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Abstract

In this paper, we discuss the potential for the use of engineering methods that were originally developed for the design of
embedded computer systems, to analyse biological cell systems. For embedded systems as well as for biological cell systems,
design is a feature that defines their identity. The assembly of different components in designs of both systems can vary widely.
In contrast to the biology domain, the computer engineering domain has the opportunity to quickly evaluate design options and
consequences of its systems by methods for computer aided design and in particular design space exploration. We argue that there
are enough concrete similarities between the two systems to assume that the engineering methodology from the computer systems
domain, and in particular that related to embedded systems, can be applied to the domain of cellular systems. This will help to
understand the myriad of different design options cellular systems have. First we compare computer systems with cellular systems.
Then, we discuss exactly what features of engineering methods could aid researchers with the analysis of cellular systems, and what
benefits could be gained.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

With the uprise of systems biology, biologists find
themselves at work in a field that is highly oriented to
interdisciplinary research. In a systems approach, biol-
ogists work together with physicists, mathematicians,
engineers, chemists and computer scientists. This devel-
opment supplies biologists not only with new tools for
research (Fields, 2001) but also with the inspiration to
take a different perspective towards biological systems.

One of the central topics of systems biology is
unravelling the networks and dynamics of living cells.

∗ Corresponding author. Tel.: +31 20 5257898; fax: +31 20 5257762.
E-mail address: tepronk@science.uva.nl (T.E. Pronk).

Although much research effort has already been directed
towards systems biology, it proves difficult to gain a com-
plete picture of the complex dynamics and networks in
a cell.

Currently, cells are analysed mainly by reverse engi-
neering methods. In this approach signalling, metabolic
or gene regulatory pathways are inferred from exper-
imental data (Basso et al., 2005). A method that is
often used, for instance, is a knock-out experiment in
which (the functionality of) a gene is removed. In this
way biologists try to deduce the connectivity and func-
tion of individual genes. Current in silico modelling
efforts focus mainly on incorporating as much data as
possible for constructing accurate and detailed mod-
els (e.g. Tomita et al., 1999; Snoep and Westerhoff,
2004). Especially high-throughput experiments provide

0303-2647/$ – see front matter © 2007 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2007.02.002



Author's personal copy

624 T.E. Pronk et al. / BioSystems 90 (2007) 623–635

so much information (though still incomplete) that it eas-
ily becomes overwhelming when attempting to analyse
and interpret these data.

With the increase in data availability a different
approach becomes viable: one in which the system is
analysed top-down on different scales of detail in order
to reduce complexity. This concept is frequently used
in systems engineering. Another well-known concept
in systems engineering which can be especially use-
ful is that often more is learned about existing system
architectures through an attempted redesign than through
analysis alone (Simpson, 2004).

Computer systems are engineered systems that share
many features with living cells (as we will argue). An
interesting feature of computer systems in general is
that, although they are complex, just as any cell is, they
are highly specified and their behaviour can be effec-
tively characterized, at least on low levels of abstraction.
For cellular systems this is not possible as yet (see
also Lazebnik, 2002, for a discussion on this subject).
It may not simply be the lack of data that inhibits
major advances in cell research, but also the lack of an
appropriate modelling framework (Paton, 1993). A for-
ward engineering framework could help cellular systems
research a step further.

One of the first stages in the forward engineering of a
system is the exploration of the design space. The design
space is the total of options of possible components
needed to perform tasks that make the system func-
tional, and their specific wiring. For computer systems
this can be defined as a multi-dimensional, often discrete,
space defined by alternatives for allocating resources
and binding functionality to resources. For biological
cell systems, there are also many different alternatives
to perform a given task or function and it is often not
clear why one particular option was adopted rather than
another. For instance, in Eukaryotic cells, there are three
types of RNA polymerases whereas in Prokaryotic cells
there is only one type that takes care of transcription
of genes (Alberts et al., 2002 pp. 309). This could have
consequences for the efficiency of this process. Another
example is the synthesis of a particular transcription fac-
tor complex which can be synthesised by 50 systemically
independent pathways (Papin and Palsson, 2004).

We believe that the most promising methods for
design space exploration that can be applied to cellular
systems are those developed for a specific kind of com-
puter system: embedded systems (Wolf, 2001) (see Box
1 for an explanation of these systems). Specifically, this
is because embedded systems share some key global fea-
tures with cellular systems. The most important feature
is that an embedded system has strict trade-offs between

Box 1. Embedded system
Embedded systems (Wolf, 2001) are com-
puter systems ‘embedded’ in specific
devices such as remote controls, tele-
phones (Fig. 2) and vehicles. In contrast
to general purpose computer systems,
embedded systems perform predefined
tasks. An embedded system thus has a
specific purpose, and it controls surround-
ing components to perform the tasks it is
intended for. Another feature that distin-
guishes embedded systems from general
purpose computers is that they deal with
the physical world, so they have temporal
constraints. In other words, they usually are
real-time systems. Because of this feature,
the time behaviour (e.g. ‘open landing gear
before touchdown’) of their response to
stimuli may be as important as the correct-
ness of the response (Hylands et al., 2003).
Embedded systems need to cope with mul-
tiple inputs and outputs. More and more
frequently, embedded systems are com-
posed of systems on chip (SoC). These are
intricate networks of components (proces-
sors and memories) that allow for parallel
computing, making the system fast and
(power-) efficient.

performance, power, cost, and flexibility of the system
(Vahid and Givargis, 2002; Gries, 2004; Pimentel et al.,
2006). By this, we mean an increase in one of these char-
acteristics will go at the direct expense of (one of) the
other characteristics. There is a strong selection on all
of these characteristics, created by the fierce competi-
tion for a share on the customer market. As a result of
the different trade-offs, the embedded systems engineer
has many components at his disposal (e.g. number and
type of micro- or dedicated processors, hard- or soft-
ware components, input/output devices and memories)
(see top part Fig. 2), which possess different combina-
tions of the trade-offs that suit the intended function.
This results in a heterogeneous architecture where many
different types of components must interact to create a
functioning system. This heterogeneity in components
is comparable between cellular and computer systems
(Fig. 1).

