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Abstract. The Sesame system-level simulation framework targets efficient de-
sign space exploration of embedded multimedia systems. Even despite Sesame’s
high efficiency, it would still fail to explore large parts of the design space sim-
ply because system-level simulation is too slow for this. Therefore, Sesame uses
analytical performance models to provide steering to the system-level simula-
tion, guiding it toward promising system architectures and thus pruning the de-
sign space. In this paper, we present a mechanism based on execution profiles,
referred to as signatures, to calibrate these analytical models with the aim to de-
liver trustworthy estimates. Moreover, we also present a number of experiments
in which we evaluate the accuracy of our signature-based performance models
using a case study with a Motion-JPEG encoder and the Mediabench benchmark
suite for performing oft-line calibration of the models.

1 Introduction

The increasing complexity of modern embedded systems, which are more and more
based on (heterogeneous) MultiProcessor-SoC (MP-SoC) architectures, has led to the
emergence of system-level design. A key ingredient of system-level design is the notion
of high-level modeling and simulation in which the models allow for capturing the
behavior of system components and their interactions at a high level of abstraction. As
these high-level models minimize the modeling effort and are optimized for execution
speed, they can be applied at the early stages of design to perform, for example, Design
Space Exploration (DSE). Such early DSE is of eminent importance as early design
choices heavily influence the success or failure of the final product.

With our Sesame modeling and simulation framework [1,2], we target efficient
system-level design space exploration of embedded multimedia systems, allowing rapid
performance evaluation of different architecture designs, application to architecture
mappings, and hardware/software partitionings. Key to this flexibility is the separation
of application and architecture models, together with an explicit mapping step to map
an application model onto an architecture model.

Although Sesame’s system-level simulations allow for evaluating different applica-
tion/architecture combinations in a highly efficient fashion, it would typically fail to ex-
plore large parts — let alone the entire span — of the design space. This is because system-
level simulation is still too slow for comprehensively exploring the design space, which



is at its largest during the early stages of design. For this reason, Sesame uses analyt-
ical models [3,4] to provide steering to the system-level simulation, guiding it toward
promising system architectures and therefore allowing for pruning the design space.
These analytical models, which include models for performance, power and cost esti-
mation, are used for quickly searching the design space by means of multi-objective op-
timization using evolutionary algorithms. So far, this analytical modeling stage lacked
a systematic method for deriving the model parameters that specify application require-
ments and architecture capabilities. Clearly, the accuracy of these analytical models is
highly dependent on the correct determination of these parameters.

In this paper, which extends [5], we focus on the performance estimation part of our
analytical models (i.e. the power and cost models are not addressed) and present a tech-
nique based on execution profiles, referred to as signatures, that allows for deriving the
application and architecture specific parameters in these analytical performance mod-
els. Using an experiment with a Motion-JPEG encoder application and an ARM-based
target MP-SoC architecture, we validate the accuracy of our approach by comparing the
estimations of our signature-based analytical model with those from simulation. More-
over, we also present an experiment in which we perform so-called off-line training
of our signature-based performance model using the Mediabench benchmark suite [6],
after which this externally calibrated model is again applied to the Motion-JPEG case
study.

The remainder of the paper is organized as follows. In the next section, we introduce
the basic analytical system model [3, 4] for which we want to derive the model parame-
ters. Section 3 describes how we determine application specific model parameters via a
profiling mechanism based on signatures. Section 4 describes how architecture specific
parameters are derived using a comparable mechanism. In Section 5, we put together
the pieces of the puzzle presented in Sections 3 and 4 to actually construct signature-
based analytical performance models. Section 6 presents initial validation results of
our approach using an experiment with a Motion-JPEG encoder application. Moreover,
it also presents results from an experiment in which we study off-line training of our
signature-based performance models using the Mediabench benchmark suite. Section 7
describes related work, and Section 8 concludes the paper.

