
ARM-CO-UP: ARM COoperative Utilization of Processors

EHSAN AGHAPOUR, University of Amsterdam, Amsterdam, Netherlands

DOLLY SAPRA, University of Amsterdam, Amsterdam, Netherlands

ANDY PIMENTEL, University of Amsterdam, Amsterdam, Netherlands

ANUJ PATHANIA, University of Amsterdam, Amsterdam, Netherlands

HMPSoCs combine diferent processors on a single chip. They enable powerful embedded devices, which increasingly perform

ML inference tasks at the edge. State-of-the-art HMPSoCs can perform on-chip embedded inference using diferent processors,

such as CPUs, GPUs, and NPUs. HMPSoCs can potentially overcome the limitation of low single-processor CNN inference

performance and eiciency by cooperative use of multiple processors. However, standard inference frameworks for edge

devices typically utilize only a single processor.

We present the ARM-CO-UP framework built on the ARM-CL library. The ARM-CO-UP framework supports two modes

of operation ś Pipeline and Switch. It optimizes inference throughput using pipelined execution of network partitions

for consecutive input frames in the Pipeline mode. It improves inference latency through layer-switched inference for a

single input frame in the Switch mode. Furthermore, it supports layer-wise CPU/GPU DVFS in both modes for improving

power eiciency and energy consumption. ARM-CO-UP is a comprehensive framework for multi-processor CNN inference

that automates CNN partitioning and mapping, pipeline synchronization, processor type switching, layer-wise DVFS, and

closed-source NPU integration.

Additional Key Words and Phrases: Edge Artiicial Intelligence (AI), On-Chip Machine Learning (ML), Low-Power Design

(LPD), Electronic Design Automation (EDA).

1 INTRODUCTION

Heterogeneous Multi-Processor Systems on Chips (HMPSoCs) consolidate multiple processors, including Central
Processing Units (CPUs), Graphic Processing Units (GPUs), and Neural Processing Units (NPUs), onto a single
chip [14]. Figure 1 shows the RK3399Pro HMPSoC within the Rock Pi N10 embedded platform that exempliies
this consolidation. The RK3399Pro HMPSoC incorporates a hexa-core ARM big.Little asymmetric multi-core CPU,
a quad-core ARM Mali GPU, and a dedicated NPU. The ARM big.Little CPU consists of two core clusters: a
high-performance, high-power dual-core big CPU and a low-performance, low-power quad-core Little CPU.
The CPUs, GPU, and NPU all support on-chip Machine Learning (ML) inference using Convolutional Neural
Networks (CNNs) [25].
Figure 2 shows performance under single-processor inference tests conducted on the Rock Pi N10 embedded

platform. The igure shows that the big CPU or GPU can outperform the others in single-processor performance,
depending on the CNN. The Little CPU exhibits a comparatively lower but still noteworthy throughput. Therefore,
an embedded CPU is comparable to an embedded GPU in terms of performance and remains relevant for inference
in embedded platforms [27]. However, the single-processor performance falls short of meeting the minimal user
experience when running on the CPU or GPU alone [4]. Therefore, embedded applications require collaborative

Authors’ addresses: Ehsan Aghapour, e.aghapour@uva.nl, Informatics Institute, University of Amsterdam, Amsterdam, Noord-Holland,

Netherlands; Dolly Sapra, Informatics Institute, University of Amsterdam, Amsterdam, Noord-Holland, Netherlands, d.sapra@uva.nl; Andy

Pimentel, Informatics Institute, University of Amsterdam, Amsterdam, Noord-Holland, Netherlands, a.d.pimentel@uva.nl; Anuj Pathania,

University of Amsterdam, Amsterdam, Noord-Holland, Netherlands, a.pathania@uva.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1084-4309/2024/4-ART

https://doi.org/10.1145/3656472

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1145/3656472
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656472&domain=pdf&date_stamp=2024-04-08

2 • Ehsan et al.