The multiplicity of components and also their dif-
ferent wiring possibilities cause a myriad of possible



Author's personal copy

T.E. Pronk et al. / BioSystems 90 (2007) 623–635 625

Fig. 1. Both cells and embedded computers are heterogeneous sys-
tems, consisting of different types of components that have to work
together. Where possible, components with similar functions in both
systems are put in the same location in the figure. ‘Organelles’ and
‘Processors’ can be seen as structures performing tasks. ‘Software’ and
‘Genome’ are the places where application is programmed. ‘Energy
and Transport’ and ‘Auxiliary systems (power, cooling)’ are the ele-
ments that make it possible for the system to function. ‘Central
Processing Unit’ and ‘Networks’ take care of the regulation of actions
of the system. ‘Sensors, Signals, Actuators and ‘Digital to Analogue’
converters interact with the external environment. ‘Robustness’ and
electromechanical backup and safety’ are all components to make the
systems reliable and robust. Top part adapted from Koopman (1996).

designs (see Fig. 2 for an example). To model the con-
sequences of each and every possible design would take
much time and effort. Somehow, the engineer must be
able to scan a design space quickly and distinguish the
most probable designs with a minimum of effort. As this
problem of design space exploration is central to the
embedded systems engineering domain, sophisticated
modelling tools that facilitate this have been developed.
Embedded systems are designed with the help of specific

model(s) of computation that describe the behaviour and
the interaction of the heterogeneous components.

For systems biologists similar design space explo-
ration tools could speed up the understanding of
underlying mechanisms of the design of cells. Of course,
it is a fact that there are lots of physical differences
between cellular and computer systems (Paton, 1993).
These make that engineering methods for computer sys-
tems cannot be translated one-to-one to cellular systems.
Establishing and describing fundamental differences and
similarities of computer systems and cell systems will
help to pinpoint the exact problems and possibilities for
the use of methods from computer systems design in the
understanding of cellular systems, and vice versa.

What is promising is that computer scientists are turn-
ing to biology to see how certain problems (adaptability,
flexibility) are dealt with, and apply these solutions to
computer systems (e.g. Yao and Higuchi, 1999). The
future computer aided design (CAD) tools for computer
engineering (Bryant et al., 2001; De Micheli, 1994) will
have to deal with these new developments. This could
mean that these tools will be increasingly suitable for use
in the evaluation of design of biological systems in years
to come. In the remaining text, when referring to CAD
tools we mean those intended for (embedded) computer
engineering.

In this paper, we argue that methods from the field
of computer engineering can be used as an alternative
framework to evaluate the architecture and functioning
of cellular systems. We will highlight the similarities
and differences between computer systems and cellular
systems and also indicate the potential of using an engi-
neering approach, such as used in (embedded-) computer
systems design, in addition to the widely used deductive
methods of cell biology.

2. Similarities and dissimilarities between
computer systems and living cells

Computers and cells are arguably similar in many
aspects. However, a computer circuit can be understood
by any computer engineer, whereas the workings of a cell
are still largely unknown (Lazebnik, 2002). Does this dif-
ference reflect a fundamental difference in the design of
cellular systems and computers, or is it merely a reflec-
tion of the methods that researchers have deployed? It is a
fact that both systems are investigated in opposite direc-
tions: whereas computer systems are assembled from
scratch to create function, a cell is already functional and
is disassembled to find where function originates from
(Fig. 4). The latter is profoundly more difficult: an engi-
neer is as unlikely to derive the exact circuit diagram of an
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Fig. 2. Two possible instances of an embedded system. Left part: favorable with respect to cost. It has few components, two of which are cheap
general purpose processors (CPU’s). Right part: favorable with respect to power consumption and performance. It has two (partly-) dedicated
processors (ASIC and DSP) and a reconfigurable processor (FPGA), all with low energy consumption. MEM: memory, CPU: central processing
unit, ASIC: application specific hardware, CAN/PCI-bus: line of transport for information, DSP: digital signal processor, FPGA: field programmable
gate array. Figure taken from the Locopos site: http://www.ecs.soton.ac.uk/∼ms4/lopocos/lopocos index.html.

unknown microprocessor component simply by correlat-
ing its outputs with its inputs as is a biologist to derive a
network by the same method (Hartwell et al., 1999). On
the other hand, the way in which computer systems are
studied nowadays is in general very similar to the way
complex biological cell systems are studied in general.
In both fields, modelling is used to generate hypotheses,
with (in silico) experiments and fine-tuning and valida-
tion on the basis of those experiments (Priami, 2004).
Usually for biological systems (stochastic) average case
models are used with average parameter settings. In CAD
tools, worst case analysis (e.g. Jayaseelan et al., 2006)
often is the focus of researchers, especially for hard-real-
time embedded systems. This is because every individual
system should function well, also under extreme circum-
stances. In the future, this can be used for engineered
(in opposition to evolved) biological systems which in
general also have to comply with such reliability issues.

