration. Fig. 4 gives
an example of the ASMM-based prediction of a reconfiguration de-
cision when using 3 history samples. In our problem, the samples
of scenario execution duration are measured in the number of sce-
nario frames (F). These frame numbers are quantized using a limited
number of bins (or ranks) to reduce the complexity of our predictor,
see the upper part of Fig. 4 for an example. The lower right part of
Fig. 4 shows a simple instance of our ASMM. It includes three kinds

4 Note that the scenario duration prediction cost is negligible compared to the other

costs of system reconfiguration since it only involves a table look-up. It is therefore not

included in the reconfiguration cost in the SARA implementation.
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Fig. 4. The workflow of a simple ASMM with a max of 3 history samples.

of tables: the execution duration history tables, duration prediction
tables and tables with probabilities for all possible duration predic-
tions. The first two types of tables store rank numbers. The width and
depth of the history tables usually determine the prediction ability of
the ASMM and should be set based on the target problem.

To illustrate the ASMM-based reconfiguration decision, please
consider the lower left part of Fig. 4. The input of our ASMM is the
(quantized) execution duration sample history (top of Fig. 4) of the
detected scenario and the duration bound bni. According to the de-
tected workload scenario, the corresponding ASMM will be used to
determine the reconfiguration decision. In our example, the ASMM
first checks the history table with 3 history samples to see if there is
a pattern match regarding the scenario’s duration history. If there is
no match, like in the case of our example, the ASMM will continue
to search the history tables with a smaller width of history samples
(i.e., using a shorter history). This process continues until there is a
history pattern match or it ends up at the direct duration prediction
without any execution duration history (the table at the bottom of
the ASMM in Fig. 4). In both cases, the duration bound bni is com-
pared with all the possible duration prediction values and for those
prediction values bigger than bni their probabilities will be accumu-
lated: hence the name Accumulated SMM. This accumulated proba-
bility represents the chance of B > 0 if the system is reconfigured for
this workload scenario. Only if the accumulated probability is larger
than the probability bound bp (set by the designer), the ASMM will
return a positive reconfiguration decision. In our example, the prob-
ability bound bp is set to 50%.

After having derived a reconfiguration decision based on the three
predictive models for performance, reconfiguration cost and scenario
duration, the ARS will either reconfigure the system according to the

new mapping or keep the old mapping. By applying such adaptivity
throttling in the ARS, our adaptive MPSoC system is able to cope with
fine-grained workload scenarios for which it is not beneficial to re-
configure the system.

4. Experiments

4.1. Experimental setup

To illustrate the effectivity of our SARA framework, we deploy
the system-level MPSoC simulation framework from the work of
[22] which is based on the open source Sesame simulator [23]. This
Sesame-based modeling and simulation environment facilitates ef-
ficient performance analysis of embedded (media) system architec-
tures. The most important feature of this simulator for this work is its
ability to support the simulation of run-time system reconfiguration
of MPSoC systems. This makes the modeling and simulation of our
SARA instance in this simulator relatively easy.

In our experiments, we aim at showing how our SARA framework
improves the system performance by applying the proposed scalable
run-time task mapping approach and adaptivity throttling. To this
end, it is important to assess system performance under a variety of
different workload scenario behaviors. The actual functionality of the
applications within these scenarios is, on the other hand, of lesser im-
portance for this purpose. Therefore, we use synthetic streaming ap-
plications within workload scenarios to simplify the simulation pro-
cess. The target hardware architecture is a bus-based heterogeneous
MPSoC platform containing five different processing elements with
different computational characteristics, a shared memory and a con-
trolling processor that runs the SARA framework.
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Fig. 5. The scenario duration distribution used for generating workload scenarios.

