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ABSTRACT

In this paper, we present the Daedalus framework, whictwallo
for traversing the path from sequential application speifon to
a working MP-SoC prototype in FPGA technology with the (para
lelized) application mapped onto it in only a matter of houdsir-
ing this traversal, which offers a high degree of automatgnd-
ance is provided by Daedalus’ integrated system-levebdespace
exploration environment. We show that Daedalus offers rkaide
potentials for quickly experimenting with different MP-Sarchi-
tectures and exploring system-level design options dutiegrery
early stages of design. Using a case study with a Motion-J&f=G
coder application, we illustrate Daedalus’ design stejplsdzamon-
strate its efficiency.

Categories and Subject Descriptors
J.6 [Computer-aided Engineerind: Computer-aided design

General Terms
Performance, design

Keywords

Design space exploration, system-level design and syisthrapid
prototyping

1. INTRODUCTION

The complexity of modern embedded systems, which are in-
creasingly based on heterogeneous MultiProcessor-Soc3diP
architectures, has led to the emergence of system-levigrdeso
cope with this design complexity, system-level design atrsis-
ing the abstraction level of the design process. Key ensibbethis
end are, for example, the use of architectural platformaddifate
re-use of IP components and the notion of high-level systexhat
ing and simulation [7]. The latter allows for capturing trehavior
of platform components and their interactions at a highllefrab-
straction. As such, these high-level models minimize theefing
effort and are optimized for execution speed, and can tberdfe
applied during the very early design stages to perform Xangle,
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architectural Design Space Exploration (DSE). Such eaB¥§ s
of paramount importance as early design choices heavilyantle
the success or failure of the final product.

System-level design for MP-SoC based embedded systems typi
cally involves a number of challenging tasks. For exampigliea-
tions need to be decomposed into parallel specificatiorfsatdttey
can be mapped onto an MP-SoC architecture [10]. Subseguentl
applications need to be partitioned into HW and SW partsesinc
MP-SoC architectures often are heterogeneous in naturghigo
end, MP-SoC platform architectures need to be modeled amd si
lated to study system behavior and to evaluate a varietyffefrent
design options. Once a good candidate architecture ha<dnamah,
it needs to be synthesized, which involves the synthesis afchi-
tectural components as well as the mapping of applicatiotstbe
architecture. To accomplish all of these tasks, a rangefiafrdint
tools and tool-flows is often needed, potentially leavingigeers
with all kinds of interoperability problems. Moreover, theypi-
cally remains a large gap between the deployed systemieved
els and actual implementations of the system under studyyikn
as theimplementation gap [11]. Currently, there exist no mature
methodologies, techniques, and tools to effectively afidiefitly
convert system-level system specifications to RTL spetidica.

In this paper, we present the Daedalus framework which ad-
dresses these system-level design challenges. Daedadirs’ato-
jective is to bridge the aforementioned implementation fgaphe
design of multimedia MP-SoCs. It does so by providing an-inte
grated and highly-automated environment for system-laveti-
tectural exploration, system-level synthesis, prograngnaind pro-
totyping. Whereas our prior publications reported on savef
Daedalus’ components in isolation (e.g., [21, 15, 13])s théper
focuses on how the different components fit together as theepi
of a puzzle, resulting in a system-level design environntestad-
dresses the entire design trajectory with an unparalledgples of
automation. We will illustrate the framework and its desftpw
using a case study with a Motion-JPEG encoder application.

The next section provides a birds-eye overview of Daedalfis,
ter which the three subsequent sections present the thre¢omis
that constitute Daedalus in more detail. More specific&bgtion
3 explains how multimedia applications are automaticadlgain-
posed in parallel specifications. Section 4 describes hawenghe
parallel application(s) — promising candidate architezdican be
found using our system-level modeling, simulation and esgilon
methodology and toolset. In Section 5, we explain how setect
candidate architectures can be automatically and rapigyhe-
sized, programmed and prototyped. Section 6 presents aMoti
JPEG case study to illustrate Daedalus’ design flow. In Bedtj
we present related work, after which Section 8 concludepdiper.
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The remainder of this section provides a high-level oveva
Daedalus, after which the subsequent sections zoom in cori¢és
components and how they interact with the rest of the desogw fl
Starting from a sequential application specification in Cer,
the KPNgen tool [21] allows for automatically convertingthe-
guential application into a parallel Kahn Process NetwdtRN)
[8] specification. Here, the sequential input specificatiane re-
stricted to so-called static affine nested loop program#;iwnils an
important class of programs in, e.g., the scientific and ime\dia