Many authors hint at the conformity between cells
and computers by comparing the electrical circuitry
in computer systems with regulatory networks in cells
(Savageau, 2001; Hasty et al., 2002; Kaern et al., 2003).
There are, however, other useful parallels to be drawn
between computer and cellular systems that illustrate
the potential of applying computer-based engineering
methods to study cellular systems.

2.1. Basic components

Although engineered computer systems and naturally
evolved cellular systems are of different origin (pur-

posely designed versus created by unintentional forces),
there are many analogies between the two in terms of
basic building blocks. If we consider a computer sys-
tem in a classical (von Neumann) (Godfrey and Hendry,
1993) architecture, it consists of a memory for stor-
ing information such as instructions and data, a central
processing unit (CPU) that executes instructions like
computations, and a device that connects the different
parts; the data bus. Information exchange with the envi-
ronment comes from input and output (I/O) units. In
Fig. 3, we compare these major components of a com-
puter system to components in a cellular system.

One functional analogy between cellular and com-
puter systems is the fact that both systems store

Fig. 3. Analogies between a computer (left part, from Williams, 2001)
and a cellular system (right part). Interrupt request:
Fetch-execute cycle: ‘I/O units’ and ‘Receptors’
communicate with the external environment. ‘CPU circuitry’ and ‘Cell
Networks’ take care of the regulation of actions of the system. ‘Mem-
ory’ and ‘Genome’ store information. In the fetch-execute cycle, the
pieces of information that are transported are electrical pulses from cer-
tain locations in the memory in computer systems and proteins stored
in cell compartments in cellular systems. Interrupt requests come from
the external environment in both systems.
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information (Fig. 3). Where computers store their infor-
mation with sequences of 1s and 0s in the memory, cells
primarily store their information in the genome in lin-
ear sequences of four different types of monomers: A,
T, C and G (Alberts et al., 2002). In a way, cells are
even more efficient in storing information than comput-
ers. Whereas computers will be able to store 1 kilobyte
of memory on 2 �m2 of silicon, cells can fit a chro-
mosome of 4.6 million base pairs in 2 �m2, capable
of storing some 9.2 megabyte of information (Simpson
et al., 2004). On the other hand, the memory in cells,
apart from mutations, is static (read only) and com-
paratively slow to read out because of time-consuming
transcription and translation processes, whereas com-
puters possess a flexible memory (information can be
read from, and written to the memory) with much more
effective read out. It depends on the viewpoint whether a
cell or a computer is superior with regard to information
storage.

Perhaps the most remarked-upon analogy in scien-
tific literature is that networks within cells are roughly
comparable with the logic in the CPU circuitry within
computer chips (Fig. 3). In both electronic networks and
cellular networks many functional circuits can be identi-
fied, such as feedback loops, memory devices, switches,
threshold control, noise mitigators, etc. (Savageau, 2001;
Hasty et al., 2002; Kaern et al., 2003). The biological
version of circuits may be the more versatile of the two
because there are many varieties of biomolecules, each
with slightly different traits, which shape part of a circuit
(Paton, 1993).

Transport of information (sequences of 0s and 1s) in
computer systems is handled by communication media
such as buses. In cellular systems the means of trans-
port of information (e.g. proteins) comprises diffusion
or directed transport by vesicles or carrier proteins. An
electronic circuit has information that is represented by
charge carriers, processed by the control of transport
between circuit nodes. Electronic circuit nodes must be
physically isolated to prevent uncontrolled transport of
information from one node to the other. In contrast, iso-
lation of molecular nodes in cellular systems is achieved
by chemical specificity (Simpson et al., 2004). In the case
of signal transduction via diffusion, the chemical poten-
tial (concentration) in cellular systems can be seen as an
analogue to electrical potential between circuit nodes.
Molecular concentration is, thus, the analogue of volt-
age, while synthesis, decay and molecular conversion
are the analogues of current (Simpson et al., 2004).

Rather than regarding the whole cell as a machine,
particular molecules can be regarded as separate
machines that are capable of making computations.

Especially DNA computing is a topic of research. Spe-
cific cases may be solved much more efficiently with
DNA than with a traditional computer, we refer to
Adleman (1994) for an example of such a case. Aside
from the above mentioned examples, Paton (1993) also
discusses other examples of (macro-) molecules in a cell,
which can be viewed as computing machines.

2.2. Organization

The general principles that drive the design of both
systems also share similarities. Just like computer sys-
tems, cells have been designed, although by evolution
rather than on a drawing board. Both systems are shaped
by optimisation of function. More precisely, biological
systems are shaped by selective forces in the environ-
ment, computer systems by the selective forces of human
demand. When optimising function, both systems are
subject to trade-offs. The trade-offs in building com-
puter systems are among others: power consumption
of the system, costs of components, and speed of the
system to perform the tasks that it was built for (Vahid
and Givargis, 2002; Gries, 2004; Pimentel et al., 2006).
In cells, trade-offs are comparable, e.g. energy require-
ment, building blocks such as metabolic compounds or
minerals, and speed, for instance, to perform reactions or
reproduce. In cells these trade-offs will have caused sys-
tems to evolve in different directions, depending on the
environmental stresses. For instance, a cell might evolve
to process matter quickly but have a high energy require-
ment, whereas in sparse environments it might evolve to
be energy efficient but slow in the processing of matter.
This will be effectuated with specialized components,
just as in computers.

