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ABSTRACT
With the reduction in feature size, transient errors start to
play an important role in modern embedded systems. It is
therefore important to make fault-tolerance a first-class citi-
zen in embedded system design. Fault-tolerance patterns are
techniques to make an application fault-tolerant. Not only
do fault-tolerance patterns affect the quality of the embed-
ded system (like performance, energy and cost), but there
also are many ways of applying them. In this paper, we
present the SAFE simulation framework that supports the
early exploration of the different possibilities to apply fault-
tolerance patterns to MPSoC-based embedded multimedia
systems. The SAFE model incorporates fault injection, de-
tection and correction. As a result, a Pareto front can be
obtained that not only shows the trade-off between metrics
like performance, energy, cost, but also captures reliability
metrics like frame drops due to soft errors and the number
of unresolvable faults.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering]: Computer-aided de-
sign
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1. INTRODUCTION
The design of Multi-Processor System-on-Chip (MPSoC)

based embedded systems deals with many objectives. One
of them is reliability. An MPSoC design needs to be able to
cope with soft and hard errors. Soft errors are transient er-
rors that cause a temporal malfunction in the system. There
are multiple sources of soft errors. Examples are single upset
events (SUE) [23] caused by high energy neutrons resulting
from cosmic rays colliding with particles in the atmosphere,
and negative bias temparature instability (NBTI) [1]. In
general, soft errors are failures in processor execution due
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to electrical noise or external radiation. Traditionally, soft
errors were only an issue in electronic circuits used in space.
However, due to the reduction in feature size and voltage
levels, MPSoCs are becoming more susceptible to soft errors
[23]. Therefore, an MPSoC-based embedded system needs
to be able to cope with these errors.

Fault-tolerance patterns allow an MPSoC to deal with sys-
tem errors. One of the possible fault-tolerance patterns is
active redundancy in space and/or time. If active redun-
dancy is used in the space domain, different resources are
used to run the same tasks by means of task replication.
Another possibility is to run the task multiple times on the
same resource (time domain). The outcomes of the different
runs are collected (no response within a certain time frame
is also a response) and compared. Based on these results,
majority voting can be applied to detect and handle faults.

When mapping an application onto an MPSoC, there are
many ways of applying fault-tolerance patterns to the appli-
cation. This procedure of applying fault-tolerance patterns
to an application is called patternization. The type of patt-
ernization that is applied (like the granularity of the patterns
and the number of task replicates used) directly influences
the quality of the design in terms of performance, energy and
cost. As the effect is hard to predict, it is important to be
able to reason about the effects of patternization, right from
the start of the design process. Therefore, the patternization
should be part of the early design space exploration (DSE)
of MPSoC-based embedded systems.

To explore different patternizations, we present the Sesame
Automated Fault-tolerance Explorer (SAFE). SAFE pro-
vides a novel and generic framework for the early design
space exploration of realtime multimedia applications where
the effects of implementing fault-tolerance are taken into ac-
count. In other words, it aims at making fault-tolerance a
first class citizen in early design space exploration. SAFE
provides early feedback on the effects of making multime-
dia MPSoCs fault-tolerant, thereby enabling better decision
taking as compared to an approach where fault-tolerance is
only addressed in the later design phases. In the latter case,
any fault-tolerance measure may invalidate all the decisions
taken earlier. Moreover, SAFE provides a simulation-based
evaluation, which allows for more detailed architecture mod-
els compared to the analytical models often deployed in this
domain. As a result, SAFE can produce important met-
rics like frame drop ratio for dynamically scheduled appli-
cations for a wide range of (mixed) fault-tolerance patterns.
In this paper, we only focus on active redundancy and soft
errors, but SAFE also allows for deploying other types of
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Figure 1: High level MPSoC simulation.

fault-tolerance patterns, like (low overhead) assertion based
techniques, as well as for addressing permanent faults.

This paper is organized as follows: the next section de-
scribes Sesame, a high level framework on which SAFE is
based. Next, the fault-tolerance integration in the MPSoC
model is described. The extension of the Sesame simulation
model is described in Section 4. Section 5 describes a num-
ber of experiments performed with SAFE. Finally, Section
6 describes related work and Section 7 concludes the paper.

2. THE SESAME ENVIRONMENT
For SAFE, we are building upon the Sesame framework

for high-level simulation of multimedia MPSoCs [20]. The
advantage of high-level modeling is that it allows for a quick
pruning of the space of possible MPSoC designs. The Sesame
framework, which is illustrated in Figure 1, enables fast
performance evaluation using separate application and ar-
chitectural models with a typical accuracy of 5% compared
to a prototype implementation [17]. An application model
is built using a Kahn Process Network (KPN) [13], while
the architecture model models the MPSoC architecture in a
cycle-approximate fashion. Subsequently, there is a mapping
of the application model(s) onto the architecture model, im-
plemented using trace-driven co-simulation of the two afore-
mentioned models. Mapping solves two aspects concurrently:
1) allocation and 2) binding. Allocation selects the architec-
tural components used in the MPSoC platform, whereas the
binding defines on which architectural component the ap-
plication tasks and communications are executed. During
the evaluation of a mapping, each process in an application
model generates a trace of application events, representing
the workload at a high level of abstraction (like read/write
a chunk of data, or execute a particular function). These
event traces are simulated by the architecture model to ob-
tain metrics like execution time and energy consumption.