DVFS

A53 Core A53 Core

A53 Core A53 Core

L2 Cache

DVFS

A72 Core A72 Core

L2 Cache

DVFS

Core Core

Core Core

L2 Cache

CCI Bus

DRAM

big CPU
Litle CPU

GPU

NPU

Fig. 1. An abstract block diagram of the RK3399Pro HMPSoC within Rock Pi N10 embedded platform.

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

20

40

60

T
h
ro
u
g
h
p
u
t
[F
P
S]

Little CPU big CPU GPU NPU (Non-Quantized) Theoretical Max

Fig. 2. Single-processor CNN inference throughput of diferent HMPSoC processors.

utilization of CPU and GPU to meet the requirements [1]. NPU can also provide a comparable non-quantized
inference performance. Combining CPU, GPU, and NPU for inference opens up possibilities for high-performance
inference, as shown by theoretical max in Figure 2.
We present the ARM-CO-UP framework that seamlessly integrates the NPU alongside the ARM

CPU and GPU in a single CNN inference binary. ARM-CO-UP creates a streamlined backend engine that
collaboratively executes inference tasks to minimize overhead. ARM-CO-UP framework builds on top of the
ARM Compute Library (ARM-CL). ARM-CL supports highly optimized single-processor CNN inference on ARM

CPUs or GPUs. ARM-CO-UP extends this default implementation to establish a multi-processor CPU-GPU-NPU
inference environment to ensure a comprehensive utilization of computational resources. ARM-CO-UP is the
irst open-source framework to cooperatively utilize ARM-based CPUs, GPU, and vendor-speciic NPUs without
the need for access to the source codes of their respective libraries. This innovative approach allows for a more
cohesive and streamlined computing environment.

Throughput and latency are the two preferred metrics for measuring the performance of CNNs [7]. ARM-CO-UP

supports cooperative CPU-GPU-NPU inference in Pipeline and Switch modes for improving CNN inference
throughput and latency, respectively. Pipeline mode inferences multiple frames simultaneously using a multi-stage
CPU-GPU-NPU pipeline to improve throughput. Switch mode inferences one frame at a time on either CPU, GPU,
or NPU but switches between them mid-inference depending upon the executing CNN layer to improve latency.
Another signiicant factor for CNN execution on embedded platforms is the power consumption incurred

during inference [17]. The ARM-CO-UP plays a pivotal role in enhancing the power eiciency of CNN inference
by supporting layer-level Dynamic Voltage and Frequency Scaling (DVFS). DVFS enables ine-grained control
over power consumption, optimizing resource utilization without sacriicing performance [8]. This capability is
crucial for eicient deployment of AI solutions in resource-constrained environments.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 3

Novel Contributions:We make the following novel contributions with the ARM-CO-UP framework in this
work.

• ARM-CO-UP allows for cooperative CPU-GPU-NPU CNN inference on edge devices in Pipeline and Switch
modes to improve latency and throughput, respectively.

• ARM-CO-UP automates CNN graph partitioning into sub-graphs and subsequent sub-graphs to processors
mapping at the granularity of CNN layers.

• ARM-CO-UP provide a model-independent implementation that facilitates adding new desired models. It
even works for models with complex graphs containing branching blocks and shortcut branches between
layers.

• ARM-CO-UP presents the APIs and command line options that enable setting the desired coniguration,
such as Pipeline or Switch mode, partitioning points, mapping to the processors, number of cores in CPU,
frequency settings of big and Little CPUs and GPU, host CPU for GPU and NPU devices, etc.

• ARM-CO-UP provides a ine-granularity proiler for layer-level proiling of CNNs for metrics like perfor-
mance, power, etc.

• ARM-CO-UP eases the integration of any new NPU without requiring its library source.
• ARM-CO-UP provides Python libraries that automate extracting parameters and splitting pre-trained models
based on desired partitioning points compatible with popular frameworks, such as TensorFlow, Cafe, Cafe2,
and Keras.

Open Source Contributions: The code for the ARM-CO-UP framework is publicly available for download at
https://github.com/Ehsan-aghapour/ARM-CO-UP under MIT license.