In computer systems, there are generic (processing)
components that are shared for the processing of a wide
range of applications. On the other hand, for instance,
a discrete cosine transform performed by a dedicated
hardware component is less universally applicable. A
process that operates in a broad context in a cellular
system is, for example, a multi-target regulation mecha-
nism such as carbon catabolite repression. In contrast, a
process that is very specific and applicable within a nar-
row context is a process like the induction/repression of
individual pathways by their cognate substrate/product
(Stelling et al., 2004). For both computer and biological
systems will apply that components used for general pro-
cesses can be expensive whereas components for specific
processes must be cheap when they are less often used.
These design options in cellular systems could possi-
bly be modelled with design methodology for embedded
systems (Edwards et al., 1997; Wolf, 2001; Gries, 2004).
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Fig. 4. Differences between the forward (computer system, left part of the figure) and the reverse (traditional biology, right part of the figure)
engineering approach. Left part: for computer systems, the system is first specified at abstract level. At this level the alternatives in specifications
are relatively few (top of the triangle). Possible implementations can be any on the bottom of the triangle. As the specifications are further refined
to be accurate on the clock cycles of the computer and to register transfer level (RTL) models (these are implementable in hardware), the design
space for implementations (bottom of the triangle) decreases in size, until the specification is so detailed that it represents a single implementation
(black dot). The path shown is one possible design trajectory towards such a specific implementation. Right part: for biological cell systems, the
specific design (black dot) is the starting point and scientists try to derive the function of separate components by assessing their influence on higher
level system function, for instance by inactivation or manipulation (indicated by the red cross). For abbreviations, see Fig. 2. Figure adapted from
Pimentel et al. (2001).

In computer-engineered applications, design is gen-
erally carried out in an hierarchical or ‘nested’ fashion.
This means that the behaviour of a system at a certain
level is modelled and then refined to involve proper-
ties of lower space- or timescales (Edwards et al., 1997;
Lauffenburger, 2000) in a top-down approach (Fig. 4).
Because experimental studies performed on cellular
systems typically provide information at many levels,
the hierarchical representation of process knowledge is
also important for the understanding of cellular systems
(Peleg et al., 2002).

In engineering, understanding complex electronic
networks is further facilitated by analysing them within
a modular framework (Nasi, 2004). Modules in the
computer-engineering domain nowadays are the IP
(intellectual property) blocks: components such as co-
processors or programmable microprocessors, manufac-
tured by independent companies. They are ready-made
standardized components. An IP block performs a par-
ticular task that can be very specific (e.g. decoding an

MPEG video stream). The IP blocks have identifiable
interfaces that enable them to be integrated easily in a
system. Modularity also appears to be a feature of bio-
logical cell systems (Hartwell et al., 1999, Lipson et al.,
2002). Modules can be defined as networks of molecules
(protein, DNA, RNA, small molecules) that perform a
given function largely independent of the context and
that have identifiable interfaces to other modules (Csete
and Doyle, 2002; Stelling et al., 2004; Alberghina et al.,
2004; Hartwell et al., 1999). The isolation of modules
to ensure their independence can be achieved in sev-
eral ways. For instance, a ribosome acts to concentrate
the reactions involved in making a polypeptide. A sig-
nal transduction system achieves its isolation through
the specificity of initial binding of the chemical signal
to receptor proteins and interactions between signalling
proteins within a cell (Hartwell et al., 1999). This said,
although examples of modules in biological systems are
plentiful, they are in general harder to define because in
these systems they usually are highly linked (Papin and
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Palsson, 2004). In a practical sense, a high connectiv-
ity might make it difficult to analyse what a differential
activity of a highly linked module means for the whole
system. This might be a factor that makes cellular sys-
tems more difficult to analyse than computer systems.

Especially the view of the system as being hierarchi-
cal and modular in general helps to reduce complexity
and therefore is useful for increasing the understanding
of both cellular and computer systems (Alberghina et al.,
2004).

2.3. Complexity

It might be that computers are less complex than cells,
which makes computer systems better analysable than
cell systems.

We can distinguish two kinds of complexity. Com-
plexity may lie in the amount of detail; this is when
there are many variables. It may also lie in the dynam-
ics, which is the case in situations where cause and effect
are subtle, such that the effects of interventions over a
period of time are not obvious. Both types of complexity
apply to cellular as well as to computer systems. Never-
theless, in computers, although effects are sometimes far
from obvious, the functional behaviour can be fully anal-
ysed at various abstraction levels (Fig. 4), provided that
computational power is sufficient. For cells this proves
difficult, this could be caused by a number of factors.