2 Basic analytical system model

In the Sesame framework, applications are modeled using the Kahn Process Network
(KPN) [7] model of computation. The use of KPNs is motivated by the fact that this
model of computation nicely fits the targeted multimedia-processing application do-
main and is deterministic. The latter implies that the same application input always
results in the same application output, irrespective of the scheduling of the KPN pro-
cesses. This provides complete scheduling freedom when, as will be discussed later
on, mapping KPN processes onto MP-SoC architecture models for quantitative perfor-
mance analysis and design space exploration. In a KPN, parallel processes communi-
cate with each other via unbounded FIFO channels. By executing the application model,
each Kahn process records its actions in order to generate its own trace of application
events which is necessary for driving an architecture model. There are three types of
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Fig. 1. An example mapping problem.

application events, divided in two groups: execute events for computational behavior
and read and write events for communication behavior.

The architecture models in Sesame are cycle-approximate TLM models and sim-
ulate the performance consequences of the computation and communication events
generated by an application model. Architecture models are constructed from build-
ing blocks provided by a library containing template models for processing cores, and
various types of memories and interconnects.

Since Sesame makes a distinction between application and architecture models, it
needs an explicit mapping step to relate these models for co-simulation. In this step,
the designer decides for each application process and FIFO channel a destination ar-
chitecture model component to simulate its workload. Here, Sesame provides support
for modeling a variety of scheduling policies in case multiple application processes are
mapped onto a single architectural processing element. Mapping applications onto the
underlying architectural resources is an important step in the design process, since the
final success of the design can be highly dependent on these mapping choices. In Fig-
ure 1, we illustrate this mapping step on a very simple example. In this example, the
application model consists of three Kahn processes and FIFO channels. The architec-
ture model contains two processors and one shared memory. To decide on an optimum
mapping, many instances need to be considered (and thus simulated). In realistic cases,
in which the underlying architecture can also be varied during the process of design
space exploration, simulation of all points in the design space is infeasible. Therefore,
analytical models are needed to prune the design space, steering the designer towards
a small set of promising design points which then can be simulated. The remainder of
this section provides an outline of the basic analytical performance model [3, 4] we use
in Sesame for design space pruning, after which the subsequent sections present our
signature-based mechanism to calibrate this analytical model.

The application models in Sesame are represented by a graph KPN = (Vk,Ek)
where the sets Vx and Eg refer to the Kahn processes and the directed FIFO channels



between these processes, respectively. For each process a € Vi, we define B, C Ex to
be the set of FIFO channels connected to process a, B, = {b,1, . - . ,ban } . For each Kahn
process, we define a computation requirement, shown with o, representing the com-
putational workload imposed by that Kahn process onto a particular component in the
architecture model. The communication requirement of a Kahn process is not defined
explicitly, rather it is derived from the channels attached to it (i.e., B;). We have chosen
this type of definition for the following reason: if the Kahn process and one of its chan-
nels are mapped onto the same (processor) component, the communication overhead
experienced by the Kahn process due to that specific channel is simply neglected. For
the communication workload imposed by the Kahn process, only those channels that
are mapped onto a memory component are taken into account. So, our model neglects
internal communications and only considers external communications. Formally, we
denote the communication requirement of the channel b with B,. To include memory
latencies into our model, we require that mapping a channel onto a specific memory
asks computation tasks from the memory. To express this, we define the computational
requirement of the channel » from the memory as o,. Here, it is ensured that the pa-
rameters B, and o, are only taken into account when the channel b is mapped onto an
external memory. The actual determination of the above application model parameters
will be addressed in the next section.

Similarly to the application model, the architecture model is also represented by a
graph ARC = (V4,E,) where the sets V4 and E4 denote the architecture components
and the connections between the architecture components, respectively. In our model,
the set of architecture components consists of two disjoint subsets: the set of proces-
sors (P) and the set of memories (M), V4 = PUM and PN M = Q. For each processor
p € P, the set M), = {mp1,...,m,;} represents the memories which are reachable from
the processor p. We define processing capabilities for both the processors and the mem-
ories as ¢, and c,,, respectively. These parameters need to be set such that they reflect
processing capabilities for processors, and memory access latencies for memories. The
determination of these parameters will be addressed in Section 4.

The above model needs to adhere to a number of constraints, such as that each Kahn
process has to be mapped to a processor, each channel has to be mapped to a processor
(in case of local communication) or memory, and so on. For a formal description of
these constraints, we refer to [3, 4].