Since the applications that need to be mapped on MP-
SoCs become more and more dynamic, SAFE uses the con-
cept of scenario based design [19]. More precisely, SAFE
is based on the scenario-based version of Sesame [24], de-
ploying workload scenarios [8] to model dynamic applica-
tion workloads. Where Sesame uses absolute metrics for an
application workload, like total execution time and energy

Architectural Layer

Application Layer

Mapping Layer

Pattern Layer

GK(V,EK)

F

GR(R,ER)

EC

EM

EP

Figure 2: System model with integrated fault-
tolerance patterns.

consumption, SAFE uses the notion of frames. As a result,
SAFE considers metrics like frame rate and average power
usage. For this purpose, we assume that a single scenario
of an application is equivalent to the handling of a single
frame. That is, frames are the elementary unit of work per-
formed by an application. For a video application this is the
decoding of a single image, whereas the frame of an MP3
application is a single block of sound. Important to notice is
that between scenarios application processes do not have any
implicit state. As will be explained later on, this simplifies
the implementation and modeling of fault-tolerance.

3. FAULT-TOLERANCE INTEGRATION
In this section, a description is given of how fault-tolerance

is integrated in SAFE. The first subsection specifies the inte-
gration of the fault-tolerance patterns in the system model.
Next, the mapping procedure is described. Finally, the
fault-tolerance aware mapping process is illustrated using
a motion-JPEG (MJPEG) application.

3.1 System model
Figure 2 shows the SAFE system model that integrates

fault-tolerance. Apart from the layers that were already
mentioned in Section 2 (application, mapping and architec-
ture), the system model also contains a pattern layer. The
pattern layer consists of all the possible fault-tolerance pat-
terns that can be used to make an application fault-tolerant.
In the following, we will describe the layers in more detail:

Application layer Applications are represented by a di-
rected graph GK(V,Ek) with V = VN ∪ VOWP and VN ∩
VOWP = ∅. Vertices represent the Kahn Process nodes. To
make the external I/O with respect to the complete appli-
cation explicit, a distinction is made between two type of
nodes. Normal process nodes (VN) do not have any interac-
tion with the outside world, whereas outside world processes
(VOWP) exclusively model the interaction with the world ex-
ternally to the application. Actions taken by normal process
nodes should not affect anything externally to the applica-
tion. This means that they also cannot write to memory
that is accessible by components that are not part of the
embedded system. As a result, normal process nodes can be
replicated without any side-effects to the application output.
Directed edges Ek = V × V represent communications links
to pass messages between process nodes. It is not allowed
for OWP processes to communicate directly with eachother:

∀v1, v2 ∈ VOWP : (v1, v2) /∈ Ek

Architecture layer The architecture is described by the
undirected graph GR(R,ER). R represents architectural re-



sources like processors, communication buses, splitters, ma-
jority voters and buffers. There are some special architec-
tural elements that need to be mentioned specifically. Ar-
chitectural processors RP ⊂ R are the elements capable of
executing normal process nodes. OWP processes, on the
other hand, are handled by I/O elements RI ⊂ R. Majority
voters RV ⊂ R are special architectural resources for im-
plementing active redundancy. They split messages to send
them to the different replicas and do a majority voting on
outgoing messages. The edges in ER = R × R describe the
communication links in the architecture.

Pattern layer There are many approaches to make the ap-
plication fault-tolerant. The collection F represents the pos-
sible fault-tolerance patterns. In this paper, we focus on
active redundancy [6], but in principle more approaches are
possible. A fault-tolerance pattern f ∈ F contains a descrip-
tion of how the active redundancy is implemented. Exam-
ples are double modular redundancy (DMR) and triple mod-
ular redundancy (TMR). The fault-tolerance pattern also in-
cludes policies like what to do on the detection of a fault and
the frequency of checkpoints (see Section 4.3). The function
nproc(f) specifies the number of processors required for the
fault-tolerance pattern f ∈ F . For the DMR pattern, this is
two processors (possibly the same processor).

Mapping layer Patternization edges EP describe the man-
ner in which the application is made fault-tolerant. Each
edge (v, f) ∈ EP represents a possible appliance of the fault-
tolerance pattern f ∈ F for the process node v ∈ VN .

Mapping edges EM assign architectural resources to the
fault-tolerance pattern. More precisely, the edge (f, r) ∈ EM

assigns processor r ∈ RP ∪RV to pattern f ∈ F . Next, the
I/O edges (EIO) bind the I/O processes. An edge c = (v, i)
assigns the OWP processes v ∈ VOWP to an I/O component
i ∈ RI in the architecture.

A final step in the mapping layer is the message dispatch.
E.g., there may be multiple process replicas that generate
different copies of the same data for a particular destination.
Similarly, data may need to be sent to multiple processes
Let M = VN × V × R be the set of messages. A message
m = (vs, vd, r) ∈ M is data sent from normal process node
vs from resource r such that (vs, vd) ∈ Ek ∨ (vd, vs) ∈ Ek.

Dispatch edges ED specify the target of the messages. When
(m, r) ∈ ED, message m ∈ M needs to be sent to architec-
tural resource r ∈ R.