Firstly, the functional behaviour of computer systems
is easier to analyse as a result of having only a few non-
linear relations between modules. This is simply because
they can be – and are – omitted at construction. Nev-
ertheless the performance (for instance the execution
time) behaviour needs not be linear at all. In cellular sys-
tems there is no such ‘omniscient power’ that makes this
type of conscious decision of linearity to ensure func-
tional simplicity. On the contrary, cellular systems are
renowned for their non-linear behaviour (Bruggeman et
al., 2000) although processes have been reported that
do enhance linearity between modules (Ihmels et al.,
2004). Also crosstalk between modules is a problem
because components made in one module may inadver-
tently influence the functioning of another module when
it is used in both (Papin and Palsson, 2004). This makes
the behaviour of cellular systems less predictable and
testable. Interestingly, future CAD tools will have to deal
with many of the same problems as the biology domain
in terms of coping with crosstalk and reliability. Because
computer systems become smaller and smaller, deep sub-
micron (DSM) effects take place (Bryant et al., 2001).
For instance, because of the proximity of transistors leak-
age of electrons can take place between neighbouring

transistors (crosstalk). Also because the voltage dif-
ference between 0 and 1 diminishes, soft errors may
occur by passing electrons. The biology and informat-
ics domains can combine their expertise to solve such
problems.

Secondly, much of the complexity of cells stems from
redundancy and repair mechanisms that exist to cope
with failure of its components. Although only a few hun-
dred genes are essential for the basic functioning of E.
coli, in reality it has about 4600 genes. This results in
extra complex networks that may be intended to ensure
robustness (Csete and Doyle, 2002). Attempts of cellu-
lar systems to reduce the frequency of failure probably
cause much of the complexity of networks (Hartwell et
al., 1999). In cells, components are broken down and
constructed constantly (see Box 2 ), making them tar-
gets for mistakes every time. As an example, during the
synthesis of mRNA from DNA 1 in 2000 amino acids
is misread. About 1 in 3000 times, misread amino acids
lead to the abortion of synthesis of the protein. As a
result 1 in 12 proteins of a length of 500 amino acids
remain carrying a flaw (Goodsell, 2000). Computer sys-
tems do not dynamically construct physical components
and hence do not have to cope with such mistakes. In gen-
eral, errors occur more often in the mechanical parts of
computer steered systems than in the electrical circuitry.
There are few failures of data transmissions or software
executions that cannot be fixed simply by resetting the
system, hence restoring its flow.

Thirdly, a cell must be able to respond to a myriad
of perturbations from the outside environment and at the
same time remain functional (Csete and Doyle, 2002).
This kind of robustness is a key feature of biological cell
systems (Stelling et al., 2004; Csete and Doyle, 2002;
Kitano, 2002). A system is said to be robust if it is insen-
sitive to the exact values of its biochemical parameters
(Stelling et al., 2004; Alberghina et al., 2004). To ensure
robustness, a module within a cell must be extended to
accommodate, for instance, transport, and re-oxidation
and feedback control. In computer systems, perturba-
tions are less diverse. Therefore less protection needs
to be incorporated in the design of computer systems
and these systems can suffice with less complexity. Of
course, the measure of robustness for computers will
depend on their application. An airplane will have more
fault-tolerance mechanisms to ensure robustness than a
telephone.

2.4. Optimality

Another fundamental difference between biological
and engineered systems lies in the concept of optimal-
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Box 2. Biological cell system
A cellular system can be seen as a chem-
ical factory. It takes in matter from its
surroundings and uses it to make copies
of itself (Alberts et al., 2002). A cellular
system can exist consisting of several (dif-
ferentiated) cells or exist as a single cell
organism. An individual cell consists of
a cell membrane that works as a barrier
to the environment. Within the membrane
there are molecular machines that carry out
processes such as transport, energy con-
version, storage, etc. Nearly all reactions
within a cell are performed by proteins,
which are encoded in the form of genes.
Even a simple cell can exhibit thousands of
different reactions. A typical cell contains
more than 30.000 different proteins and
large number of small molecules (Alberts
et al., 2002). Specific parts of the cell (e.g.
proteins, metabolic compounds, etc.), are
replenished constantly or are newly pro-
duced in reaction to the environment by the
system itself during its lifetime. This regula-
tion of the internal state of the cell is done
by several networks, which are organized
into (more or less) separate functional mod-
ules (Csete and Doyle, 2002; Alberghina et
al., 2004):

- Signal transduction networks (from sig-
nal to action)

- Gene expression networks (from gene to
protein)

- Metabolic networks (from nutrients to
building blocks)

- Energy conversion networks (often a part
of metabolic networks)

Normally, a biological cell system orig-
inates by evolution. Recently, however,
there has been a development towards
synthetically altering and designing cells
(Simpson, 2004; Endy, 2005).

ity. The essence of computer engineering is the capacity
to engineer circuits that transform information from one
form to another based on a set of rules. For individual
engineered systems, the objective is to optimise and orga-

nize the functioning of the system directly with respect
to one (or more) specific task(s) (Vilarroya, 2002) which
is a multi-parameter optimisation problem. In biological
cell systems, natural selection results in the emergent
objective of a design that gives the highest fitness, i.e. a
design that enables the organism to leave as many copies
of itself as possible over time (or at least more than its
direct competitors). In other words, the objective is the
survival of the line. This implies that, in order to under-
stand the full function of modules in nature (e.g. for a
frog: a tongue to catch flies), we may require a mea-
sure of their effect on reproductive ability (Hartwell et
al., 1999). The ultimate objective of a biological sys-
tem thus is several degrees separated from the function
of individual modules, whereas the modules in an engi-
neered system contribute more directly to the objective
function (Vilarroya, 2002). For biological cell systems
this makes it more difficult to evaluate the functioning of
individual components to execute a certain task, in terms
of their efficiency.