2 RELATED WORK

Multi-processor CNN inference is an active research area. Most existing works on the subject create a multi-
stage software pipeline [10, 18, 24, 29] between processors to improve CNN throughput. A software pipeline
provides a mechanism to trade of throughput with latency. However, a software pipeline inherently by design
cannot improve the inference latency. Some works attempt to improve latency by altering the underlying neural
network [21, 30] or searching for an appropriate neural network [16, 19]. However, our work is independent of
the software optimization endeavours. The primary focus of the ARM-CO-UP is to facilitate the cooperative and
eicient utilization of processors to perform inference. Furthermore, our work complements initiatives focused
on latency improvement through mapping optimization algorithms, such as searching for appropriate processor
switch points [1, 2].

Table 1 qualitatively compares ARM-CO-UPwith similar relevant frameworks for CNN inference on ARM-based
HMPSoCs. TVM [5] and ARM-CL [23] are the popular frameworks for high-performance CNN inference on ARM
CPUs. However, TVM and ARM-CL can only support one CPU at a time. Therefore, they under-utilize asymmetric
multi-core CPUs. ARM-CL also support GPU-only CNN inference. ARM-CL can also perform NPU-only CNN
inference using the ARM Vela compiler. However, ARM Vela only supports ARM NPUs such as ARM Ethos.

Authors of [24] introduce the Pipe-it framework based on the ARM-CL. Pipe-it creates a CNN inference pipeline
between Little and big CPUs of ARM big.Little asymmetric multi-core CPUs. It also uses CNN micro-benchmarks
to create model-based proiles for performance prediction. Similarly, authors of [3] introduce a framework called
PipeBert based on TVM. PipeBert also creates a CNN inference pipeline between Little and big CPUs of ARM
big.Little asymmetric multi-core CPUs. PipeBert primarily focuses on pipelined inference for BERT transformers
but also supports CNN inference. Authors of [11] introduce a framework called OmniBoost [11] based on ARM-CL.
OmniBoost supports a CNN inference pipeline between Little CPU, big CPU, and GPU.

The frameworks such asARM-CO-UP are inherently architecture-speciic.ARM-CO-UP focuses on generic ARM-
based platforms. Similar comprehensive CNN inference frameworks designed for other platforms, such as those

ACM Trans. Des. Autom. Electron. Syst.

https://github.com/Ehsan-aghapour/ARM-CO-UP

4 • Ehsan et al.

Table 1. ualitative comparison between diferent frameworks that support CNN inference on generic ARM-based HMPSoCs.

Framework CPU GPU NPU Pipeline Switching Layer DVFS Proiling
Symmetric Asymmetric

TVM [5] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ARM-CL + ARM Vela [23] ✓ ✗ ✓ ARM NPU ✗ ✗ ✗ ✗

Pipe-it [24] ✓ ✓ ✗ ✗ ✓ ✗ ✗ Model-level
PipeBert [3] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

OmniBoost [11] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

ARM-CO-UP ✓ ✓ ✓ ✓ ✓ ✓ ✓ Layer-level

for Nvidia [9] and Qualcomm [20], are complementary and hard to compare against ARM-CO-UP. Furthermore,
supporting multi-processor CNN inference [12, 20] for multiple networks is beyond the scope of ARM-CO-UP.
ARM-CO-UP also does not support conigurable CNN accelerators such as those based on Conigurable Coarse-
Grained Reconigurable Arrays (CGRAs) [15, 26] and Field-Programmable Gate Array (FPGAs) [22, 28]. Moreover,
ARM-CO-UP cannot distribute CNN inference workload across multiple HMPSoCs [6]. In future, we plan to add
support for transformer inference to ARM-CO-UP [3].

ARM-CO-UP operates independently of methodologies that generate schedules for executing CNNs on hetero-
geneous platforms, such as SLO-aware inference scheduler [20]. ARM-CO-UP’s primary function is to facilitate
implementation and performance evaluation of schedules. ARM-CO-UP is a valuable tool for any scheduler,
enabling performance assessment at intermediate stages that aid in optimal schedule development.