3 Application requirements

As indicated in the previous section, we need to determine the model parameters for
application requirements (0., 0 and ;) and architecture capabilities (¢, and ¢;,). To
this end, we present an approach based on execution profiles of application events,
referred to as signatures, to determine these model parameters. In the remainder of this
section, we focus on the derivation of the model parameters — via these signatures —
for application requirements. The next section will address the derivation of the model
parameters for architecture capabilities, which is done using the signature mechanism
as well. As will become clear, our approach strictly adheres to the concept of ‘separation



Signature index| AIS opcode Description
1 AIS_BMEM | Block memory transfers
2 AIS_MEM Memory transfers
3 ATIS_BRANCH Branches
4 AIS_COPROC | Co-proc. instructions
5 ATIS_IMUL Int. multiplications
6 AIS_ISIMPLE| Simple Int. arithmetic
7 AIS.OS Software interrupts
8 ATS_UNKNOWN|Non-mappable instruction
(@)
ARM instruction AIS opcode ARM instruction AIS opcode
bl 0x81c4; ATIS_BRANCH str 3, [fp, #-—16]; AIS_MEM
read f mov ip, sp; AIS_.ISIMPLE| (ldr r2, [fp, #-20]; AIS_MEM
2 stmdb sp, fp, ip, Ir, pc;!|{AIS_BMEM Idr 13, [fp, #-16]; AIS_MEM
execute op; sub fp, ip, #4; ATS_ISIMPLE| |mult3, 12, r3; ATS_IMUL
write fl sub sp, sp, #12; AIS_ISIMPLE| |[str r3, [fp, #—24]; AIS_MEM
q . ldr 2, [fp, #-16]; |AIS_MEM ldr r2, [fp, #-16]; AIS_MEM
rea f2 Idr 13, [fp, #-20]; |AIS.MEM ldr 13, [fp, #-24]; |AISMEM
execute op, addr2, 12, r3; ATS_ISIMPLE| |addr2, 12, r3; ATS_ISIMPLE
write fi Idr 13, [fp, #-24]; |AISMEM Idr 13, [fp, #-20]; |AIS.MEM
rsb 3, r3, r2; AIS_ISIMPLE| |mulr3, r2, r3; AIS_IMUL
execute op; str 13, [fp, #-24]; |AISMEM str 13, [fp, #—16]; |AIS.MEM
write fl Idr 12, [fp, #-16]; |AIS_-MEM sub sp, fp, #12; AIS_ISIMPLE
write f Idr 3, [fp, #-20]; |AIS_MEM Idmia sp, {fp, sp, pc};|AIS_-BMEM
1 addr2, 12, r3; ATS_ISIMPLE| |mov ip, sp; ATS_ISIMPLE
Idr 13, [fp, #-24]; |AIS_MEM stmdb sp, fp, ip, Ir, pc;! |AIS_BMEM
mul 13, 12, r3; AIS_IMUL
() (c)

Table 1. Table (a) shows the currently defined AIS instructions with their index in the vector-
based process signatures. Table (b) lists the event trace of process ki, and Table (c) shows an
execution trace of op; as obtained by an ARM ISS (left column) and the corresponding AIS
instructions (right column).

of concerns’ [8], separating application (requirements) from architecture (capabilities)
signatures.

A signature of a Kahn process represents its computational requirements. These
process signatures describe the computational complexity at a high level of abstrac-
tion using an Abstract Instruction Set (AIS). Currently, our AIS consists of the small
set of abstract instruction types as shown in Table 1(a)!. To construct a signature, the
real machine instructions that embody the computation, derived from an Instruction Set
Simulator (ISS), are first mapped onto the AIS, after which a compact execution profile
is made. This means that the resulting signature is a vecfor containing the instruction
counts of the different AIS instructions. The first column in Table 1(a) shows the signa-
ture (vector) index that each AIS instruction type corresponds to.

The high level of abstraction of the AIS makes it architecture independent and, as
will become clear later on, makes the signatures relatively small and easy to handle.

!'In this paper, we focus on programmable cores as processor targets, but the AIS also contains
a special ”co-processor” instruction that can be used for modeling dedicated HW blocks.



Nevertheless, the AIS could always be refined when needed (see also Section 6). Given
the fact that our AIS only consists of a few instruction opcodes, many different real
machine instructions will thus map onto the same AIS instruction. For example, all
(single-element) load and store instructions will map onto ATS_MEM, integer multipli-
cations and divisions onto ATS_MUL, and basic integer operations such as additions,
subtractions and logical operations onto ATS_ISIMPLE. The AIS_UNKNOWN opcode
is used when a machine instruction cannot be mapped onto any of the other AIS in-
struction types. Our experiments have demonstrated, however, that the influence of this
ATS_UNKNOWN class of AIS instructions is negligible.