3.2 Mapping procedure
During DSE, different design instances are created from

the system model. To achieve this, a Y-chart approach [14]
is used. Figure 3 shows the modification to the Y-chart to
integrate fault-tolerance in the DSE. The inputs to our DSE
are the applications, the architecture and the fault-tolerance
patterns. With these inputs, the mapping procedure can
synthesize a design instance. This instance is used in the
SAFE simulation framework to obtain performance num-
bers, after which the DSE process uses these numbers to
optimize the application, architecture or mapping.

The mapping procedure maps the application onto the
fault-tolerant architecture and is divided into three steps:
patternization, binding and message dispatch. Patterniza-
tion selects the fault-tolerance patterns that will be used
in the application. The binding step binds the application
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Figure 3: The modified Y-chart for synthesis with
fault-tolerance support.

onto the architectural resources. Finally, the dispatch spec-
ifies the destination of the messages which are sent between
the architectural resources. The complete procedure is as
follows:

Patternization The first step in our fault-tolerant map-
ping is patternization ψ. The patternization ψ contains one
edge for each node in VN such that ψ ⊆ EP :

∀v ∈ VN : |{f |(v, f) ∈ ψ}| = 1

The complete patternization ψ describes the used fault-tolerance
patterns in the MPSoC design and the process nodes that
are assigned to them. Processes that are connected to a
pattern f ∈ F are called a fault-tolerant subnetwork (Gf ):

Gf := {v|(v, f) ∈ ψ}

Computational Binding Computational binding βx maps
the fault-tolerant subnetworks onto the architecture such
that βx ∈ EM . In case a fault-tolerant pattern is used it
must be assigned to a voter and a set of processors:

∀f ∈ F : Gf = ∅ ∨ (|{r|(f, r) ∈ βx ∧ r ∈ RV }| = 1 ∧
|{p|(f, p) ∈ βx ∧ p ∈ RP }| = nproc(f))

The implication of this constraint is that all the processes
in a replica of a subnetwork are mapped onto the same pro-
cessor. This is useful for minimizing the overhead of explicit
checkpoints (as described in Section 4.3.2) as the checkpoint
can be taken locally at the processor. Each voter may only
be used by one pattern:

∀r ∈ RV : |{f |(f, r) ∈ βx}| ≤ 1

I/O binding I/O binding βio maps the OWP processes
onto the architecture such that βio ∈ EIO:

∀v ∈ VOWP : |{i|(v, i) ∈ βio}| = 1

Each OWP process must be mapped on exactly one I/O
component.

Message Dispatch After binding, a message dispatch δ
must be generated. The dispatch δ defines the target of
each message such that δ ∈ ED. Additionally, the routing
between the processors, voters and I/O elements is deter-
mined. Currently, this routing is fixed and is not part of the
mapping procedure.
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In order for the dispatch to be valid, two requirements must
be met: 1) the process must be mapped on the resource the
message is sent from and 2) each message has at most one
destination resource.

∀((vs, vd, r), rd) ∈ δ :∃f ∈ F | ((vs, f) ∈ ψ ∧ (f, r) ∈ βx)

∀m ∈M :|{r|(m, r) ∈ δ}| ≤ 1

The dispatch must also be complete. For each link e ∈ Ek,
the message dispatch must specify the destination resource
of all the messages:

∀(vs, vd) ∈ Ek :


Intern(vs, vd, f) ∃f ∈ F : vs, vd ∈ Gf

Extern(vs, vd, f) @f ∈ F : vs, vd ∈ Gf

There are two types of communication: internal and external
communication. Figure 4 shows the communication types.

Internal communication is communication between two pro-
cess nodes in the same fault-tolerance subnetwork (in the ex-
ample between processes A and B). This communication is
handled internally by the processor and is unverified (recall
that the computational binding enforces that processes on
the same subnetwork are mapped onto the same processor).
For each of the replicated processes, a message dispatch en-
try must be present:

Intern(vs, vd, f) :=|{r|((vs, vd, r), r) ∈ δ ∧ r ∈ RP }| = nproc(f)

If the processes of the link are not in the same subnet-
work, the communication is external. External communi-
cation passes the majority voter and consists of two steps:

Extern(vs, vd, f) :=V(vs, vd, f) ∧

IO(vs, vd) vd ∈ VOWP

T (vs, vd) vd ∈ VN

The first step is verified communication (V ). This is commu-
nication from the replicated process to the majority voter.
The majority voter will collect the messages of the different
replicas of vs and will verify the message that is passed on
to the destination process vd:

V (vs, vd, f) :=|{r|((vs, vd, r), rd) ∈ δ ∧ r ∈ RP ∧ rd ∈ RV

∧ (f, rd) ∈ βx}| = nproc(f)

The second step of external communication depends on the
type of the process node vd. If the destination process is a
normal process node (vd ∈ VN), there will be a transfer (T)
of the message to the subnetwork of vd. In the case of an

OWP process (vd ∈ VOWP), IO is performed:

IO(vs, vd) :=|{r|((vs, vd, r), rd) ∈ δ ∧ r ∈ RV

∧ (vd, rd) ∈ βio ∧ rd ∈ RI}| = 1

T (vs, vd) :=|{r|((vs, vd, r), rd) ∈ δ ∧ r, rd ∈ RV

∧ (vd, fd) ∈ ψ ∧ (fd, rd) ∈ βx}| = 1

This second step only needs to be done once. For a transfer,
the destination resource must be the voter on which the
subnetwork of vd is mapped. The message will be split by a
splitter (which is physically part of a voter component, see
Figure 5b) for use by the replicated processes of vd. In case
of I/O, the destination resource must be the I/O element on
which process vd is mapped.