None of the frameworks above support both CPU-GPU-NPU pipelining or switching as ARM-CO-UP. Furthermore,

ARM-CO-UP is the only framework with ine-grained per-layer DVFS and proiling support and allows vendor-neutral

NPU integration in ARM-based HMPSoCs.

3 BACKGROUND

In this section, we delve into the foundational aspects of the ARM-CL framework, with a speciic focus on its
mechanisms for enabling eicient inference processing on edge devices. This exploration serves as a groundwork
to understand the subsequent advancements introduced with ARM-CO-UP.

3.1 ARM-CL Library

The ARM-CL library utilizes its API to deine a model architecture. Subsequently, based on the model, it employs
the backend context to create and run an equivalent graph on the target processor. The graph manager oversees
the graph coniguration and execution. Furthermore, the graph manager is responsible for loading the input data
and scheduling the workload functions on the target processor through its backend context. We delve next into
the fundamental components of the ARM-CL framework to provide a detailed exposition of its structure.

Network Architecture. ARM-CL APIs provide the mechanism to deine CNN model architecture. Using this
API, a user can deine speciic layers and their interconnections. The deinition starts with establishing a stream
for the sequential addition of layers. This stream includes a graph sub-structure whose tail the stream tracks
continuously. The stream generates a new node when an API adds a layer and attaches the node to the tail node
of the graph. Figure 3 shows a simple structure (Figure 3a) and its pseudo-code deinition (Figure 3b) in ARM-CL.

Graph. ARM-CL creates a graph corresponding to the desired CNN using its established network architecture,
where the primary nodes represent the CNN layers and the tensors represent the connection between the layers.
This representation encapsulates the architecture of the deined model and serves as the foundation for subsequent
processing and computations within ARM-CL. ARM-CL creates Const nodes and connects them to the primary
nodes for the trained parameters of a layer. ARM-CL considers the trained parameters of a layer (weights and
biases) to be the layer operands along with the inputs from the other layers. Figure 3c shows the equivalent graph

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 5

Input

C
onv 2

C
onv 3

C
onv 1

C
onv 6

Add 7

C
onv 8

C
oncat 9

FC
 10

O
utput

C
onv 4

C
onv 5

C
onv 0

(a) CNN structure

Stream main_stream;

main_stream << Input_Layer << Conv0 << Conv1 << Conv2;

sub_stream s1(main_stream); // Create substream (branch) from Conv 2

main_stream << Conv3;

sub_stream s2(main_stream); // Create substream (brach) from Conv 3

s2 << Conv4 << Conv5;

main_stream << Conv6;

main_stream << Add(main_stream , s2);

main_stream << Conv8;

main_stream << Concat(main_stream , s1);

main_stream << FC10 << Output_Layer;

(b) CNN Pseudo-code

Input Conv 0 Conv 1 Conv 2 Conv 3

Conv 6

Add 7 Conv 8 Concat 9 OutputFC 10

Conv 4 Conv 5
W

B

W

B

W

B

W

B

W

B

W

B

W

B W

B

W

B

(c) CNN Graph

Fig. 3. A sample CNN structure, along with its definition and graph representation in ARM-CL.

of the structure in Figure 3a. The graph contains the nodes and tensors that execute with ARM-CL. We display
only the primary nodes of the graph throughout the remainder of this paper for brevity.
Node. An ARM-CL graph comprises various nodes, where each node correlates to a distinct layer, with each

node type characterized by a speciic number of inputs and outputs. For instance, the Node łConv 3ž depicted in
Figure 3c represents the third convolution layer łConv 3ž shown in Figure 3a. Each node links with an associated
tensor for every input or output edge. The node executes its operation on the input tensors (operands) and
subsequently populates its output tensor.
Functions. ARM-CL implements multiple variants of functions for CPU and GPU processors for each node

type. The best function variant for a node depends on the sizing parameters of the node (inputs, weights, and
biases). It also depends upon the hardware speciication of the target processor, such as the capacities of cache
levels. ARM-CL implements essential deep-learning operations speciic to its corresponding node through core
kernels within each function. These kernels are designed for eicient execution on the CPU and GPU processors,
leveraging technologies such as NEON for the CPU and OpenCL for the GPU.