Recently, however, computer systems also have to
comply with new design goals such as flexibility and
ease-of-deployment that cannot be quantified as easily.
Expression in an objective function is difficult in this
case, just as it is for biological systems. Future CAD
tools will have to address these problems.

2.5. Adaptability

Events within in a cell are often stochastic, mean-
ing that there is always a certain chance that an event
(e.g. an enzymatic reaction) occurs, based for instance on
the concentrations of involved compounds. This makes
events and processes unreliable. Also fuzzy, probabilis-
tic intermediates need to be refined first to give unique
solutions. This is done by error-detection and error-
correction mechanisms that work with ’trial and error’
events. This can be seen as a design principle, especially
suitable for modifications on evolutionary timescales
(Hartwell et al., 1999). In computers, these phenomenon
are not widely applied.

Another aspect of biological cell systems is that the
problems that need to be coped with are often ambiguous
(Diorio and Rao, 2000). Typically there is a lot of noise
in the signals within cellular systems, so that continuous
adaptation is needed to cope with problems. Further-
more, a cell can adapt to a change in circumstances. For
instance, a cell can adapt its metabolism to the available
substrate, but this works only if the transition from one
substrate to the other is gradual because it takes time for
a cell to become fully adapted. This design principle is
not yet widely used in engineered computer systems.
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Instead, in computer systems, behaviour is designed
beforehand to cope with certain problems in a static way:
it can either cope with certain problems or it cannot.
This makes the behaviour more predictable and hence
easier to analyse. In accordance with the differences in
adaptability, computers are superior in fast calculations
of large tasks, whereas cellular systems are superior in
energy efficient processing of ill-posed problems (Diorio
and Rao, 2000).

Nevertheless, in computer systems there is an
increasing need for higher flexibility. Reconfigurable
components are developed using, for example, field
programmable gate arrays (FPGA) (Yao and Higuchi,
1999). This makes computer systems adaptable to dif-
ferent circumstances as well. This leads to so called
evolvable computing. Future CAD tools will have to
cope with such new design requirements and might
therefore become increasingly suitable for evaluating
biological systems.

3. An embedded systems’ engineering approach
to understand cellular systems

So far we have discussed general features of cells and
computers. The similarities between both systems sug-
gest that methodology for the evaluation and design of
computer systems can be applied to cellular systems. An
engineering approach for cells might give new insights
and better understanding of cellular systems. We will
now specifically discuss methods for the design space
exploration (Edwards et al., 1997; Pimentel et al., 2001;
Gries, 2004) of embedded systems (see also Box 1) and
their useful features.

3.1. Useful features

Firstly, embedded computer systems are almost
always evaluated beforehand by top-down engineering
approaches (Pimentel et al., 2001) rather than after-
wards with bottom-up reverse engineering approaches,
such is currently mostly the case with cellular sys-
tems (Fig. 4). In a top-down approach, the most basic
traits of components are taken into account, defined by
some rough parameter specification. This means that the
more detailed and complex behaviour that takes place at
lower levels of abstraction is disregarded. This black-
box method is very fast for roughly determining the
basic design options. After determining the basic design
options, refinements can be done to analyse the system in
more detail (Edwards et al., 1997; Pimentel et al., 2006).
The top-down approach enables working with gaps in
the knowledge, or with components that are not fully

specified. In cells, a top-down approach can be used,
for instance, to omit the complex (and often unknown)
kinetics at detailed cellular level (Brand, 1996).

Secondly, aside from working at different levels of
hierarchy and abstraction, partitioning the system in
different domains to study different aspects of the sys-
tem is an approach used in embedded system design to
reduce the complexity of a system (Jantsch, 2004). For
instance, in computer systems engineering, separation
of concerns is a principal concept. It is a much-used
procedure to separate function (application) from archi-
tecture (the task-performing modules) (Keutzer et al.,
2000; Pimentel et al., 2006). With separation of appli-
cation and architecture, the architecture blocks can be
interchanged while the application remains unaltered
(Pimentel et al., 2006). This trait enables the programmer
to change architecture independently from the functional
application, reducing programming time. So, only a part
of the system needs rebuilding when a designed system
functions sub optimally, rather than the whole system.
Also, computation (within modules) can be separated
from communication (between modules) in embedded
systems (Keutzer et al., 2000). IP blocks are engineered
to perform a particular procedure and have identifiable
interfaces. If the blocks are connected, communication
between the blocks can take place. This communication
is separate from the computation that occurs within the
IP blocks and this increases their reusability. The sepa-
ration of concerns can help for instance with the design
of organisms with pharmaceutical or industrial applica-
tions. The field of synthetic biology (Endy, 2005) might
facilitate this as we expect this field to provide clear-
cut functional modules (Benner and Sismour, 2005)
that can be seen as separate biological IP blocks. The
field of synthetic biology aims at designing well-defined
and functional modules, for instance by including those
components that are needed for a particular task, thus
omitting extra functionality for coping with various
stresses which would be present in naturally evolved
cells.

The functionality of an embedded system can be
captured using a variety of conceptual specification mod-
els (Edwards et al., 1997). As result of separating a
system in different domains (e.g. time, computation,
communication between processes, and data) different
models may be appropriate for the separate domains.
Consequently, the focus in embedded systems design has
been on coupling of heterogeneous models (Eker et al.,
2003; Hylands et al., 2003; Jantsch, 2004; Pimentel et
al., 2006). In biology, a similar development has taken
place. In attempts to cover a whole cell, different data
is generated (proteomic, metabolomic, transcriptomic,
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and genomic data) which, for an overall understanding
of the system, will have to be integrated. Especially in
the embedded computer systems community the inte-
gration of heterogeneous information is more advanced
and expertise and models from this field may be used for
integrating the data of cellular systems.