RTL synthesis
(commercial tool, e.g. Xilinx Platform Studio)

Validation / Calibration

Gate-level
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application domains. By means of automated source-lesesfor- Figure 1: The Daedalus design flow.

mations [17], KPNgen is also capable of producing differeptit- communications explicit, such as CSP [5] and Process Né&swvor

output equivalent KPNs, in which for example the degree odlpa (8], allow for easier mapping onto MP-SoC architectures.wHo

lelism can be varied. Such transformations enable apicdtvel ever, specifying applications using these models of coatjmt

design space exploration. usually requires more implementation effort in comparisorse-
The generated or handcrafted KPNs (the latter in the case tha guential imperative solutions.

e.g., the input specification did not entirely meet the rezjoents In Daedalus, we start from a sequential imperative apjiioat

of the KPNgen tool) can subsequently be used by our Sesame mod gpecification (C/C++) which is theautomatically converted into a

eling and simulation environment [15] to perform systewelear- Kahn Process Network (KPN) [8] using the KPNgen tool [21]isTh

chitectural DSE. To this end, Sesame uses (high-level)itach  conversion is fast and correct by construction. In the KPNieho
ture model components from the IP component library. Sesame of computation, parallel processes communicate with edlsaro

allows for quickly evaluating the performance of differeagipli- via unbounded FIFO channels. Reading from channels is done i
cation to architecture mappings, HW/SW partitionings, target a blocking manner, while writing to channels is non-blogkitwe
platform architectures. Such DSE should result in a numlber o se KPNs for application specifications because this mdaeiro-
promising candidate system designs, of which their spetitins putation nicely fits the targeted media-processing appticado-
(system-level platform description, application-arebture map-  main and is deterministic. The latter implies that the sappiea-
ping description, and application description) act as frtputhe tion input always results in the same application outptesipective
ESPAM tool [13]. This tool uses these system-level input8pe  of the scheduling of the KPN processes. This provides cample
cations, together with RTL versions of the components froenlP scheduling freedom when, as will be discussed later on, imgpp
library, to automatically generate synthesizable VHDLt iizple- KPN processes onto MP-SoC architecture models for quéinéta
ments the candidate MP-SoC platform architecture. In aiditt performance analysis and design space exploration.

also generates the C/C++ code for those application presebat As mentioned before, KPNgen'’s input applications need to be

are mapped onto programmable cores. Using commercialesynth - specified as so-called static affine nested loop progranmiote fr
sis tools and compilers, this implementation can be reanépped automatic parallelization of applications. As a first st&PNgen
onto an FPGA for prototyping. Such prototyping also allows f  ¢can apply a variety of source-level transformations toetsgcifi-
calibrating and validating Sesame’s system-level modeld,as a  cations in order to, for example, increase or decrease toeranof
consequence, improving the trustworthiness of these raodel parallelism in the final KPN [17]. Subsequently, the C/C+¢#eds
Ultimately, we aim at traversing Daedalus’ design flow — goin  tyansformed into single assignment code (SAC), which rébesn
from a sequential application to a working MP-SoC prototype the dependence graph (DG) of the original nested loop pnogra
FPGA technology with the application mapped onto it—in atetat  Hereafter, the SAC is converted to a Polyhedral Reduced iDepe

of hours. Evidently, this would offer great potentials farickly dency Graph (PRDG) data structure, being a compact mathemat
experimenting with different MP-SoC architectures andlevipg cal representation of a DG in terms of polyhedra. FinallyRDE
design options during the early stages of design. As our stasly is converted into a KPN by associating a KPN process with each