4.2. Evaluating adaptivity

In this experiment, the main goal is to evaluate the adaptivity of
our approach. For this reason, a relatively small number of workload
scenarios is considered. We use five synthetic streaming applications
with each application containing only 1 execution mode. In this case,
the total number of workload scenarios is therefore 31 (25 − 1). The
number of tasks in each application ranges from 4 to 8. We assume
that each task can be executed on each processor of the target MP-
SoC using the corresponding pre-compiled code (stored in the shared
memory). The task execution time and migration data size of each
task on each processor have been randomly generated and range be-
tween 10,000 and 100,000 time units (simulation cycles) and be-
tween 50 K and 500 K Bytes respectively. Communications between
tasks range from 1000 to 10,000 Bytes in size.

To model dynamic application behavior over time (e.g. due to user
behavior), we generate four different workload scenario sequences.
These sequences are generated in two steps. The first step is to choose
a workload scenario from the total 31 workload scenarios considered
in our experiment. Each workload scenario has the same probability
to be selected. The second step is to generate the duration in scenario
frames of the selected workload scenario. This process iterates until
a pre-defined total frame number (100,000 frames in our case) has
been achieved for the scenario sequence. As the workload scenarios
considered in our test case need around 40 frames on average to neu-
tralize the reconfiguration cost, we limit the duration of each work-
load scenario to a value between 1 and 80 frames. In our four scenario
sequences, the duration of each workload scenario and frequency of
changes to this duration are generated using different distributions
as shown in Fig. 5. Here, the x-axis represents the nth appearance
of one specific workload scenario in the scenario sequence and the
y-axis represents the execution duration in scenario frames for that
particular appearance of the workload scenario. In the longterm dis-
tribution, the duration of a workload scenario is either long or short
and does not frequently change, whereas in the shortterm distribu-
tion the scenario execution duration does frequently change. The fre-
quency of changes in the lprob and sprob distributions are similar to

longterm and shortterm but the actual scenario execution duration
now has been generated from the following probability distributions:
9 → 10%, 19 → 10%, 29 → 10%, 39 → 10%, 49 → 10%, 59 → 10%, 69
→ 10%, 79 → 30% for lprob and 1 → 30%, 11 → 10%, 21 → 10%, 31 →
10%, 41 → 10%, 51 → 10%, 61 → 10%, 71 → 10% for sprob respectively.
Taking the sprob distribution as an example, a workload scenario has
a probability of 30% that it will be executed for only 1 frame and 10%
for each of the other durations (11 frames, 21 frames, etc.). Where the
longterm and shortterm scenario sequences more or less reflect ex-
treme cases in workload scenario behavior, the two prob sequences
possibly exhibit a more realistic view on dynamic behavior in appli-
cation workloads.

As we limit the scenario execution duration from 1 to 80 frames,
we divide the scenario execution durations into 8 bins/ranks in our
ASMM, each containing a frame range of 10. The maximal width of
the history tables in the ASMM is 2 which is large enough for our test
cases. The maximal depth of the history tables depends on both the
maximal width and the number of bins allocated for scenario execu-
tion duration and consequently is set to 64 (8∗8) in our ASMM. The
probability bound bp for our ASMM is set to 50%. This will not lead to
either a pessimistic or aggressive decision.

In this experiment, we compared our SARA framework with three
alternative approaches. First, an approach (STATIC) [13] in which all
applications are statically mapped (i.e., no run-time mapping takes
place) using a mapping which has shown to be optimal on average for
all possible workload scenarios. Second, an approach (MIGRATE-OPT)
that always reconfigures the system whenever a new workload sce-
nario has been detected according to a corresponding pre-optimized
mapping derived at design time. Note that this approach, which is
similar to how many state-of-the-art run-time mapping techniques
operate, stores 31 mappings (one mapping for each workload sce-
nario) in total on the system. Finally, we also compare to SARA with-
out adaptivity throttling (SARA-NOTH [7]).

