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C O V E R  F E A T U R E

Exploring 
Embedded-Systems
Architectures 
with Artemis

D
esigners of modern embedded systems face

several emerging challenges. Because embed-

ded systems mostly target mass production

and often run on batteries, they should be

cheap to realize and power efficient. In addi-

tion, they must, increasingly, support multiple appli-

cations and standards, for which they need to provide

real-time performance. For example, digital televi-

sions or mobile devices must support different stan-

dards for communication and coding of digital

contents. Further, modern embedded systems should

also be flexible to enable easily extending them to sup-

port future applications and standards. Such flexible

support for multiple applications calls for a high

degree of programmability.

However, performance requirements as well as cost

and power-consumption constraints require imple-

menting substantial parts of these systems in dedicated

hardware blocks. As a result, modern embedded sys-

tems often have a heterogeneous system architecture—

they consist of components that range from fully

programmable processor cores to fully dedicated hard-

ware components for time-critical application tasks.

Increasingly, such heterogeneous systems reside

together on a single chip, yielding heterogeneous mul-

tiprocessor systems-on-chip that exploit task-level par-

allelism in applications.

The heterogeneity of these highly programmable

embedded systems and the varying demands of their

target applications greatly complicate system design.

We must reconsider the suitability of existing design

techniques for these systems for two reasons:

• Classical design methods typically start from a

single-application specification, making them

unsuited to highly programmable embedded sys-

tems.

• Common simulation practice for the design-space

exploration of architectures is not appropriate for

the early stages of heterogeneous embedded-sys-

tem design.

Classical design methods that depart from a single-

application specification that gradually synthesizes into

an architecture implementation consisting of hardware

and software components are not suitable for pro-

grammable architectures. These methods, while perhaps

ideal for designing dedicated systems, lack the general-

izability required to cope with the programmable sys-

tem architectures suited to the efficient processing of a

range of applications. In addition, classical design meth-

ods do not offer the extensibility embedded systems

require to efficiently support future applications.

The increasing complexity of embedded-systems

architectures makes predicting performance behavior

more difficult. Therefore, having the appropriate tools

to explore different choices at an early design stage is

increasingly important. Currently, one common

approach still uses only relatively detailed, often clock-

cycle-accurate simulators for the design-space explo-

ration of embedded-systems architectures. Building

such detailed simulators requires considerable effort,

making it impractical to use them in the early design

stages. Moreover, their low simulation speeds signifi-

cantly hamper architectural exploration.

The Artemis modeling and simulation environment aims to efficiently
explore the design space of heterogeneous embedded-systems
architectures at multiple abstraction levels and for a wide range of 
applications targeting these architectures.
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RETHINKING DESIGN-SPACE EXPLORATION
To uncover the design space of complex embedded

systems, an exploration environment should allow for

the performance evaluation of embedded-systems-

architecture instantiations at multiple abstraction lev-

els for a broad range of applications. Performing

simulation at multiple abstraction levels makes it pos-

sible to control the speed, required modeling effort,

and attainable accuracy of the simulations. This

enables using a stepwise refinement approach in which

abstract simulation models efficiently explore the large

design space in the early design stages. Applying more

detailed models at a later stage allows focused archi-

tectural exploration, as the abstraction-level pyramid

in Figure 1 shows.

An architecture design-space exploration environ-

ment should also be open to reusing intellectual prop-

erty, thereby helping reduce a product’s time to

market. For example, reusing simulation models of

architecture components, such as microprocessors,

buses, and memory, must be relatively easy. This

requirement calls for a high degree of modularity

when building system architecture models as well as

a clear separation of specifying application behavior

and architecture performance constraints. 

Finally, the design-space exploration of complex

heterogeneous embedded systems must efficiently

incorporate both the application and architecture

aspects of the system under study, and it should be

able to do so in the early design stages and thus at a

high abstraction level. To illustrate this requirement,

consider the following example of a design strategy

for heterogeneous embedded-systems architectures.

As a first step in the design process, designers typi-

cally construct a functional software model to study

a target application and obtain rough estimates of its

performance needs—for example, the bandwidth a

video application requires to achieve a certain frame

rate. Such a model usually neglects most of the under-

lying architectural issues, such as resource contention

or bandwidth constraints, involved in the application’s

execution.