The computational (i.e., execute) events in the application event traces from a KPN
application model together with the separate signatures of each of the associated com-
putational operations determine the signature for each Kahn process. To illustrate this,
consider Table 1(b) which shows an example event trace of Kahn process k;. When
deriving the signature of process ki, only the execute events in its event trace are con-
sidered. Each execute event comes with an identifier of an operation, to indicate which
operation was executed. The signature of k; is the sum of the signatures of the op-
erations executed by k;. In the example of Table 1(b), operations op; and op, have
signatures that describe the computational requirements of these operations. Now, as-
sume that an ISS generates the sequence of (in this case, ARM) instructions as shown
in the first column of Table 1(c) for op,. The next step is to classify these instructions
(is it a basic integer instruction, or a memory operation, or a branch instruction, etc.).
In other words, the assembly instructions have to be mapped to the AIS instructions de-
fined for our signatures. The result of this classification is shown in the second column
of Table 1(c). Then, a signature for op; can be generated based on the counts of the
different AIS opcodes. For op/, this gives

op,.signature = [3,15,1,0,3,9,0,0] €))

with the AIS opcode counts ranked according to the first column of Table 1(a). Using
the same method, a signature for op, can be generated. Assume that its signature is:

op,.signature = [8,17,8,0,2,29,2,0] 2)

Then, using these signatures we can answer the original question, that is, calculate the
signature of process ki (i.e., 0, ). According to the event trace of process ki, op; was
executed two times, op, one time. Thus,

k; .signature = 20p, .signature + op, .signature = [14,47,10,0,8,47,2,0) 3)

An important thing to note is that in practice, if an operation is executed more than
once, the derived signatures for each execution of the operation may not be equal (due
to data dependencies, or pseudo-random behaviour of the operation). In that case, the
operation’s signature becomes the average signature of all executions of that operation.

A signature of a FIFO channel describes the load induced by the channel on memory
components (i.e., o, and P, from Section 2). This communication requirement of a
FIFO channel depends on the size of the token (in bytes) sent via the channel, and the
total number of tokens sent. In our application models, the size of the tokens sent via



one particular FIFO channel is always fixed (although the token size between channels
can vary). The number of tokens sent via a FIFO channel can be extracted from the
Kahn process’ event trace. Each wrife-event in an event trace contains data about to
which communication port the token was sent. So, the signature of a FIFO channel f is
a two-element vector containing the number of tokens sent via the channel and the size
of each token:

f.signature = [ntokenSa nsize} €]

For example, assume the event trace of process k; in Table 1(b) and a token size for
channel f] of ng;,, = 12 bytes. Since process k; writes four times a token of 12 bytes to
f1 (see Table 1(b)), the signature of f; thus becomes:

f1.signature = [4,12] 3)

4 Architectural capabilities

Previously, the computational and communication requirements of an application have
been defined. In this section, the computational and communication capabilities of
processors and memories will be defined. These capabilities will also be encoded as
(vector-based) signatures.

If a Kahn process k; is mapped onto a processor pi, then the number of cycles p; is
busy processing k; (denoted as 7'(p;)) can be calculated as a function of the signatures
of k; (the computational requirements) and p; (the processor capabilities):

T (p1) = f (kj.signature, p; .signature) (6)

The aim is to find or define both p.signature and the function f in (6). With these, we
can calculate the number of cycles a processor is busy processing the execute events
emitted by Kahn processes mapped onto the processor.

Using an ISS, we can measure how many cycles a certain operation takes when
executed on a specific processor (like an ARM). If this is repeated for many operations,
a training set can be built. Using this training set, the computational capabilities of
a processor (i.e., its signature) can be derived by, for example, linear regression, or
techniques used in the field of machine learning.