The results of the total execution time (including system recon-
figuration time) of all workload scenarios in each generated scenario
sequence are shown in Fig. 6. In this figure, we can clearly see that
our SARA approach outperforms the three alternative approaches in
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Fig. 6. Performance comparison of different resource scheduling approaches.

almost all scenario cases except the STATIC approach in the sprob case,
whereas SARA-NOTH performs the worst. According to the above-
mentioned distribution of each scenario sequence, the average sce-
nario duration of sprob is less than 30 frames and lprob is higher than
60 frames, where longterm and shortterm both have a mean execu-
tion duration of around 40 frames. As mentioned before, the work-
load scenarios considered in our test cases need around 40 frames on
average to neutralize the reconfiguration cost. From the perspective
of average scenario duration, one can easily understand the reason of
why the approaches that always reconfigure the system for a newly
detected workload scenario, i.e. MIGRATE-OPT and SARA-NOTH, per-
form worse than STATIC in the scenario sequences of sprob, longterm
and shortterm. However, when the average scenario duration is large
enough like in lprob, this kind of approaches start to perform bet-
ter than STATIC. Notice that with even larger average scenario du-
rations the performance difference of the approaches that (always)
migrate and STATIC wil only become larger. Comparing MIGRATE-OPT
and SARA-NOTH, the former one always performs better as it uses
the pre-optimized mappings for entire workload scenarios which are

better in mapping quality compared to the mappings found by the
EIM algorithm in SARA-NOTH. With regard to our SARA instance, it
shows good behavior for each test case because of its ability to throt-
tle adaptivity. It even performs relatively well in the case of sprob
where 70% of the workload scenarios have a short duration and for
which reconfiguring the system is not beneficial. In this particular
case, the static mapping approach works best as this approach does
not suffer from any run-time overheads.

To better understand how these adaptive techniques work, we
zoom into the run-time executing behavior of a certain workload sce-
nario in the scenario sequences for these techniques. Fig. 7 shows the
results of the scenario execution time (including system reconfigu-
ration time) of the first 100 appearances of a single selected work-
load scenario in our four workload scenario sequences. Clearly, the
MIGRATE-OPT approach performs best and STATIC performs worst in
those cases where the system should have been reconfigured (i.e.,
scenario execution duration is large enough such that reconfigura-
tion is beneficial): see the top parts of the four figures. On the other
hand, in the cases where the system should not be reconfigured (bot-
tom parts of the four figures), STATIC is the best and SARA-NOTH is
the worst. We can also see that the scenario execution time is influ-
enced by the reconfiguration cost. For example, consider the bottom
parts of the upper two graphs (longterm and shortterm), i.e., small
scenario execution durations. Here, one can clearly see that SARA con-
sistently outperforms MIGRATE-OPT and SARA-NOTH since the latter
two approaches are negatively affected by the reconfiguration over-
head whereas SARA is not because it accurately predicted that recon-
figuration is not beneficial. However, compared with STATIC, SARA still
suffers from its computational overhead. Moreover, erroneous pre-
dictions inducing unnecessary system reconfigurations also affect the
performance of SARA. In the upper two graphs (longterm and short-
term), there is a clear pattern for the duration of workload scenarios
where SARA can accurately predict. In these two cases, the perfor-
mance is mainly affected by its computational overhead. However,
in the case of sprob, a high prediction error is the main factor that

Fig. 7. execution pattern of different resource scheduling approaches.
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Fig. 8. Performance comparison of different resource scheduling approaches in com-

plex workload scenarios.

influences the performance of SARA as it is hard to predict such a ran-
dom scenario behavior with frequent changes. This implies that the
prediction error mainly comes from the scenario duration predictor
(ASMM) in the ARS of our SARA instance. A similar situation can be
seen in the first 10 appearances of scenario s in the graph of lprob
where SARA shows a poor behavior (filled dots randomly distributed
around the straight line of STATIC) whereas SARA’s performance in the
other parts of this graph is much better. This is also caused by a high
prediction error in SARA. However, in this case, the prediction error
is caused by the accuracy of the mapping performance and reconfig-
uration cost predictors in the ARS of SARA. As the scenario duration
of these first 10 appearances of scenario s is very close to the average
frame number needed to neutralize the reconfiguration cost in our
test cases, a small prediction error of these two parameters can easily
lead to an erroneous system reconfiguration prediction.