Besides writing data, read requests are issued by process
nodes. These read requests are passed on to a voter element
or an I/O element. The completeness requirements are sim-
ilar to those of writing data, except that the reading node
is the sending process and the writing node is the receiving
process:

∀(vs, vd) ∈ Ek :


Intern(vd, vs, f) ∃f ∈ F : vs, vd ∈ Gf

Extern(vd, vs, f) @f ∈ F : vs, vd ∈ Gf

A design instance is feasible if and only if all the constraints
during the patternization, computational binding, I/O bind-
ing and message dispatch are fulfilled.

3.3 An MJPEG Example
To illustrate the fault-tolerance aware mapping in SAFE,

an example mapping of an MJPEG encoder is given in Fig-
ure 5. First, the application model is illustrated in Figure
5a. All the processes are normal (VN), apart from the OWP
process. As discussed in the previous section, the OWP is
part of VOWP to make those actions explicit that can have
side-effects external to the specific application. As the OWP
is aware of the arrival times of frames, as well as their output
times, we can determine if a certain frame rate is met.

DMR-A and DMR-B are the fault-tolerance patterns that
are used in our example application. DMR is a type of active
redundancy [6] that uses two processors (not necessarily dif-
ferent). The active redundancy subnetwork is duplicated in
time or space (nproc(DMR) = 2) among the processor(s) to
be able to compare the different outgoing messages. An ar-
chitectural majority voter (VOTER-A or VOTER-B) takes
care of the splitting of incoming messages to the replicas and
the verification of outgoing messages using majority voting.
The complete description of the mapping procedure is as
follows:

The first step of the mapping is the patternization. Most
fault-tolerant exploration frameworks are fixated on a single
fault-tolerance pattern: replicate the complete application
or replicate each single process. The SAFE model is, how-
ever, not limited to a fixed pattern. In our example (Fig-
ure 5a), the MJPEG encoder is split into two fault-tolerant
subnetworks: Gf,DMR-B = {DMUX,RGB2YUV,DCT} and
Gf,DMR-A = {Control,Q,VLE}.

ψ = {(DMUX,DMR-B), (Control,DMR-A),

(RGB2YUV,DMR-B), (DCT,DMR-B),

(Q,DMR-A), (VLE,DMR-A)}

A next step is to perform the binding (see Figure 5b).
During the communication binding, the OWP process is
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bound onto the I/O module. As the DMR pattern of subnet-
workGf,DMR-A requires two processors, subnetworkGf,DMR-A

is bound to processors PROC-B and PROC-D. Similarly,
subnetwork Gf,DMR-B is bound to PROC-A and PROC-C.
In this example, all the replicas are mapped to different pro-
cessors. The SAFE model does not require this and all the
replicas could e.g. also have been mapped to PROC-A.

βio = {(OWP, I/O)}
βx = {(DMR-A,PROC-B), (DMR-A,PROC-D),

(DMR-A,VOTER-A), (DMR-B,PROC-A)

(DMR-B,PROC-C), (DMR-B,VOTER-B)}

The final step is generating the dispatch of the messages.
In this example, we will discuss messages from four links:
(VLE, OWP), (Q, VLE), (DCT, Q) and (OWP, DMUX).
For each link, multiple messages need to be dispatched: one
message per replicated process and possibly a verified mes-
sage after majority voting. For the replicated processes, the
communication is internal or verified. (Q, VLE) is internal
because Q and VLE are on the same subnetwork GDMR-A.
That is why Q on PROC-B can directly write a message to
VLE on PROC-B without any dependency on the Q process
that is running on PROC-D.

For (VLE, OWP), (DCT, Q) and (OWP, DMUX) the
communications (read/write) are external. For the DMR
pattern, this means that for written data the messages of all
the replicas must be compared before a message is passed
on. Take for example (DCT, Q). Both the DCT processes
on PROC-A and PROC-C must write a message after which
they are processed (i.e., voting) and a single message is
passed on. As the destination of the message is located
in another subnetwork (Gf,DMR-A), the resulting messages
are transferred to VOTER-B. Whenever one of the Q pro-
cesses does a read request on (DCT, Q), it receives a copy of
the message from VOTER-B. The OWP process is passive.
Incoming frames for the MJPEG application, i.e. (OWP,
DMUX), are handled by sending the data to the voter be-
longing to the subnetwork of the target process (VOTER-B
for (OWP, DMUX)). Whenever a voter has a message for
an OWP process (outgoing I/O) it will be sent to the I/O
element.

4. SIMULATION MODEL
After a design instance is generated using the mapping

procedure, a SAFE simulation model is used to obtain its
performance numbers. This section describes the different
aspects of this fault-tolerant aware model. The first subsec-
tion discusses the fault injection, followed by a description
of the fault detection. To facilitate fault correction, restart-
ing and checkpointing is introduced in the simulation model.
This is elaborated in the third subsection. Finally, the last
subsection describes the obtained performance metrics.