Next, designers apply cycle-accurate instruction-

level simulators and register-transfer-level (RTL)

hardware simulators to study a certain architectural

implementation of the embedded system. Construct-

ing the models for these simulations requires making

several design decisions. For example, designers

should decide which parts of an application the ded-

icated hardware performs and which parts the soft-

ware running on a programmable processor performs.

Two problems relate to these design decisions. First,

making these decisions based on a functional software

model that disregards most architectural issues is

highly questionable. Second, evaluating different

design decisions at the second step of the design

process—such as assessing alternative hardware-soft-

ware partitionings when the initial partitioning was

not optimal—can require an enormous amount of

remodeling effort. Further, the slow simulation speed

of the detailed simulators seriously hampers such

work.

ARTEMIS
To reduce the design time for highly programma-

ble embedded multimedia systems, the Artemis

(Architectures and Methods for Embedded Media

Systems) project1 focuses on solving two research

challenges. 

First, we are developing an architecture modeling

and simulation environment that provides methods,

tools, and libraries for the efficient exploration of het-

erogeneous embedded-systems architectures. We use

the term efficient to indicate that the modeling and

simulation environment enables rapid evaluation of

different architecture designs, application-to-archi-

tecture mappings, and hardware-software partition-

ings at various abstraction levels for a broad range of

applications. Artemis focuses on embedded multime-

dia systems, but developers can apply its techniques

and tools to other (nonembedded) application domains

that use task-level parallelism.

Second, Artemis investigates the potential of using

reconfigurable embedded computer architectures as

a new means of enhancing the programmability of

embedded systems. Reconfigurable computing refers

to an implementation style in which developers can

configure a piece of hardware’s exact functional

behavior to efficiently process a particular task, then
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Figure 1. System design abstraction-level pyramid. Activities closer to the top of the
pyramid tend to be more abstract and require relatively little effort. Conversely, activi-
ties closer to the pyramid’s base involve little abstraction and great effort.
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reconfigure it later for a different task. Reconfigurable

hardware components—implemented using field-pro-

grammable gate arrays, for example—retain flexibil-

ity and have the potential to deliver high performance

for specific applications, while limiting power con-

sumption. 

Figure 2 shows how both research activities inte-

grate into the Artemis architecture workbench. Using

the architecture modeling and simulation environ-

ment, we can explore potential embedded-system

architectures for a set of target applications. The archi-

tecture design-space exploration performed at this

stage results in recommendations for candidate archi-

tectures. In addition, analysis of application-architec-

ture mappings, such as which application task maps

onto which system architecture component, helps

determine a selection of time-critical application tasks

that are candidates for execution on a reconfigurable

hardware component. Code fragments represent these

selected tasks and subsequently act as input to the

reconfigurable architecture framework’s tools. 

The tools from the reconfigurable architecture

framework enable thorough study of task mapping

onto a reconfigurable hardware component. Such a

study produces accurate performance estimates for

the reconfigurable hardware component, which devel-

opers can use to validate and calibrate the modeling

and simulation environment’s system-level architec-

ture models. Combining the architecture modeling

and simulation environment with the reconfigurable

architecture framework should ultimately lead to a

system architecture proposal that allows efficient pro-

cessing of the target applications.

Many other groups are active in the field of model-

ing and simulating heterogeneous embedded systems,

some of which pursue academic efforts2-4 while oth-

ers focus on commercial5 and industrial6 endeavors.

Much work in this field combines in a single simula-

tion the software parts mapped onto a programma-

ble processor, the hardware components, and their

interactions. Because this work makes an explicit dis-

tinction between software and hardware simulation,

developers must know which application components

the system will implement in software and which in

hardware—before they build a system model. This

requirement significantly complicates the performance

evaluation of different hardware-software partition-

ing schemes because the assessment of each parti-

tioning may require a new system model. Artemis uses

a substantially different approach to overcome this

problem.