From this experiment, we can see that our SARA framework is able
to handle complex and dynamic workload scenarios and further im-
proves the system efficiency by run-time task remapping and adap-
tivity throttling.

4.3. Evaluating scalability

To evaluate the scalability of our approach, we consider ten syn-
thetic streaming applications in this experiment, where each applica-
tion has the same properties as the applications used in the previous
experiment. Consequently, there are 1023 workload scenarios in to-
tal. For the purpose of simulating the dynamic application behavior
over time, we use a scenario sequence which is similar to lprob from
the first experiment but without limiting the scenario execution du-
ration. In this experiment, the impact of an increasing scenario exe-
cution duration will be studied. Furthermore, the parameters of the
ASMM are the same as in the first experiment except for the maximal
depth of the history tables which is set based on the actual scenario
duration bins.

Fig. 8 shows the total execution time (including system reconfig-
uration time) of 100 appearances of the workload scenario with all
the 10 applications active. The x-axis in Fig. 8 represents the aver-
age scenario duration (in scenario frames) of the 100 appearances
of the workload scenario. For better visibility of the results, we have
discarded the results of MIGRATE-OPT which is a line between SARA-
NOTH and SARA, but converges earlier with SARA than SARA-NOTH.
From this figure we can clearly see that our SARA framework still
works well when the number and the complexity of workload sce-
narios increases. Note that in this experiment, as the workload sce-
nario contains a large number of tasks and communication channels,
the system reconfiguration cost is also larger compared with the first
experiment. Consequently, the number of average scenario frames
needed for neutralizing the reconfiguration cost is also bigger than
in the first experiment. Taking our SARA instance for example, the

Table 1

Run-time system storage demands (bytes) of the different tech-

niques.

Experiment1 Mapping App&Arch Inf. ASMM

STATIC x x x

MIGRATE-OPT 880 x x

SARA-NOTH 55 920 x

SARA 55 920 Dynamic

Experiment2 Mapping App&Arch Inf. ASMM

STATIC x x x

MIGRATE-OPT 56320 x x

SARA-NOTH 110 1840 x

SARA 110 1840 Dynamic

computational overhead of SARA can be neutralized when the aver-
age number of scenario frames is larger than 150 (the crosspoint of
SARA and STATIC is around 150 frames).

To further improve the scalability of our SARA framework, we use
a caching mechanism that aims at avoiding the run-time mapping op-
timization heuristic becoming a performance bottleneck of the target
system when frequent scenario changes occur. To this end, the SARA
framework uses a small amount of system memory like a scratchpad
to cache the mappings optimized by the run-time heuristic for the
workload scenarios that undergo the most frequent changes. Conse-
quently, it is able to further save considerable computational over-
head with regard to run-time mapping optimization, especially for
complex workload scenarios.

4.4. System storage overhead

Regarding the run-time system storage consumption of the four
studied approaches, several assumptions should be mentioned. On
our target MPSoC system, we store all the design-time prepared in-
formation in the shared memory. For storing the pre-optimized map-
pings, we assume that the mapping information of each task and each
communication channel between tasks can be stored in one byte. In
the first experiment, there are 30 tasks and 25 communication chan-
nels in total for all the five synthetic streaming applications. Con-
sequently, to store a pre-optimized mapping, the maximal memory
usage is 55 bytes (all tasks and communication channels are active).
The total number of tasks and communication channels in the sec-
ond experiment is 60 and 50 respectively. Beside the pre-optimized
mappings, in our SARA framework, we also need to store the appli-
cation/system information as mentioned in Section 3.1 and the sce-
nario execution history information if the ARS predicts scenario du-
ration based on history information like in the ASMM-based method
of our SARA instance. Here, we assume that each piece of applica-
tion/system information needs one word of system memory and each
history scenario duration is encoded using one byte.