in Section 6 shows, we are well underway of achieving thid.goa  node in the PRDG. The parallel KPN processes communicate wit
each other according to the data dependencies given in the DG
In Figure 2, a Kahn Process Network example is given in which
3. PARALLELIZING APPLICATIONS three processes (A, B and C) are connected using three dhanne
Today, traditional imperative languages like C or C++ ailt st (CH1-3). Figure 2(a) shows the XML description of Kahn prexe
dominant with respect to implementing applications for SzSed B as generated by KPNgen. The XML describes both the topology

architectures. It is, however, difficult to map these impieeaim- of the KPN (i.e., how the processes are connected togetee.§.
plementations, with typically a sequential model of conation, lines 20-25) as well as the communications and computapens
onto MP-SoC architectures that allow for exploiting taskel par- formed by processes. In our example, process B executestidiun
allelism in applications. In contrast, models of computatthat calledcompute (line 8). The function has one input argument (line

inherently express task-level parallelism in applicagiamd make 9) and one output argument (line 10). The relation between th
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1 <process name ="B" >
<port name = "pl" direction = "out" />
<var name = "out_0" type = "myType"/>

1 void main() {
for (int k=2; k<=2*N-1; k++ ){
read( p2, in_0, sizeof(myType) );
0):

</port compute(in_0, out_0);

5  <port name ="p2" direction = "in" /> 5 write( p1, out_0, sizeof(myType) );
<var name ="in_0" type = "myType" />
</port }

<process_code name = "compute” >
<arg name ="in_0" type = "input" />
10 <arg name = "out_0"type = "output" /> 10
<loop index ="k" parameter = "N" >
<loop_bounds matrix ="[1, 1,0,-2;"

void read( byte *port, void *data, int length ) {
int *isEmpty = port + 1;
for (inti=o; i<length; i++ ){
Il reading is blocked if a FIFO is empty

1-1.2-1])> while (*isEmpty ){ }
<par_bounds matrix = "[1,0,-1,384;" (byte* data)[i] = *port; // read data from a FIFO
15 10, 1,-3> | |18}
</loop }
</process_code . .
<lprocess > void write( byte *port, void *data, int length ) {
- int *isFull = port + 1;
20 <channel name = CH2> 20  for (inti=o; i<length; i++ ){
<fromPort name = "p1"/> Il writing is blocked if a FIFO is full
<fromProcess name = "A7> while (*isFull ) { }
<toPort name ="p2" /> *port = (byte* data)[i]; // write data to a FIFO
<toProcess name ="B" />
25 </channel 25}

a) XML specification of a KPN b) Program code, generated by ESPAM

Figure 2: A Kahn Process Network example.

function arguments and the communication ports of the Eoc
given in lines 3 and 6. The function has to be executedN2- 2
times as specified by the polytope in lines 12-13. The valu¢ isf
between 3 and 384 (lines 14-15).

From the XML specification, Daedalus allows for automatical
generating the C/C++ code implementing the behavior of &&dt
process. This is done by the ESPAM tool, which will be dis-
cussed later on. Figure 2(b) shows, for example, the gat@t
code for process B (some variable declarations have bedtedini
The code contains the main behavior of a process, togethbr wi
the read/write communication primitives. In accordancéhhe
XML specification in Figure 2(a), the functi@ompute — which is
derived from the original sequential application specif@a— is
part of a loop that iteratess2N — 2 times. For synthesis purposes,
Daedalus also allows for generating the code for the readvaitel
communication primitives, as shown in Figure 2(b). Curent
these primitives are implemented using polling and menmapped
1/0. Note that the implementation of the write primitive istking
since at implementation level FIFO channels are boundeitén s

4. DESIGN SPACE EXPLORATION

Given a (set of) KPN application specification(s) — as fomexa
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Figure 3: Sesame’s layered infrastructure.