Using the example from the previous section, a (very small) training set can be
made. This training set consists of the signatures of op; and op, and the associated
cycle counts. Let us assume that executing op; took 185 cycles, and that op, took 369
cycles when executed on an ARM processor. Since a training set consists of a list of
vectors (operation signatures), and a list of cycle counts, this problem can be solved
using the least-squares method. For example, let S be the matrix with the signatures of
operations op; and op; as rows, pj.signature be the weight vector we want to calcu-
late for processor pj, and ¢ be the vector with cycle counts for each row in S. Then,
S p1.signature = ¢ is solved using the least squares method.

315103 9 00 sienature — 185 7
8178022920/ P18 ~ 369
The signature of p; is the vector consisting of weights for each AIS opcode. The unit
of the elements in the vector is ‘cycles per instruction’. Note that these weights can



be adapted in order to perform high-level architectural design space exploration for the
given processor (e.g., make multiplications more/less expensive, etc.).

p1.signature = [2.19,7.11,1.62,0.0,1.19,7.4,0.33,0.0] (8)

Given an operation signature s that is not included in the training set, the estimated
number of cycles on p; for that signature is simply the inner product of s and p; .signature.
As will be elaborated in Section 6, this allows us to perform (off-line) training of our
signature-based performance models. To derive processor signatures in this case, we
use operation signatures from a training set of selected benchmark applications which
is representative for our multimedia application domain. Hereafter, the computational
performance of operation signatures from any (multimedia) application can be esti-
mated using the above inner product.

The signature (and thus the communication capability) of a memory component
(i.e., ¢py) is a two-element vector [Freqq, Fwrire] that only consists of the (average) read
and write latencies. Evidently, our current memory model fully abstracts away the un-
derlying memory architecture. Also, in contrast to processor signatures, we have not yet
developed any methods to get reliable memory signatures. Instead, a designer may use
values from memory data sheets to create a memory signature.

5 Analytical performance estimation

In the previous sections, portions of a (signature-based) analytical performance model
were presented. In this section, these portions are forged together to get an analytical
performance model for an MP-SoC architecture.

First, some definitions have to be made. The set X, is the set of processes that
are mapped onto processor p. A similar definition applies to X,,, the set of channels
mapped onto memory m. M (f) denotes the memory onto which channel f is mapped
and FIFOChannelsy o is the set of channels of process k that are mapped onto an
external memory. Thus, FIFOChannelsy ¢x; C By (see Section 2).

The time 7°¢(p) a processor p is spending on executing computational operations
is the inner product of the sum of the signatures of all processes mapped on p, with the
signature of p.

T(p) = < ( ) k.signature) ,p.signature> 9)
kEX,
The time 7¢(p) the processor is communicating depends on the number of bytes sent
and received via FIFO channels that are mapped on an external memory. This quan-
tity can be calculated by Algorithm 1. This algorithm should be self-explanatory as it
simply calculates 7¢(p) by accumulating all access latencies of the memories used by
processor p.
The total time processor p is busy processing read, write, and execute events is

T(p)=T(p)+T(p) (10)

The number of cycles 7 (m) a memory m is busy sending or receiving data is calculated
in Algorithm 2, in a similar way as 7¢(p). Here, for each byte stored in the memory we
accumulate both its read and write latencies.



T¢(p) <0
foreach k € X, do
foreach f € FIFOChannelsy ¢x; do
b« f.signature[n;orens| - f.signature[rgze)
m— M(f)
if f is an incoming channel of k then
T° (P) —T° (p) + b/m'Signature[rread]
end
if f is an outgoing channel of k then
T¢(p) « T¢(p) +b/m.signature[ryir]
end
end
end

Algorithm 1: Calculation of T¢(p).

b—0
foreach f € X, do
b« b+ f.signature[nsypens] - f-signature[ngze|
end
T (m) < b/m.signature[r,,qq] + b/m.signature[ryyiz|

Algorithm 2: Calculation of T (m).

The processing time of an architecture with a certain mapping depends on the ar-
chitecture component with the largest processing time. Therefore, optimizing for per-
formance (i.e., minimizing processing time) during design space exploration thus leads
to solving

minmax (max 7 (p), max ‘T(m)) (11)

peEP meM

6 Experimental results

In this section, we present a validation experiment using a Motion-JPEG (M-JPEG)
encoder application in which mapping exploration results from our signature-based an-
alytic performance model are compared to simulation results. Furthermore, we also
discuss an experiment in which we perform off-line training of the signature-based per-
formance models using the Mediabench benchmark suite [6] as an external training
set.