MODELING AND SIMULATION METHODOLOGY
Designing programmable embedded systems

requires making a clear distinction between applica-

tions and architectures, and the design must support

an explicit mapping step. This approach permits map-

ping multiple target applications, one after the other,

onto candidate architectures for performance evalua-

tion. 

Figure 3 visualizes this approach, which we refer to

as the Y-chart of system design.3,7 The application set

drives the architecture design. Typically, the designer

studies these applications, makes some initial calcu-

lations, and proposes an architecture. The designer
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Figure 2. The Artemis architecture workbench. The workbench integrates the research
activities of architecture-design-space exploration and reconfigurable architectures.
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Figure 3. System design Y-chart. The upper right part of the chart consists of the appli-
cation set that drives the architecture design. The designer studies these applications,
proposes an architecture, then compares its effectiveness against alternatives. The
light bulbs indicate that the results may inspire the designer to improve the architec-
ture, restructure the application, or modify its mapping.
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then evaluates and compares the architecture’s

effectiveness against alternative architectures.

To this end, the designer uses performance

analysis to quantitatively evaluate candidate

architecture designs, mapping each application

onto the architecture under investigation and

evaluating the performance of each application-

architecture combination. The resulting per-

formance numbers may inspire the designer to

improve the architecture, restructure the appli-

cation, or modify its mapping. 

The Artemis modeling and simulation envi-

ronment facilitates the performance analysis of

embedded-systems architectures in a way that

directly reflects the Y-chart design approach,

recognizing separate application and architecture

models for system simulation. An application model

describes the application’s functional behavior, includ-

ing both its computational and communication behav-

ior. The architecture model defines architecture

resources and captures their performance constraints.

This modeling methodology requires an application

model to remain independent from architectural

specifics, assumptions on hardware-software parti-

tioning, and timing characteristics.

As a result, designers can use a single application

model to exercise different hardware-software parti-

tionings and map it onto a range of architecture mod-

els, possibly representing different system architectures

or simply modeling the same system architecture at

various abstraction levels. This capability clearly

demonstrates the strength of decoupling application

and architecture models, enabling the reuse of both

model types. After mapping, the designer cosimulates

an application model with an architecture model,

allowing for the system-performance evaluation of a

particular application, mapping, and underlying archi-

tecture.

Trace-driven cosimulation
Cosimulating application models and architecture

models requires an interface that includes a mapping

specification between them. For this purpose, we

apply trace-driven simulation, a technique used exten-

sively in the field of general-purpose processor design

to analyze the performance of memory hierarchies. In

our approach, we structure the application model as

a network of concurrent communicating processes,

thereby expressing the inherent task-level parallelism

available in the application and making communica-

tion explicit.

Each process, when executed, produces a trace of

events that represents the application workload

imposed on the architecture by that particular process.

Thus, the trace events refer to the computation and

communication operations an application process per-

forms. These operations can be coarse grained, such

as “Compute a discrete cosine transform.” Therefore,

our approach differs from classical trace-driven sim-

ulation in which the events typically refer to fine-

grained, instruction-level operations.

Because application models represent functional

behavior, the traces correctly reflect data-dependent

behavior. Consequently, the architecture models, dri-

ven by the application traces, only need to account for

the application events’ performance consequences, not

their functional behavior.

Application modeling
For application modeling, we use the Kahn Process

Network (KPN) computational model.8 To obtain a

Kahn application model, we restructure a sequential

application written in C/C++ into a program that con-

sists of parallel processes communicating with each

other via unbounded FIFO channels. In the Kahn 

paradigm, channel reads are blocking, while writing

is nonblocking. 

To capture an application’s computational behav-

ior, we instrument the code of each Kahn process with

annotations that describe the application’s computa-

tional actions. Reading from or writing to Kahn chan-

nels represents a process’s communication behavior

within the application model. By executing the Kahn

model, each process records its actions to generate a

trace of application events, which is necessary for dri-

ving an architecture model.

Much research has been done in the field of appli-

cation modeling on computational models.9 We use

KPNs because they fit nicely with our media-pro-

cessing application domain and they are determinis-

tic. This latter attribute means that the same

application input always results in the same applica-

tion output, making the application behavior archi-

tecture-independent and automatically guaranteeing

the validity of event traces when the application and

architecture simulators execute independently of each

other. However, because KPN semantics disallow, for

example, the modeling of interrupts, we currently

cannot model applications with time-dependent

behavior.