4.1 Fault Injection
To be able to reason about the trade-off between objec-

tives like reliability and performance, faults must be sim-
ulated in our model. First, we make the assumption that
the communication network is fault-tolerant. Therefore, the
only source of error is at the processor level. Potentially,
all the different processor components can be affected by an
error [3]. Examples are the register file, the logical units
and the on-chip memories. As SAFE models a processor at
a high level of abstraction, we only know what function an
application is executing and when it reads or writes data.
Therefore, we use the SoftWare Initiated Fault Injection
(SWIFI) method [22]. In principle, both permanent and
transient errors can be modeled. In this paper, however, we
limit ourselves to transient errors.

The processor models the occurrence of faults using an
exponential random distribution. An exponential distribu-
tion describes the time between events in a Poisson process,
which occur continuously and independently at a constant
average rate. This is very suitable for modeling fault injec-
tion times [7] as transient errors are infrequent and indepen-
dent of earlier errors. During the simulation, the processor
model iteratively injects transient faults based on the expo-
nential distribution. Here, it depends if the transient error
affects the execution of the application. The fault does not
have any consequences when no process is active at the time
the fault occurs. However, in case a process is active, it will
invalidate all future output of the process. In reality, it may
be the case that the fault does not affect the output, but
in our high-level approach we cannot know the exact effect.
Therefore, we take the most pessimistic assumption.

4.2 Fault Detection
A fault injected into an application will be propagated

until it is detected by one of the fault-tolerant subnetworks.
When a fault-tolerant subnetwork detects an error, there
are two possible responses: fault masking and fault correc-



tion. Fault masking is applied when there is a clear majority
for the data values among the different replicates. The ex-
ecution can be continued by passing on the data value of
the majority. The corrupt replicate is allowed to continue
its execution. As there is no implicit state between frames
in our KPN applications (see Section 2), the next frame is
processed with clean data again.

If there is no majority, then only fault detection can be
performed. On the detection of a non-maskable fault, there
are two options: skipping and restarting. In case of skipping,
the current frame is dropped and the processing of the next
frame is started.

4.3 Fault Correction
If the number of skipped frames becomes too large, then

the quality of service (QoS) of the application significantly
deteriorates. In this case, restarting the frame processing
can improve the QoS. To facilitate such restarting, check-
pointing must be part of the SAFE model.

4.3.1 Checkpoint budget
As illustrated in Figure 6, there are two types of check-

points: implicit and explicit. Implicit checkpoints are lo-
cated at the frame barriers. In the example of Figure 6
checkpoints CA.3.0 and CB.3.0 form the implicit checkpoint
at frame 3. Notice that an implicit checkpoint is not taken
at once. Process A reaches the barrier of frame 3 much
earlier than process B. The complete implicit checkpoint is
available once every process in the subnetwork has reached
the specific frame barrier. A complete implicit checkpoint
does not require storage (as there is no implicit state be-
tween frame barriers), but it allows us to perform message
cleanup as will be discussed in Section 4.3.2.

As will also be detailed in the next subsection, the restart
from an implicit checkpoint is trivial because no state needs
to be restored for the processes. Still, restarting from an
implicit checkpoint has some disadvantages. Not only needs
the complete frame to be recalculated, but it can also be the
case that the application is not started at its full capacity.
Take the simple application in Figure 6. On a restart from
an implicit checkpoint at the end of frame 2, both processes
start at the barrier of frame 2. In this case process B needs
to wait for output of process A before it can do any work.

To resolve this, explicit checkpoints can be taken during
the lifetime of an application. Explicit checkpoints are ini-
tiated by the voter and store the state of all the processes
in the active redundancy network and their internal com-
munication channels at a specific point in time. In contrast
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Figure 6: Implicit versus explicit checkpoints as il-
lustrated by a timeline of a simple application.

to implicit checkpoints, the complete subnetwork is halted
to capture the state of the current processes and the inter-
nal communication channels. To obtain a consistent explicit
checkpoint, the voter will ensure that all the replicas stop at
the same point in the application. One of the processes in
the subnetwork will be responsible for collecting and send-
ing the checkpoint. This results in a checkpoint for each
replica, which will be compared by the voter. In Figure 6,
CA.4.1 and CB.2.1 are illustrations of an explicit checkpoint.

Implicit and explicit checkpoints can also enhance each
other. Take for example the checkpoints in Figure 6. If
there is a restart just after the checkpoint of CB.3.1, the
restart can take place from a combination of the explicit
checkpoint C∗.∗.1 and the implicit checkpoint C∗.3.∗. This
means that process A starts from CA.4.1 and process B starts
from CB.3.1. Without the presence of explicit checkpoints,
process A should have processed frame 3 again. Similarly,
with only explicit checkpoints, process B would have been
required to process frame 2 again.

For each fault-tolerant subnetwork, a checkpoint budget
is defined. The checkpoint budget determines the check-
pointing granularity by describing the number of explicit
checkpoints per frame (possibly 0). The size, and thus the
overhead, of the checkpoint is dependent on the application
processes and the amount of data in the internal commu-
nication channels. This also means that the voting time of
a checkpoint is variable. That is, the explicit checkpoints
of the different replicas in a subnetwork must be verified
against each other to ensure that on a restart the process
state is valid. After verification by the voter, the explicit
checkpoint is stored locally at the processor.

Explicit checkpoints are not only useful to minimize the
amount of work that has to be redone, but they also allow
to implement fault-tolerant techniques like Roll Forwarding
Checkpointing Schemes [21] or assertion based techniques
[11] where a fault is corrected by reprocessing the frame.
This is, however, beyond the scope of the current paper.