Lastly, the most useful models of computation
(Edwards et al., 1997) for embedded systems handle
concurrency (the execution of multiple processes or
operations simultaneously) and time, because the tim-
ing behaviour of the system is very important and
components need to synchronize with each other and
with the environment (Box 1). Where possible, con-
currency in the embedded systems (as it would in any
system) significantly increases the speed of the sys-
tems. This is relevant because embedded systems are
usually real-time systems (see Box 1 for an expla-
nation). The living cell is also a real-time system.
Given the similarities between computer and cellular
systems, the above mentioned methods and models of
computation might be applied to modelling cellular
systems.

3.2. Possible general applications

Applying methods for design space exploration of
embedded systems to cellular systems might give new
insights into design options of cellular systems. There
are a few characteristics that a biological system must
comply with for it to be purposely modelled by design
space exploration methods. Sesame (Pimentel et al.,
2001, 2006), for instance, can be used to evaluate
designs for timed information processing systems. This
excludes static designs such as protein shape, or design
for mechanic properties such as rigidity but includes all
process based functions. The evaluation of the design
is in principle on the basis of efficiency in performance
(how fast does a particular design perform the specified
functions). However, other objectives can be included
such as cost or power efficiency. Rather than striving
for maximal fidelity to the actual present system, the
design methods of embedded systems will generate null-
hypotheses and mechanistic explanations on phenomena
that would otherwise be difficult to derive from the
complex interactions within the living cell. These will
have to be confirmed with in vivo experiments. In the
cases where in silico engineered systems can be repro-
duced in vivo, it is important to keep in mind that if
model predictions deviate from the real-life measure-
ments, this may indicate a gap in our knowledge. This
will provide guidance for future experimentation (You,
2004).

An engineering approach, e.g. looking at the design
options of cells, can be an appropriate method to con-
tribute to the following issues:

1. Putative design options. For both cellular and embed-
ded systems there are many design options that
could yield a required functionality. In cells, it is
often difficult to see why one particular implemen-
tation was adopted rather than another, seemingly
equally appropriate alternative. As in design space
exploration methods for embedded systems, there are
possibilities to evaluate these options, and adopting
such a system engineering approach will be useful for
addressing such design issues in cells.

2. Address ‘white spots’ in cellular architecture. A top-
down engineering method can be used in embedded
systems to account for components that have not yet
been identified, e.g. to determine candidate compo-
nents by the restrictions and specific demands of
the existing architecture. Filling of these gaps in
our knowledge will be simplified by the introduction
of abstract components that can be filled in and/or
refined at a later stage of development.

3. Evaluate existing architectures of cellular systems
on their optimality (e.g. is the configuration as we
expected?). We could evaluate the robustness and
fragility of a system in terms of bottlenecks and over-
loads and pinpoint the level at which the problem
occurs (energy, communication, etc.). Additionally,
the architecture can be evaluated on its ability to
cope with different requirements or environments.
For instance, how does a different connection (e.g.
rewiring) between different modules affect behaviour
and architecture of cells (Hartwell et al., 1999). When
we compare different architectures with the actual
implementation in cells, it can help us elucidate past
evolutionary pressures.

4. Design parts of a cell or specific cellular mechanisms
can help in identifying which components are essen-
tial for performing a task or function. The rest of
the components in the real organism can be consid-
ered excess, for instance to ensure stability of output
(Vohradsky, 2001).

5. Study the amount of parallelism in cells. Parallelism
is an important feature of biological cell systems as
well as computer systems (Paton, 1993). We can con-
sider one of the core processes in cellular functioning:
the expression of genes. The expression of genes is
a highly parallel task. From one gene copy, several
mRNA strings can be made in parallel and from each
separate mRNA string; several proteins can be made
in parallel. For performing such highly parallel tasks
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either one component must be able to process them in
parallel, as often processors in computers do, or there
must be several of the same components that work
simultaneously. The latter option often has evolved
in biological cells. With methods originally devel-
oped for embedded systems we might calculate the
required amount of parallelism in a cell in addition to
finding the obligate sequential processes.

The methods and techniques used in the field of com-
puter architecture design will, ideally, help us focus
on understanding the design options and consequences
within a cell. We might be able to gain insight in the most
fundamental issues concerning cellular design. Tak-
ing into account restraints from available compounds,
energy and time limits, we can find and characterize the
best possible solution in terms of architecture for a given
task within a cell.

3.3. Example: a design space exploration approach
applied to cellular systems

As proof of principle, we demonstrate a possible
application of a CAD tool to a biological case. We model
a transcription/translation application using the Sesame
approach (Pimentel et al., 2001, 2006). The Sesame
approach is a specific example of a new and promis-
ing modelling framework from the computer engineering
domain. This framework is originally intended for
the exploration of design space of embedded systems
architectures early in the design phase (i.e. abstract exe-
cutable, see Fig. 4). We will shortly describe our ideas
in this paper rather than give an in-depth and technical
description.