6.1 Initial validation

To validate our signature-based analytic performance model, we studied the mapping
of a Motion-JPEG (M-JPEG) encoder application onto an MP-SoC architecture. This
is illustrated in Figure 2. The target MP-SoC consists of four ARM processors with
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Fig. 2. Mapping an M-JPEG application to a crossbar-based MP-SoC architecture.

local memory, FIFO buffers for streaming data, and a crossbar interconnect. The design
space we considered for this experiment consists of all possible mappings of the M-
JPEG tasks (i.e. processes) on the processors in the MP-SoC platform.

Before the M-JPEG application model was mapped on the architecture model, the
application was compiled using an ARM C++ compiler, and executed within the SimlIt-
ARM instruction set simulator environment [9]. The generated ARM instruction traces
were used to create the application and architecture signatures. These signatures were
subsequently used for determining the parameters in our analytical performance model,
as was previously explained. Note that this process is a one-time effort only.

Since the design space in our experiment is limited (consisting of 4096 mappings?),
it was possible to quickly evaluate all of these mappings, both analytically as well as by
simulation using our Sesame framework. In a first experiment, we applied the concept
of signatures both in our analytical model and in the simulation model to which we
compare. With respect to the latter, the processor components in our simulation model
use the processor signatures to dynamically calculate computational latencies of incom-
ing computational events (which are described using operation signatures) by means of
the inner product as explained in Section 4. So, in this experiment we compare static
(i.e. analytical) versus dynamic (i.e., simulative) performance estimation, both using
signature-based models.

The analytical and simulation results are shown in Figure 3. Note that only the first
fifty mappings are depicted due to space limitations (to avoid cluttering in the graph).
Each mapping instance gets a certain index. The order of the mappings in Figure 3 is
more or less arbitrary. Mappings with successive indices are not necessarily related to
each other. In this experiment, we measured an average relative error of our analytical
model compared to simulation of only 0.1%, with a standard deviation of 0.2. Evidently,
these small errors with respect to the simulation-based estimates are promising results.

Although the above validation is a good sanity check, comparing against a simu-
lation model that uses the same signature-based performance approximation provides

2 The number of unique mappings is even considerably less since the target platform is symmet-
rical.
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good preconditions for obtaining small errors. Therefore, in a next experiment, we com-
pare the results from our signature-based analytical model to the results from a more ac-
curate simulation model that uses ‘exact’ latencies for the various computational events
as directly obtained by ISS measurements (so, no latencies that are obtained using lin-
ear regression). In the remainder of this paper, we refer to this simulation model as our
reference model. Figure 4 shows a scatter plot of the DSE results for both the signature-
based analytical model and the reference model. The graph only shows the performance
results of unique mapping instances. Here, we have sorted all mapping instances based
on the performance order of the mappings from the reference model.

The results from Figure 4 indicate that the estimates of our signature-based ana-
Iytical model are fairly accurate, especially for the better-performing mappings (i.e.
lower mapping indices in Figure 4). The overall average error is 9.2% with a standard
deviation of 5.8. For the best 100 mappings, the average error only is 4.5% with a stan-
dard deviation of 2.1. But most importantly, our signature-based analytical model finds
exactly the same optimal mappings as the reference model. Needless to say, this pre-
cision of finding the correct optimal mappings is of eminent importance to the process
of design space pruning, helping the designer to decide which design points need to
be studied in more detail using simulative methods. Another observation that can be
made is that for the less optimal mappings (i.e., higher mapping indices), the error as
well as the trend behavior deteriorate. This can be explained by the fact that in these
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less optimal mappings less concurrency is exploited, and therefore any errors in the
signature-based latency calculations are more easily accumulated.

Besides accuracy, the efficiency of the performance evaluation is of great impor-
tance since the proposed performance models are targeted towards pruning large design
spaces. Here, we would like to stress that the evaluation time of our signature-based
analytical performance models is several orders of magnitude smaller as compared to
Sesame’s system-level simulations. This should allow us to study much larger design
spaces, from which promising candidate designs can be selected that can then be further
studied using system-level simulation.