4.3.2 Restart budget
Fault correction is not simply the case of enabling or dis-

abling the possibility to restart the processing of a corrupted
frame. As restarting requires some overhead, it cannot be
done unlimitedly. Therefore, a restarting budget is specified.
The restarting budget defines the number of times a restart
may be done during the processing of a frame. In case the
restart budget is zero, no restarting is performed at all and
the fault-tolerant subnetwork will skip corrupted frames.

When restarting is enabled, some data must be cached (see
Figure 4). The explicit checkpoints must be stored locally
at each of the processors on which the fault-tolerant sub-
network is mapped. Moreover, messages need to be cached
at the splitter. Without caching the incoming messages of
the subnetwork, it cannot be guaranteed that input data is
still available. On top of that, it must be possible to restart
subnetworks without the need of restarting other networks
to regenerate the incoming data. The caches can be pro-
tected from errors in several ways, but as SAFE is currently
only targeted towards transient errors a memory with ECC
should be sufficient.

The splitter model incorporated in SAFE models a limited
amount of cache capacity. Therefore, a policy is required for
message cleanup. There are two moments for cleaning up
messages: during explicit checkpoints and during implicit



checkpoints. During explicit checkpoints all the messages in
the cache may be discarded. At implicit checkpoints, all the
input messages of earlier frames may be removed.

If a corrupted frame is encountered then there are two
possibilities. When the restart budget is empty, the current
frame is dropped. Otherwise, the restart budget is decreased
by one and the subnetwork is restarted from the most recent
checkpoint. Two things need to be done during a restart: 1)
extract the process states from the checkpoint (not necessary
in the case of an implicit checkpoint) and 2) restoring the
externally incoming messages at the splitter.

To conclude, checkpointing involves overhead (in space
and time), but it tries to avoid skipping frames on faulty
processors. The usage of checkpoints depends on the appli-
cation and the failure rate of the processors. The higher the
failure rate of processors, the higher the fraction of skipped
frames will be. Additionally, the type of application deter-
mines the fraction of skipped frames that can be tolerated.
For a safety critical application, none of the frames may be
skipped. Multimedia applications typically allow for a small
fraction of the frames to be skipped, as long as it is unno-
ticeable to the user. All these trade-offs can be explored
automatically by SAFE.

4.4 Performance metrics
All the techniques described in the previous subsections

have been implemented in an extension of the Sesame envi-
ronment [20]. As the external I/O is made explicit by the
use of OWP processes, SAFE allows for obtaining metrics
like frame rate in the presence of transient faults. More-
over, since the modeled architectural elements include fault-
tolerance components such as majority voters, the overhead
of applying active redundancy (or any other fault-tolerance
implementation technique) is part of the analysis. Besides
the frame rate, other metrics can be obtained as well, such
as frame miss ratio, the number of unrecoverable faults and
the number of frames that are skipped because the incoming
I/O is not available anymore.

We should note, however, that our simulation-based ap-
proach is not able to provide guarantees for the realtime
behavior. Its goal is not to make the system reliable, but
to identify the most reliable design in the design space tak-
ing all the other system objectives into account. SAFE is
thus able to prune the design space such that only a limited
number of designs need to be studied in more detail during
later design phases.

5. EXPERIMENTS
In this section, a use case for fault-tolerant DSE with

SAFE will be presented. For this purpose, three different
applications are used: an MJPEG encoder, a sobel edge de-
tector (to detect edges for each image in a video stream) and
an MP3 decoder. All of these applications are individually
mapped onto an MPSoC, which somewhat resembles the ar-
chitecture in Figure 5b. The only difference is that for our
experiments, 6 voters are available. To reduce the probabil-
ity of a communication bottleneck, there are two buses to
which all the processors are connected. The voters, however,
are distributed: 3 voters are connected per bus.

All the processors have the same failure rate: 10−6 FIT.
This is a rather conservative choice based on logic imple-
mented in a 180nm technology [23]. Our focus will be on ex-
ploring the trade-offs of implementing fault-tolerance. There-
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fore, the computational binding will be fixed: processors A,
B and C will be used to for the first, second and third in-
stance of each replicated process.

We have performed two experiments. In the first exper-
iment, the MJPEG application is revisited. Here, we will
scrutinize the process of patternization, and in particular,
the identification of several optimal patternizations. Subse-
quently, SAFE is used for a fault-tolerant DSE on the three
test applications individually.

5.1 MJPEG Patternization
To study the process of patternization, we performed an

exhaustive patternization for the MJPEG application and an
MPSoC where only triple modular redundancy (TMR) pat-
terns are used. There are multiple instances of the TMR in
the set of fault-tolerance patterns, involving different choices
for the restart budget and the checkpoint budget.

Figure 7 shows the optimal patternization for a different
number of fault-tolerant subnetworks. In this case, we have
taken frame drop ratio as a primary objective and power
consumption as a secondary objective. A first observation
is that in this design space the patternization is incremen-
tal. By adding an additional subnetwork, one of the pro-
cesses is moved into the new subnetwork. In the case of two
subnetworks, the application is split into two equally sized
subnetworks. Not only are these subnetworks equally sized,
but also the number of external communication channels is
kept minimal. Apart from the I/O communication channels
(which are external by definition), only the channels (DCT,
Q) and (DMUX, Control) are external. Due to this min-
imum of external channels, the amount of majority voting
(only done on external communication) is minimized.