Based on these assumptions, Table 1 gives the run-time system
storage demands of the four approaches in the above two experi-
ments. From this table, we can see that our SARA instance consumes
the largest system memory usage in the first experiment. However, in
our SARA framework, the memory usage only linearly increases with
the number of applications for storing the Pre-optimized Mappings
and App&Arch Information on a certain target MPSoC system. It does
not have the scalability problem of MIGRATE-OPT. Consequently, in
the second experiment, the memory usage of MIGRATE-OPT is much
larger than SARA-NOTH and SARA. With regard to the memory usage
of the ASMM in our SARA instance, it is dynamic at run-time and de-
pends on the application behavior. Taking the memory consumption
of the ASMM initialized in the first experiment as an example, in the
worst case, it consumes 584 bytes of system memory to record all the
possible execution behaviors of a workload scenario. However, dur-
ing the simulation, only a small part of the worst memory usage was
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actually used for our test cases. Furthermore, in our SARA framework,
this scenario execution duration predictor can also be implemented
by other techniques like Neural Networks [24,25] if the memory us-
age becomes an issue.

5. Related research

In recent years, much research has been performed in the area
of run-time task remapping for embedded systems to achieve better
performance or save energy consumption. In these research efforts,
a hybrid task mapping approach is commonly used that combines a
design-time preparation with a run-time dynamic mapping policy to
do task reallocation. For example, Mariani et al. [3] proposed a run-
time management framework in which Pareto-fronts with system
configuration points for different applications are determined dur-
ing design-time DSE, after which heuristics are used to dynamically
select a proper system configuration at run time. In [4], a fast and
light-weight priority based heuristic is used to select near-optimal
configurations explored at design time for the active applications ac-
cording to the available platform resources. [8] proposes DSE strate-
gies that perform exploration in view of optimizing throughput and
energy consumption by considering a generic platform. The design
points derived from the DSE will be selected efficiently at run time.
In [26], Schranzhofer et al. proposed static and dynamic task mapping
approaches for probabilistic applications based on static and dynamic
power components. Statically pre-computed template mappings for
each execution probability are stored on the system and applied at
run time, allowing the system to adapt to changing environmental
conditions. Based on this work, [27] presents an extension that con-
siders only the static mapping and takes into account the communi-
cation and reconfiguration energy component.

Schor et al. [5] and Quan et al. [6] also proposed scenario-based
run-time mapping approaches in which mappings derived from
design-time DSE are stored for run-time mapping decisions. How-
ever, in these proposed approaches, none of them consider the prob-
lem of whether the system will benefit from the resource reconfig-
uration when the workload of the system changes frequently. This
problem might be caused by the user behavior. In this case, it is better
to consider the user behavior [28,29] or system execution history [20]
to further improve the system efficiency. Sarikaya et al. [20] proposed
SMM to predict the run-time application behavior, and applied this
technique to an adaptive dynamic power management scheme. In our
work, we modified their SMM to predict the scenario duration which
is part of our adaptive run-time framework. In [28], the user behavior
information is used to adapt the strategy used for resource allocation
at run time. Based on the user behavior, the online machine learning
model will predict which kind of communication contention should
be minimized on an NoC based MPSoC system. The authors of [29]
proposed a customer-aware task allocation and scheduling for MP-
SoCs. In their approach, an initial task allocation and scheduling (TAS)
solution under the objective of minimizing the energy consumption
and system lifetime for each execution mode is generated at design
time. At run time, they conduct online adjustment of the TAS based
on the processor usage history to guarantee the lifetime reliability
and/or reduce the energy consumption. Different to these previous
efforts, we use the user behavior/system execution history to control
the resource allocation process.

6. Conclusion

To increase the efficiency of MPSoC systems, in this paper, we pro-
pose a scalable, run-time adaptive resource scheduler that reconfig-
ures the system based on the system workload and user behavior. At
design time, we explore performance (near) optimal task mappings
for different workload scenarios. These pre-optimized mappings will
then be used at run time by the resource scheduler to reconfigure the

system resources. The decision of whether or not the system should
be reconfigured is made explicitly based on the scenario execution
history pattern. By using the proposed approach, the system is able to
effectively adapt its behavior according to user behavior, as demon-
strated by our experimental results.
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