Using a separate application model also makes it

possible to analyze an application’s performance

requirements and potential performance constraints in

isolation from any architecture. This lets us investi-

gate the application’s upper performance bounds and

may lead to early recognition of bottlenecks within

the application itself.

Architecture modeling
An architecture model is based on components that

represent processors or coprocessors, memories,

buffers, buses, and so on. To evaluate an architecture’s

Designers can use a
single application
model to exercise

different 
hardware-software
partitionings and

map it onto 
a range of 

architecture models.
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performance, we can simulate the performance con-

sequences of an application model’s generated com-

putation and communication events. Such simulation

requires an explicit mapping of a Kahn application

model’s processes and channels onto the architecture

model’s components.

A trace-event queue routes the generated trace of

application events from a specific Kahn process

toward a specific component inside the architecture

model. The Kahn process dispatches its application

events to this queue, while the designated component

in the architecture model consumes them, as Figure 4

shows. Two or more Kahn process trace-event queues

can be mapped onto a single architecture compo-

nent—for example, several application tasks can be

mapped onto a microprocessor. In this case, the archi-

tecture simulator must schedule the events from the

different queues.

The underlying architecture model need not model

functional behavior, because the application model

already captures that behavior and subsequently 

drives the architecture simulation. Designers construct

an architecture model from generic building blocks

provided by a library. This library contains perfor-

mance models for processing cores, communication

media such as buses, and different memory types. Such

a library-based modeling approach can greatly sim-

plify the reuse of architecture model components.

At a high abstraction level, a processing-core model

functions as a black box that can simulate the timing

behavior of a programmable processor, reconfigurable

component, or dedicated hardware unit. The archi-

tecture simulator can model such a variety of archi-

tectural implementations because it assigns para-

meterizable latencies to the incoming application

events. For example, to model software execution of an

application event, the simulator can assign a relatively

high latency to it. Likewise, to model an application

event that dedicated or reconfigurable hardware is exe-

cuting, the simulator tags the event with a lower

latency.

By simply varying the latencies for computational

application events, the simulator can evaluate differ-

ent hardware-software partitionings at a high abstrac-

tion level. The simulator can obtain these latencies

from a lower-level architecture component model, per-

formance-estimation tools, or the estimates of an

experienced designer.

This approach uses the communication events from

the application model to model the performance con-

sequences of data transfers and synchronizations at

the architecture level. These events cause the appro-

priate communication component within the archi-

tecture model—onto which the simulator maps the

communicating Kahn channel—to account for the

latencies associated with the data transfers.

Unlike the application model, in which all first-in,

first-out channels are unbounded, the writes at the

architecture level can also be blocking, depending on

the availability of resources such as buffer space. 

Model refinement
The designer makes design decisions, such as hard-

ware-software partitioning, and refines the architec-

ture model components accordingly. This gradual

adaptation implies that the architecture model begins

to reflect the characteristics of a particular imple-

mentation—dedicated versus programmable hard-

ware, for example.

To facilitate the process of model refinement, the

architecture model library should include models of

common architecture components at several abstrac-

tion levels. For example, the microprocessor model

can have multiple instances, such as a black-box

model, a model that accounts for the performance

consequences of the processor’s memory hierarchy,

and one that accounts for the performance impact of

both its memory hierarchy and data path. Moreover,

the simulation should refine application model events

to match the detail level present in the architecture

model. Providing flexible support for such event

refinement remains a largely open problem.6

The model refinement process can continue to the

level at which it embeds detailed simulators for cer-

tain architecture components—such as instruction-

level simulators or RTL simulators—into the overall

system architecture simulation. Consider the example

in which the designer decides that software will imple-

ment a certain application task. Instead of mapping

the task’s Kahn process onto a processor core’s

abstract architecture model, a detailed instruction-
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Figure 4. Mapping a
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level simulator can emulate the application

task’s actual code. The process of embedding

more detailed simulators can continue, gradu-

ally incorporating greater functionality into an

architecture model. Ultimately, the architecture

model can then provide a starting point for

more traditional hardware-software cosimula-

tion, which is composed of instruction-level

simulators and RTL simulators.