When increasing the number of subnetworks to three, the
DCT process is put into a separate subnetwork. The ratio-
nale is not the minimization of external communication, but
the guarding of the compute intensive tasks. As the DCT is
the most computationally expensive operation, it is benefi-
cial to ensure that verified data is used in the computation.
If it would have been unverified, it can be the case that un-
necessary computation will be done. The same is true for
the optimal patternization with four subnetworks. In this
case, the quantization (Q) process is separated, being the
second most compute intensive operation in MJPEG.

Having more fault-tolerant subnetworks may increase the
quality of the application (with respect to frame drop ratio).
However, it also increases overhead. This can be seen in
Figure 8. Up to four subnetworks, the frame drop ratio
reduces to 0 percent. With five or more subnetworks, the
frame drop ratio quickly climbs up to 69 percent when each
process is placed in a separate subnetwork.
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5.2 Fault-tolerant DSE
To further illustrate the potentials of SAFE, three test ap-

plications are mapped using a fault-tolerant DSE: MJPEG,
sobel and MP3. To keep the experiment feasible, we per-
formed a partial search of the design space. To achieve this,
we explored all the mappings with at most six fault-tolerant
subnetworks. Each of the subnetworks is implemented us-
ing the same type of fault-tolerance pattern. The explored
fault-tolerance types are DMR and TMR, and for the restart
budget and the checkpoint budget (only relevant when the
restart budget is nonzero) the complete range between 0 and
6 is covered. Our model is only able to make explicit check-
points between communication events. Because the MP3
application is too coarse grained as it has at most two com-
munication events per frame, the fault tolerance patterns
with an explicit checkpoint budget larger than 0 are not
explored for the MP3 application.

5.2.1 Power and Frame Drop Ratio
Figure 9a shows the frame drop ratio and power consump-

tion trade-off for all of the design points. The design points
are differentiated based on the type of fault-tolerant pattern:
1) DMR or TMR and 2) restarting enabled or not. A first
and straightforward observation is that for our experiment
DMR takes less power than TMR. The overhead of execut-
ing an additional replica, is clearly larger than the restarting
overhead, since DMR with restarting takes less power than
TMR without restarting.

Therefore, for this experiment, it depends on the applica-
tion if it makes sense to use TMR. Figure 9a also shows the
Pareto front of non-dominated solutions. For MJPEG and
MP3, DMR dominates all the design instances with TMR.
The reason is that DMR is already capable of achieving a
frame drop ratio close to or equal to zero. However, for
the sobel application, DMR cannot obtain a frame drop ra-
tio below 5 percent. With TMR, sobel can achieve a frame
drop ratio of 1.4 percent. Similarly, it depends on the ap-
plication if restarting is required. The MP3 application is
quite lightweight and can already achieve a frame drop ratio
of 0.1 percent without restarting. Heavier applications like
sobel and MJPEG cannot go below a frame drop ratio of 16
and 31 percent respectively without restarting.

More unexpected are the two clusters of design instances
for the MJPEG application. For each experiment instance
(DMR, TMR, with and without restarting), there are roughly
two clusters: a large drop ratio and a low one. Further in-
vestigation showed that once the frame drop ratio is above
a certain threshold (±50%) the MJPEG application can-
not keep up pace with the incoming frames from the OWP

process. As a result, many frames are skipped (e.g., not pro-
cessed at all) due to deadline misses and the frame drop ratio
is drastically increased. The higher number of unprocessed
input images has a side effect: less power is required.

Also interesting to notice is the shape of the front of the
MP3 application. Increasing power consumption of the sys-
tem (e.g., making it more fault-tolerant), makes the frame
drop ratio even higher. This is caused by the fault tolerance
overhead as will be discussed in the next subsection.

5.2.2 Breakdown of Frame Drop Ratio
Dropping a frame can have several causes, which is illus-

trated in Figure 9b. First, there are corrupted frames. In
these frames, a fault is detected (due to a transient error),
but the restart budget was too small to correct these faults.
Second, there are deadline misses. In these cases, the ap-
plication is too late to retrieve or deliver a frame from/to
the OWP process. For the experiment in Figure 9b, we have
taken all the design points of the previous experiments where
the explicit checkpoint budget was 0. These design points
are differentiated by restart budget and for each category
the average frame drop ratio is given. Not only the total
drop ratio is given, but also the fractions that are due to
corrupt frames and deadline misses.

A larger restart budget can both improve the frame drop
ratio (less corrupted frames) and degrade the frame drop
ratio (more deadline misses). The more effort is put in fault
correction the lower the number of corrupted frames. How-
ever, the effort has a negative effect on the number of dead-
line misses. The optimal restart budget is thus application
dependent. For all our applications, the gain in the reduc-
tion of corrupted frames is overshadowed by the increase of
deadline misses at about 1 or 2 restarts per frame. How-
ever, the MP3 application is not influenced anymore once
the restart budget is above 3. In this case, the MP3 appli-
cation is already able to circumvent corrupted frames and
the additional restarts will not be used.