In the transcription/translation application we have
the following task: produce a protein from a piece of
DNA strand. Suppose the protein consists of four iden-
tical parts. We could ponder about whether it is better to
have programs (a) or (b):

(a) Have one gene containing four identical sequences
parts, transcribe it once, and translate it once to the
protein.

(b) Have a short gene containing one part of the
sequences, transcribe it once, translate it four times
and merge the pieces later.

We model this problem in the Sesame framework.
An essential feature of the Sesame framework is the
separation of application (functionality, tasks) from
architecture (performing structures). During a simu-
lation, the application emits traces (that represent a

sequence of events) to the performing structures in the
architecture which simulate their timing consequences.
All traces combined represent the workload for the
architecture. In Sesame the events within the traces are
automatically scheduled in an appropriate order (i.e. to
avoid deadlock) to their performing structures by an
intermediate mapping layer. The amount and kind of
events in traces emitted by the application in our proof
of principle depend on the DNA sequence code that has
to be put to expression and the function description,
e.g. how many transcriptions/translations are needed.
These are given functions. Each task (i.e. trace event) is
performed by the architecture with a certain time cost
(latency). In the application layer we have the tasks
load/store ‘DNA’, ‘mRNA’, ‘ribonucleotide’, ‘amino
acid’ and an execute task ‘move along DNA’. Suppose
we would want to refine these tasks, for instance because
of renewed insights. The task ‘load DNA’ in the appli-
cation is left as it is. In the intermediate mapping layer,
the task is disassembled into sub tasks such as ‘form
holoenzyme’, ‘locate promoter’, and ‘unwind DNA’. At
the same time in the architecture layer we have per-
forming structures: one for all transcription tasks (named
‘RNA polymerase II’) one for al translation tasks (named
‘Ribosome’) and one for all tasks for the supply of amino
acids (named ‘tRNA’). These performing structures can
be refined to contain the different sub structures needed
to perform the refined tasks. In this way, the performance
of a structure can more accurately be determined.

Suppose we have a protein that consists of four iden-
tical subparts of three amino acids. Intuitively, case (a)
seems simplest. However, for case (a) the process takes
706 time steps, whereas the production of the protein in
case (b) was done in 406 time steps. We come to the con-
clusion that, given the architecture, the task in the format
(b) can be processed most efficiently. Mainly because in
case (a) many ribonucleotides have to be loaded in the
transcription in comparison with case (b) (this proof of
principle is not necessarily biologically realistic).

From another perspective, we derive from this proof
of principle that it is more rewarding to re-engineer
the performing structure ‘RNA polymerase II’ (be it by
evolution or synthetically) towards more efficiency espe-
cially in case (a) for it is the limiting factor: it takes about
75% of the total time of the process (results not shown
here). It would also be a candidate for refinement, to
see what stalls the performance most in this performing
structure.

To make design space exploration useful in general,
there should be alternative options in the system under
study to perform a certain task, with consequences for
the performance of the system, without the choice of per-
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forming structure having any effect on the application.
In this way, the best possible architecture for a given
(user specified) task or process within a cell can be found
independent from the task or process itself. In contrast
to embedded computer systems, in cells there is mostly
a tight mapping between application tasks and the com-
ponents that have to perform the tasks. Many tasks in a
cell thus must be performed by ‘dedicated’ components.
For instance, in cells, only RNA polymerase II is suitable
to perform the transcription of a gene to mRNA. Design
options, in this case, lie within the amount of RNA poly-
merase II or its location (e.g. cell compartment).

On the other hand, we do have tasks for which we
know alternative performing structures exist. One much
studied example is the different types of tRNA that can
be used in translation. Every of the 20 possible amino
acids that are present in living material is coded by a
three nucleotide long codon. Every amino acid is coded
for by one or several codons (Figure 6–50 in Alberts et
al., 2002). These codons have to be recognized by the
anti-codons of tRNA to supply the correct amino acid
to the growing chain of peptides. In different organisms,
there is variation in the amount and type of tRNA used
to perform translation. With a design space exploration
tool as Sesame we can hope to answer, for instance,
the following question: Given a gene expression pat-
tern, and given we know the behaviour of different
tRNA types, what is the tRNA population that will pro-
duce the requested proteins most efficiently (e.g. fastest,
cheapest)?

4. Conclusion

Between cellular and computer systems more analo-
gies can be made than merely the obvious similarity
between electrical circuits in computer systems and reg-
ulatory networks in cellular systems. The universality of
architectural features in computers and cells is an indi-
cation that the knowledge and expertise from large and
well-characterized non-biological systems can be used
to analyse and characterize cellular systems (Barabasi
and Oltvai, 2004). In computer systems design, there
are computer aided design (CAD) methods for quickly
reducing the design space and simulating and analysing
these complex systems. Especially the methods for
design of embedded systems seem appropriate for an
analysis of cellular systems design. This is because these
systems have to take different distinct trade-offs into
account that are taken care of by different types of com-
ponents, making them heterogeneous in nature, just as
biological cells. In addition, they are concurrent sys-
tems that operate in real-time and, just like biological

cells, they react to the physical environment. Impor-
tantly, future CAD tools will have to deal with much of
the same problems that now only apply to biological sys-
tems which will make them increasingly appropriate for
modelling cellular systems. We foresee that methods for
design and analysis of complex systems like embedded
systems will help scientists to unravel general princi-
ples that govern the structure and behaviour of cellular
systems.
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