6.2 Off-line training of the performance model

In the previous section, we used the same application (M-JPEG) for both training of the
signature-based analytical performance model (i.e., obtaining processor signatures for
ARM processors) and the performance estimation itself. Since this may be less realistic,
we also present several results from an experiment in which we perform off-line training
of the signature-based performance model using the Mediabench benchmark suite [6],
after which we again apply this externally calibrated performance model to the M-JPEG
case study.

To train our performance model, we first constructed the (application) operation
signatures for each separate Mediabench program? using the approach as discussed in

3 The pgp, ghostscript, and sphere benchmarks were excluded due to execution prob-
lems on the SimIt-ARM simulator.
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Fig. 5. Histogram with the various AIS opcode counts of the Mediabench training set.
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Fig. 6. Histogram with the various AIS opcode counts of M-JPEG.

Section 3. Since the execution time (in terms of simulated cycles) of the mpeg2enc
program is quite high, we split up the execution of this program into four chunks, and
generated a separate operation signature for each of these chunks (each representing
different execution phases of the program). Figure 5 shows the histogram of the result-
ing AIS opcode counts for each Mediabench program. This graph clearly shows that
most programs are dominated by ATS_ISIMPLE instructions, followed by AIS_MEM
and ATS_BRANCH instructions respectively.

Similar to Figure 5, Figure 6 shows the AIS opcode histogram for the application
processes in our target M-JPEG application. Here, we excluded the AIS opcodes with
a zero or insignificant contribution. At first sight, the trends in both Figures 5 and 6
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Fig.7. Comparing the DSE results from our Mediabench-trained models against those from the
reference model from Section 6.1.

are similar, which thus appears to be confirming that Mediabench is a representative
training set for M-JPEG.

As a next step, we determined the processor signatures for our performance model
using the Mediabench operation signatures. Using this Mediabench-trained performance
model, we again performed the DSE experiment with the M-JPEG application. Figure 7
shows a comparison of the DSE results of the Mediabench-trained (Full Mediabench”
in the graph) and the reference simulation model from the previous section. Again, the
graph only shows the performance results of unique mappings, and all mapping in-
stances are sorted based on the performance order of the mappings from the reference
model. Comparing the Mediabench-trained model ("Full Mediabench”) to the reference
model, it is clear that there is a significant absolute error between the results of these
models (an average error of 29.6%, see Table 2). But, the trends between the graphs of
the two models still is highly similar. This is especially true for the better-performing
mapping instances (lower mapping indices). This again implies that both models find
exactly the same optimal mappings.

To study the sensitivity of the selected benchmark programs that are used for train-
ing, we performed a number of experiments in which we clustered the Mediabench
programs according to some measure, after which we trained our performance model
with the programs from such a cluster only. As a first experiment, we applied our perfor-
mance model that was trained with all Mediabench programs to the operation signatures
from the Mediabench programs themselves. Then, we clustered only those programs
that show a good fit with the performance model (i.e., removing the outliers). Training
the performance model again with this cluster, gives the results that are tagged with
”Outliers removed” in Figure 7 and Table 2. The results of this new performance model



Full Outliers | Large Small |DCT-similar
Mediabench|removed|programs|programs| programs
Av. error| 29.6% 249% | 18.6% | 79.8% 7.0%
Std.dev. 3.8 44 5.1 2.1 4.5

Table 2. Average error and standard deviation of the various trained models as compared to the
reference model.

are slightly better (average error of 24.9%, see Table 2) than the model that was trained
with all Mediabench programs.

We selected the program size as the second means to cluster our Mediabench train-
ing set. Programs with more than 500 million executed instructions are clustered as
”Large programs”, while the remaining programs are clustered as ”Small programs”.
Figure 7 again shows the DSE results when training our performance model with one
of these clusters. The cluster with large programs again shows an accuracy improve-
ment, lowering the average error to 18.6%. Clearly, the cluster with small programs
only yields poor results, both in terms of average error (79.8%) and trend behavior. The
latter can even be seen at the lower mapping indices where some optimal mappings
(according to the reference model) are not considered optimal according to the model
trained with small programs only.

Since the DCT process in the M-JPEG encoder is dominant in terms of compu-
tational intensity, our final clustering is based on similarity with the DCT process (in
terms of AIS opcode distribution). We again trained our model with these DCT-similar
programs. The DSE results of this cluster show again considerable improvement with
an average error of only 7%, which is even slightly better than the result from the M-
JPEG-trained model from the previous section. This can be explained by the fact that
M-JPEG also contains processes that are dissimilar to the DCT process and which have
a negative influence on the training of the model.