5.2.3 Buffer Requirements
We have already shown that restarting and checkpoint-

ing have a positive effect on the frame drop ratio. A next
question is what the effect of the additional checkpointing
is on the buffer requirements. For this purpose, we stud-
ied the MJPEG and the sobel applications and selected the
best design points for a checkpoint budget between 0 and
6. The results are illustrated in Figure 10. The left vertical
axis represents the normalized buffer size, whereas the right
vertical axis shows the frame drop ratio.

The checkpoint budget has a positive effect on the buffer



 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 4  4.5  5  5.5  6  6.5  7  7.5  8  8.5  9  9.5

F
ra

m
e 

D
ro

p 
R

at
io

 

MJPEG

 0%

10%

20%

30%

40%

50%

60%

 3.5  4  4.5  5  5.5  6

Power Consumption

Sobel

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

 

MP3

DMR
DMR (Res)

TMR
TMR (Res)

Pareto

(a) Design Space

 0%
10%
20%
30%
40%
50%
60%
70%
80%

 0  1  2  3  4  5  6

F
ra

ct
io

n

 

MJPEG

 0%
10%
20%
30%
40%
50%
60%
70%
80%

 0  1  2  3  4  5  6

Restart Budget

Sobel

 0%
10%
20%
30%
40%
50%
60%
70%
80%

 0  1  2  3  4  5  6

 

MP3

Corrupt
Deadline

Total drop

(b) Breakdown of Frame Drops

Figure 9: The results of the fault-tolerant DSE of the 3 test applications: MJPEG, sobel and MP3.
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Figure 10: Varying the checkpoint budget of an
MJPEG application with restarting enabled.

requirements. When the checkpoint budget increases, the
required size of the message cache decreases. The reason
is that the message cache can be flushed whenever an ex-
plicit checkpoint is taken (see Section 4.3.2). The more of-
ten a checkpoint is taken, the fewer messages are simulta-
neously cached. The storage requirements of the explicit
checkpoints, however, are less influenced by the frequency
of checkpointing (not shown in the graph).

Still, a checkpoint has its overhead. It depends on the
application if it can be tolerated or not. The sobel appli-
cation cannot tolerate the overhead and with a checkpoint
budget above 1, the frame drop ratio is increasing due a
larger number of deadline misses. The MJPEG application,
on the other hand, can take up to 6 checkpoints per frame
without any deadline misses.

6. RELATED WORK
A lot of research effort has been spent on the early DSE

of embedded systems [10]. Recently, workload scenarios [8]
have been introduced to make the embedded system design
scenario aware [19, 18, 24]. Our work is based on [24], and
extends this into the direction of fault-tolerance aware DSE.

This is because reliability becomes a major design objec-
tive [23, 16] and has a major effect on other objectives. It
is therefore important that this objective is explored as a
separate design objective [9] and not hierarchically.

Many of the reliability aware DSE environments [2, 5,
12, 11, 6] are based on a static scheduling of application
tasks. COFTA [5] aims at minimizing the overhead of fault-
tolerance measures using replication and assertion. The
analysis only takes the performance and failure rate of the
final application into account. It provides exploration of the
placement of the assertion and replication patterns. COFTA
misses the ability to reason about handling multiple frames
and their throughput. The methods in [12, 11] provide fault-
tolerance in realtime embedded systems using re-execution
of tasks. For this purpose, a sanity check determines if the
task is executed correctly. In case of a fault, a special time
slot can be used to re-execute a task. As all of these ap-
proaches use static scheduling, they are based on worst case
execution time. The method in [2] tries to resolve this by
using a hyperperiod instead of a fixed time. Still, it does not
allow for modeling the full dynamism within applications.

Bolchini [4] provides an analysis framework that performs
reliability analysis for an embedded system with dynamic
scheduling. The framework injects faults into the system
during execution and classifies the effect on the system (like
silent, detected and failure).

The novelty of SAFE is that it not only provides explo-
ration on the placement of fault-tolerance patterns, but it
is also capable to fully simulate realtime embedded systems
with dynamic scheduling at a high abstraction level. On top
of that, it provides a unique fine-grained and parametrized
checkpointing model. Most fault-tolerant aware DSE frame-
works only take implicit checkpoints into account [15] that
are strictly taken in between frames. As a result, SAFE pro-
vides more detailed insight into the consequences of fault-
tolerant design. By using the patternization approach, dif-
ferent fault-tolerance patterns can be applied to different



parts of the same application. Finally, the explicit modeling
of transient errors allows us to not only model the effects of
the (mixed) fault-tolerance patterns on the system perfor-
mance, but also to gain insight into the number of missed
frames (due to a late arrival or an unrecoverable fault).

7. CONCLUSION
In this paper, we have argued that fault-tolerance should

become a first class citizen in the early design space explo-
ration of MPSoCs. To this end, we have presented SAFE, a
simulation environment to explore the different implementa-
tion strategies for realizing fault-tolerance in MPSoC-based
embedded multimedia systems.

Our experiments show that it is beneficial to explore all
the possible ways of implementing fault-tolerance. A cus-
tom patternization allows to leverage fault handling capa-
bilities and reducing performance overhead by minimizing
the amount of verified communication and to assure that
the input of compute intensive tasks is correct. As a con-
sequence, an automated way of exploring all these possible
fault-tolerant implementation variants is crucial to make the
correct decisions during the early design stages.

Future work will focus on large-scale DSE in which mixed
techniques (not only active redundancy, but also assertion-
based techniques) are explored for fault-tolerant MPSoC-
based embedded systems.
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