For application modeling, the computational and communica
tion behavior of the KPN application specifications are aegl
using application event traces. The computation and communi-
cation events in these traces typically are coarse grasezh as
Execute(DCT) or Read(channel_id, pixel-block). To generate the
application events, the C/C++ code of each Kahn process-is in
strumented with annotations that describe the applicaticom-
putational actions. In addition, Sesame provides read anitgt w
communication primitives that generate communicatiomes/@s
a side-effect. So, by executing the KPN model, each process g
erates its own trace of application events, representmg/trkload
that is imposed on the underlying MP-SoC architecture model

An architecture model simulates the performance consegsen
of the computation and communication events generated laypan
plication model. To this end, each component in the architec
model is parameterized with performance parameters sfregif
the latencies of computation events likgecute(DCT), communi-
cation transactions, and memory accesses. This apprdauls &b
quickly assess, e.qg., different HW/SW partitionings by [diyrex-
perimenting with the latency parameters of processing corapts
in the architecture model: a low computational latencynefe a
HW implementation while a high latency mimics a SW solution.

To bind application tasks to resources in the architecturdeh
Sesame provides an intermediabapping layer. It controls the
mapping of Kahn processes (i.e. their event traces) ontoi-arc
tecture model components by dispatching application everthe
correct architecture model component. The mapping aldades

ple generated by KPNgen or devised by hand — and the commonent the mapping of Kahn channels onto communication resources i

in Daedalus’ IP library, the Sesame system-level simutdiiiame-
work [15] addresses the problem of finding a suitable andieffic
target MP-SoC platform architecture. Figure 3 illustrédesame’s
layered infrastructure for the case in which a Motion-JPp@iaa-
tion is studied with a crossbar-based distributed-memoP36C
as target architecture. Sesame deploys separate applicati ar-
chitecture models, where an application model descriteeutinc-
tional behavior of an application and an architecture mddéhes
architecture resources and captures their performancsraonts.
After explicitly mapping an application model onto an atehture
model, they are co-simulated via trace-driven simulatibhis al-
lows for evaluation of the system performance of a particafa
plication, mapping, and underlying architecture. Essefii this
methodology is that an application model is independent fao-
chitectural specifics and assumptions on hardware/saftyarti-
tioning. As aresult, a single application model can be usexkér-
cise different hardware/software partitionings and camagped
onto a range of architecture models, possibly represeidiifey-
ent architecture designs or modeling the same architedesigin
at various levels of abstraction.

the architecture model. The mapping layer has two additipma
poses. First, the event dispatch mechanism in the mappyjeg la
provides a variety of static and dynamic policies to schedppli-
cation tasks (i.e., their event traces) that are mapped shoed
architecture model components. Second, the mapping laydsd
capable of dynamically transforming application events (fower-
level) architecture events in order to facilitate flexibdéimement of
architecture models [15].

The output of system simulations in Sesame provides the de-
signer with performance estimates of the system(s) undety st
together with statistical information such as utilizatmfrarchitec-
tural components (idle/busy times), the contention in ¢éesyge.g.,
network contention), profiling information (time spent iifferent
executions), critical path analysis, and average bantiviidtween
architecture components. Such results allow for earlyuatadn of
different design choices, identifying trends in the systebehav-
ior, and can help in revealing performance bottlenecks éathe
design cycle. Here, the exploration process is also fatglit by
the fact that system configurations (bindings, schedulivdyabi-
tration policies, performance parameters, and so on) areifggd



using XML descriptions. Hence, different system configora
can be rapidly simulated without remodeling and/or recdatipin.

As a result of the design space exploration with Sesame, & sma
set of promising MP-SoC platform instances can be seleaed f
automatic synthesis (see next section). Each selectefdnphain-
stance is specified using two XML files. One describing the ar-
chitectural platform at the system level, i.e. which IP comgnts
are used in the platform and how they are interconnected.tad
other describing how application tasks are mapped onto Idte p
form components.

5. SYSTEM-LEVEL SYNTHESIS

The system-level specifications that result from DSE — dlescr
ing (the structure of) the application and platform arattitee as
well as the mapping of the former onto the latter — are given as
input to the ESPAM tool for system-level synthesis [13]. Tag
antee correctness-by-construction, ESPAM first runs aistemey
check on the provided platform instance. This includes figdi
impossible and/or meaningless connections between systash
platform components as well as parameter values that arefout
range. Subsequently, ESPAM refines the abstract platforaemo
to a parameterized RTL model which is ready for an implemen-
tation on a target physical platform. The refined system amp
nents are instantiated by setting their parameters baséuedar-
get physical platform features. Finally, ESPAM generateg@am
(C/IC++) code for each programmable processor in the makipr
cessor platform in accordance with the application and nmgpp
specifications. To this end, it uses the XML specificationsege
ated by KPNgen. In addition, ESPAM also provides the support
for scheduling the code in the case multiple applicatiorcesses
are mapped onto a single processor in the platform. Cuyrehis
code scheduling is performed statically.