6.3 Discussion

The results from the previous section show that Mediabench can be a suitable training
set for our signature-based performance models, provided that a proper cluster of Me-
diabench programs is selected for training. The "Big programs” cluster already yields
decent results whereas the "DCT-similar” cluster shows that fairly accurate results are
possible with off-line training. Noteworthy, however, is the fact that almost all training
sets / clusters, except for the cluster with small Mediabench programs, yield the same
optimal design points. This indicates that, at least for the studied M-JPEG application,
signature-based performance modeling is a relatively robust technique for quickly ex-
ploring and pruning the vast mapping design space. However, more study is needed in
several directions. For example, we need to investigate additional types of clustering
of Mediabench, where e.g. the granularity of the code sequences used for generating
operation signatures also plays a role. That is, so far we have used entire Mediabench
programs (except for mpeg2enc) to generate operation signatures. But, like we did for
mpeg2enc, we can also study the splitting of other large programs in smaller chunks



(representing different execution phases of these programs) to have more control on the
size of the training set, which could e.g. open up new possibilities for clustering.

Moreover, and naturally following from the above clustering discussion, we also
need to investigate the refinement of our AIS. Since most machine instructions map
onto only three AIS opcodes (AIS_-ISIMPLE, AIS_MEM, and AIS_BRANCH), these
opcodes can be refined to improve the accuracy of our analytical models. To further
increase accuracy of our signature-based models, we should also study the extension of
our signatures to better capture micro-architectural behavior (such as cache behavior),
but still at a high level of abstraction. Of course, such extensions may again affect
the possibilities for clustering of the training set (e.g., clustering on different cache
behavior).

7 Related Work

Much work has been performed in the area of software performance estimation [10],
including methods that use profiling information, typically gathered at the instruction
level. For example, in [11] a static software performance estimation technique is pre-
sented which uses profiling at the instruction level and which includes the modeling
of pipeline hazards in the timing model. In [12], a source-based estimation technique is
proposed using the concept of virtual instructions”. These are similar (albeit a bit more
low level) to our AIS instructions, but are directly generated by a compiler framework.
Software performance is then calculated based on the accumulation of the performance
estimates of these virtual instructions. The idea of convolving application and machine
signatures, where the signatures contain coarse-grained system-level information, has
also been applied in the domain of performance prediction for high-performance com-
puter systems [13].

In [14], a workload modeling approach based on execution profiles is discussed for
statistical micro-architectural simulation. Because the authors address simulation at the
micro-architectural level, their profiles include much more details (such as pipeline and
cache behavior), while we address system-level modeling at a higher level of abstrac-
tion. In [15], the authors suggest to derive a linear model from a small set of simulations.
This method tries to model the performance of a processor at a mesoscopic level. For
example, cache behaviour and pipeline characteristics are taken into account. The sig-
nificance of all cache and pipeline related parameters is determined by simulation-based
linear regression models. This may be comparable with the ‘weight’ vector discussed
in Section 4. Another interesting approach is presented in [16], in which the CPI for in-
order architectures is predicted using a Monte Carlo based model. The Milan framework
[17] deploys a design pruning approach using symbolic (instead of analytic) analysis
methods to reduce the design space that needs to be explored with simulation.

8 Conclusions

In this paper, we presented a technique for calibrating our analytical performance mod-
els used for system-level design space pruning. More specifically, we introduced the
concept of application and architecture signatures, which can be related with each



other to obtain performance estimates. Using a case study with a Motion-JPEG en-
coder application, we showed that our signature-based analytical performance model
shows promising results with respect to accuracy. Moreover, we presented a number of
experiments in which we performed so-called off-line training of our signature-based
performance model using the Mediabench benchmark suite. These experiments indicate
that such off-line training is a promising mechanism for obtaining trustworthy estima-
tion models in the scope of early design space pruning.

Since the Motion-JPEG application used in our study still is relatively static in its
behavior, and thus fairly well-suited for prediction, we need to extend our experiments
in the future to also include more dynamic applications. Moreover, we need to further
study the off-line training of our models, also in relationship to possible refinement
and/or extension of our signatures to better capture both application as well as micro-
architectural behavior.
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