ARTEMIS DRIVERS
For the Artemis architecture modeling and

simulation environment’s development, we are

currently experimenting with two prototype

simulation frameworks: Spade (system-level

performance analysis and design-space exploration)10

and Sesame (simulation of embedded-system archi-

tectures for multilevel exploration).11 Both frame-

works act as technology drivers for testing and

evaluating new simulation models and methods, giv-

ing us insight into their suitability for the Artemis envi-

ronment. We only incorporate those simulation

models and methods that prove valid and effective

into Artemis.

The Spade framework emphasizes simplicity, flexi-

bility, and easy interfacing to more detailed simula-

tors. It provides a small library of architecture model

components consisting of a black-box model of a pro-

cessing core, a generic bus model, a generic memory

model, and several interfaces for connecting these

model building blocks. We can use this limited library

of model building blocks and interfaces to rapidly con-

duct a large variety of system-level performance stud-

ies. 

We implemented Spade’s architecture model com-

ponents using the cycle-based Tool for System

Simulation (TSS), a Philips in-house simulation envi-

ronment. Philips has a large user community that is

applying TSS to implement cycle-accurate architec-

ture simulators. Sharing a common simulation back-

bone significantly simplifies the transition from

high-level Spade models to detailed TSS architecture

models. Currently, we are also considering alterna-

tives for TSS, such as SystemC.

The Sesame framework studies the potential of con-

ducting simulations at multiple abstraction levels and

explores concepts for refining simulation models

smoothly across different abstraction levels. For exam-

ple, refinement of one component in an architecture

model should not lead to a completely new imple-

mentation of the entire model. Thus, the modeling

concepts should also include support for refining only

parts of an architecture model, creating a mixed-level

simulation model. 

Mixed-level simulations enable more detailed eval-

uation of a specific architecture component within the

context of the entire system’s behavior. Therefore, such

simulations avoid building a complete, detailed archi-

tecture model during the early design stages. Moreover,

mixed-level simulations do not suffer from the deteri-

oration in system-evaluation efficiency that unneces-

sarily refined parts of the architecture model causes. 

Sesame currently provides only a library of black-

box architecture models. In the near future, we will

extend the library with models for architecture com-

ponents, at several abstraction levels, to facilitate the

performance evaluation of architectures from the

black-box level to cycle-accurate models. This library

will eventually be supplemented with techniques and

tools to assist developers in gradually refining the

models and performing mixed-level simulations.

Currently, these issues largely remain open research

problems.

To implement Sesame’s architecture models, we use

a small but powerful discrete-event simulation language

that enables easy model construction and fast simula-

tion. These characteristics greatly improve the scope of

the design space the designer can explore in a reasonable

time. Sesame’s architecture library components are not

meant to be fixed building blocks with predefined inter-

faces, but merely freely extendable and adaptable tem-

plate models. This approach slightly increases the effort

required to build architecture models, but it also

achieves a high degree of flexibility, which can be help-

ful when refining models.

W e have applied our modeling and simulation

methodology to two media applications: an

MPEG-2 decoder10 and a variant of M-JPEG

encoding.11,12 Both studies, performed at the black-

box architecture model level, showed promising

results. In a short period, we obtained useful feed-

back on a wide range of design decisions involving

the candidate architectures for the two applications

we studied. For example, for the M-JPEG applica-

tion, we experimented with a shared-memory multi-

processor architecture model. For this architecture,

we evaluated different hardware-software partition-

ings, application to architecture mappings, processor

speeds, and interconnect structures: bus, crossbar,

and omega networks. All of this work, including the

application and architecture modeling, took less than

one person-month.

We intend to perform more case studies with indus-

trially relevant applications to further demonstrate

the power and effectiveness of our methods and tools.

The validation of our simulation models also requires

attention. Future research will emphasize techniques

for model refinement. In particular, support for mixed-

level simulation introduces many new research prob-

lems that developers must address. ✸
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