The output of ESPAM, namely an RTL specification of the MP-
SoC platform, is a model that can adequately abstract andiexp
the key features of a target physical platform at the registas-
fer level. It consists of four parts (as shown in Figure 1):al)
platform topology description defining in greater detail the struc-
ture of the multiprocessor platform; Bardware descriptions of
IP cores containing predefined and custom IP cores used in 1).
These IP cores, which are selected from Daedalus’ IP conmpone
library, include programmable as well as dedicated prassssar-

ious memory components (FIFO buffers, random access memory

etc.), and different interconnects (point-to-point linkbared bus
with various arbitration mechanisms, and a crosshar syitEbr

6. A CASE STUDY

This section presents a case study in which we applied Dagdal
to explore different implementation options for a MotidAEG (M-
JPEG) encoder application mapped onto a heterogeneousd@P-S
architecture. The case study illustrates Daedalus’ degtigps and
demonstrates its potentials to quickly experiment witfedént MP-
SoC architecture designs during the very early stages ajrles

The KPN specification of the M-JPEG application was derived
from sequential C code using the KPNgen tool as describeddn S
tion 3. A small manual modification (taking no longer than 30
minutes) to the original M-JPEG code was necessary to meet th
KPNgen input requirements. The resulting Kahn applicasipec-
ification consists of 6 processes, as shown in the top parigof &

3. Generating the KPN specification is a one-time effortesitihe
same specification is used for all subsequent implementatial
exploration steps.

To study target MP-SoC architecture instances for the M&PE
application, we selected a crossbar-based MP-SoC platfadtin
up to 4 processors (MicroBlaze or PowerPC) and distributeshm
ory. At the bottom part of Figure 3, a 4-processor instance of
this platform is depicted. We modeled this platform ardttitee
with the Sesame framework. The processor, memory and inter-
connect components in our architecture model were takettiir
from Daedalus’ high-level model component library. Onlg fFer-
formance parameters specific to the selected platformtanthie
needed to be specified, such as the latencies for computhtion
tions, the latencies for setting up and communicating dwectoss-
bar, and so on. We determined the values of these performance
parameters by a combination of measurements on an ISS simula
tor (for the computational latencies on the MicroBlaze anodvP
erPC processors) and on the actual hardware itself. Notehisa
needs to be done only once for each application, since theeval
can be reused throughout the exploration process. Moreniafo
tion about the calibration of our architectural performancodels
can be found in [16]. Moreover, the mapping layer in our gsyste
level model is configured such that it models the static sclivegl
scheme as facilitated by the ESPAM framework (see Section 5)
To this end, for shared architecture components, the mgpayer
dynamically groups trace events that originate from theesiahn
process and interleaves these event groups in the same mamne
would be the result of ESPAM's static scheduling.

In our design space exploration experiments, we selectee th
degrees of freedom, namely the number of processors in #te pl
form (1 to 4), the type of processors (MicroBlaze or PowerPC)

programmable processors, ESPAM currently uses PowerP€s an and the mapping of application processes onto the processor

Microblazes since it targets Xilinx Virtex-11-Pro FPGA tatology
for prototyping the synthesized MP-SoCs. ESPAM also automa
ically generates custom IP cores needed as a glue/intddgite
between components in the platform; 3) firegram code for pro-

the sake of simplicity, the network configuration (crosshaitch)
as well as the buffer/memory sizes remained unalteredofadtn
these could also have been included in the exploration). thisr
particular case study, we were able to exhaustively explwee-

cessors — as mentioned before, to execute the software parts of Sulting design space — consisting of 10,148 design pointsirgu

the application on the synthesized multiprocessor platf@nd 4)
Auxiliary information containing files which give tight control on
the overall specifications, such as defining precise timayiire-
ments and prioritizing signal constraints.

With the above descriptions, a commercial synthesizer oan ¢
vert an RTL specification to a gate-level specification,ebgrgen-
erating the target platform gate-level netlist (see thédnotpart of
Figure 1). At this moment, ESPAM facilitates automated MFCS
synthesis and programming using Xilinx Virtexll-Pro FPGad
therefore uses the Xilinx Platform Studio (XPS) tool as akbeied
to generate the final bit-stream file that configures the FR@&-
ever, our framework is general and flexible enough to be tadye
to other physical platform technologies as well.

system-level simulation, where the M-JPEG application s
cuted on 8 consecutive 128x128 resolution frames for easigie
point. As can be seen in Table 2, this design space sweep took
2.5 hours, demonstrating Sesame’s efficiency. Figure 4 sliow
three platform instances the relation between mappingsygstém
performance, where we sorted the different mapping ins&on
performance. It clearly illustrates the importance of firgda good
mapping since non-optimal mappings on larger MP-SoC piauso
may perform worse than a good mapping on smaller MP-SoCs.

To validate our DSE experiments, we selected a number of de-
sign points with random application-to-architecture niagp and
synthesized and prototyped them using ESPAM. The results of
these validation experiments are shown in Figure 5. Noteaha
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synthesized platform can only contain up to two PowerPCstdue
the Xilinx Virtex-1I-Pro FPGA chip (xc2vp20) that is usedrfpro-
totyping. For the chosen design points, our abstract syfteeh
simulations adequately show the correct performance $remith

an average error of 12% and worst-case error of 19%. Theuracc
racies in terms of absolute cycle numbers are mainly caugéueb
modeling of the PowerPC processors. This because thesesproc
sors are connected to the crossbar using a bus that is alddanse
access to the processor’s local data and instruction merSange
we do not explicitly model (contention on) this bus, our adst
PowerPC performance model is too optimistic.

Naturally, we also used our exploration results to find thet be
mapping for each platform instance. The graph on the lefdha
side in Figure 6 shows the best design points found by our RSE f
purely MicroBlaze based platforms, together with the reahsure-
ments from the prototypes of these design points. Cleaukyab-
stract performance models quite accurately reflect thepeegnce
behavior of the actual systems. When introducing one Pa@erP
in the platform, as depicted on the right-hand side in Figyréne
absolute errors become larger (due to the inaccuracy ofurtent
high-level PowerPC model, as explained above) but the cioper-
formance trend is still shown. For MP-SoCs with more than two
processors, this inaccuracy seems to be amortized again.
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Figure 5: Validation experiment: simulation results (left) and
actual measurements (right).

To give an impression of overall resource utilization of thel-
tiprocessor systems that are generated by Daedalus’ ESBAIM t
Table 1 shows the utilization of FPGA resources for an MP-SoC
containing 4 MicroBlazes. Here, we recognize FPGA resoutice
lization for the entire MP-SoC, as well as specific utilipatire-
sults for the Communication Controllers (CCs) that gluestbgr
the processors with the interconnect and the crossbacaorteect

Platforms with 1 PowerPC

simulation
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Figure 6: Best mapping results for MicroBlaze based platfoms
(left) and platforms with one PowerPC (right).

which causes each processor’s local program and data memory
be quite large. We emphasize that the high BRAM usage is not
caused by the implementation of the communication mem¢thes
FIFO memories to which the Kahn channels are mapped), since
they only use a maximum of 9 BRAMs.

Table 1: Resource Utilization for MicroBlaze based system.

#Slices #4-Input LUT | #Flip-Flops | #BRAMs

4 proc. system| 3653 (39%) | 4748 (25%) | 2357 (12%) | 85 (60%)
4CCs 288 (2%) 468 (2%) 116 (1%) —
4-Port crossbar| 397 (3%) 587 (3%) 56 (1%) —

Table 2 shows a breakdown of the execution time for each step i
Daedalus’ design flow in the case that one selected MP-Sd€ pla
forminstance (a 4-processor MicroBlaze based architerisisyn-
thesized and implemented. The processing times were nezhsur
on a 1.8 GHz Pentium 4. Note that some of the steps only need
to be performed once (such as the KPN derivation), after kivhic
for example, the synthesis and physical implementatiogestaan
be iterated several times to prototype different platfonstances.
The results from Table 2 demonstrate that the entire desiggct
tory, from sequential application specification to MP-SaGtp-
type executing the parallelized application on top of ikeonly
a matter of hours. Evidently, this allows designers to dyigko-
totype and assess different platform instances and implementation
choices during the very early design stages. Also notieeatthe
fact that the system-level DSE component (Sesame) stiliresja
relatively high amount of manual effort. The manual effestdd in
Table 2 is mainly due to the construction of the platform &ech
ture model and the adaptation/construction of scripts pieaiorm
the automatic design space exploration. Not taken intoladds
the calibration of model components, which is a one-timeréefor
every application that is studied.

Table 2: Processing Times (hh:mm:ss).

Tool KPN Syst.level | Syst.levelto| Physical | Manual
Derivation DSE RTL conv. Impl. effort
KPNgen 00:00:22 - — - 00:30:00
Sesame — 02:30:00 — - 01:30:00
ESPAM - — 00:00:24 — 00:10:00
XPS tool — - — 02:09:00 —
7. RELATED WORK

Systematic and automated application-to-architecturpping
has been widely studied in the research community. The slose

itself. As can be seen, the MP-SoC only takes about 40% of the to our work is the Koski MP-SoC design flow [18]. Koski also

FPGA slices, of which about 5% is used for the communication

provides a single infrastructure for modeling of applioas, auto-

components. We note that the high BRAM usage reported in the matic architectural design space exploration, and auiorspgtem-

last column is due to the complexity of the M-JPEG appliaatio

level synthesis, programming, and prototyping of selemtBdSoCs.



But unlike Daedalus, Koski does not allow for parallelinatdf ap-
plications, nor design space exploration at applicatioallekoski
requires applications to be specified by hand in UML. Othanex
ples of related work can be found in [20, 9, 2, 4]. Howeverséhe
efforts are limited to processor-coprocesor architest{28], only
provide a limited degree of automation [9, 2], or do not pdevan
automated step towards the register transfer level [4].

Companies such as Xilinx and Altera provide design toolhai
attempting to generate efficient implementations starftiog de-
scriptions higher than (but still related to) the registansfer level
of abstraction. The required input specifications arestitlietailed
that designing a single processor system is still errong@and time
consuming, let alone designing alternative multiprocesgstems.
In contrast, Daedalus raises the design to an even highelr dév
abstraction allowing the exploration, design and programgnof
multiprocessor systems in a short amount of time.

Work focusing on the mapping of applications onto MP-So@s, i
the form of programming models, can be found in, e.g., [14, 6]

With respect to Daedalus’ DSE component (i.e., Sesamag the
are a number of related architectural exploration envirems(e.g.,
[3, 1, 12, 19]) that facilitate flexible system-level perfance eval-
uation by providing support for mapping a behavioral aggilan
specification to an architecture specification. In comjparte most
related efforts, Sesame tries to push the separation oflingdmp-
plication behavior and modeling architectural constsaaithe sys-
tem level to even greater extents. Doing so, it aims at optigi
the potentials for model re-use during the explorationeycl

8. CONCLUSIONS

In this paper, we presented the Daedalus framework that trie

to bridge the so-called implementation gap between systesti-
platform specifications and the actual physical implentéora of
these platforms. To this end, Daedalus focuses on the des$ign
multimedia MP-SoC platforms. As such, it provides an int¢ead
and highly-automated environment for system-level aectitral
exploration, system-level synthesis, programming antbpyping.
Such a framework offers remarkable potentials for quickiyesi-
menting with different MP-SoC architectures and explosgpgtem-
level design options during the very early stages of desigfe
illustrated Daedalus’ design steps and demonstratedfitsegicy
using a case study with a Motion-JPEG encoder applicaticainM
research directions for the future are increasing the lehvalitoma-
tion even further, relaxing the constraints put on the irggupli-
cation specifications (e.g., handling more dynamic apfiioa),
developing more advanced design space steering and priguing
nigues by means of e.g. genetic algorithms, and the inaiusfo
high-level power modeling during DSE.
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