ARM-CL employs OpenCL for GPU functions by providing a comprehensive framework for implementing and
executing kernel functions on ARM GPUs. OpenCL excels in parallel computing for the complex calculations
typically handled by GPUs. ARM-CL, in complement, employs NEON for CPU functions in ARM architectures.

ACM Trans. Des. Autom. Electron. Syst.

6 • Ehsan et al.

NEON is a Single Instruction, Multiple Data (SIMD) Instruction Set Architecture (ISA) extension for high-
performance parallel processing on CPUs.

Edge. ARM-CL implements edges housing a tensor to connect the graph nodes. The edges facilitate the low of
data between nodes. Each edge has a source and destination node, with the source node populating the tensor
and the destination node accessing and utilizing the tensor as part of the overall computational low. ARM-CL

attributes the tensors of the Input, Output, and Const nodes to an accessor. The accessor is responsible for
loading and pre-processing the input data and the weights. Additionally, the Memory Manager of the backend
device is responsible for storing and managing the memory required for the tensor. Direct access to a tensor by
diferent processors is not always feasible due to variations in memory conigurations among processors.

Workload. ARM-CL creates a workload for the graph that loads the input data (image), executes the primary
node functions, and post-processes the output data to generate the prediction results. The function factory of
the backend device dynamically generates the most eicient function corresponding to each node based on the
sizing parameters of the layer (node) and the hardware speciications of the backend device, such as cache sizes.
The workload incorporates the accessors of Input and Output tensors, along with the graph functions.

Graph Manager. ARM-CL has a Graph Manager responsible for setting up the graph and executing the
workload. After graph generation, the Graph Manager selects the backend device, conigures the nodes, allocates
the tensors, and calls the accessor for Const tensors to load the weights and biases into the relevant processor
memory. Subsequently, the Graph Manager also manages the workload execution.
Scheduler. Within ARM-CL, there are separate CPU and GPU schedulers, each tasked with managing the

scheduling of work processes for their respective processors. These schedulers play a crucial role in orchestrating
the distribution of computational tasks, ensuring eicient parallel processing on both the CPU and GPU to
maximize the overall performance. The CPU Scheduler is responsible for splitting the function process and
scheduling it onto the processor threads. It employs two scheduling strategies ś Static and Dynamic. The Static
strategy divides data among threads for simultaneous processing. The Dynamic strategy partitions data into
chunks, with each thread processing a chunk and requesting the next chunk upon completion. The Dynamic

approach, helped by a Feeder class, optimally utilizes the threads, especially on cores with varying performance
capabilities. The scheduler can conigure the number of threads with or without ailiation to processing cores.
The user must provide the underlying threads-to-cores mapping function to utilize the ailiation approach.

ARM-CL schedules its OpenCL kernels using the CLScheduler in the GPU processing worklow when a task
invokes the associated function. The CLScheduler oloads an OpenCL kernel to the GPU by placing it into the
command queue of the GPU processor. Internally, the GPU scheduler handles the kernel execution from the
command queue into the processing resources. This transfer process between the CPU and GPU is asynchronous
and non-blocking.

Backend Context. Within ARM-CL, backend contexts are crucial in computational graph execution on CPU
and GPU processors. Each distinct context tailors to its speciic processor type, and selecting a processor for the
graph execution employs the corresponding backend context. Choosing a CPU or GPU initiates the backend
context for CPU or GPU, respectively. The backend contexts are responsible for initializing and setting up their
respective processors, creating tensors, and generating functions particular to each node. Additionally, they
oversee the memory allocation for weights and activation data during run-time, ensuring systematic and eicient
computation.
CPU Backend Context. ARM-CL provides a CPU backend context to navigate the operations tailored for

the CPU execution. The context initializes the desired number of threads in the scheduler and handles memory
allocation for tensors, focusing on weights and activation data. The function factory selects and generates the
most eicient variant of implemented functions for each node within this context. These functions incorporate
NEON kernels optimized to facilitate basic deep-learning operations on the CPU.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 7

(2.e) Graph Manager (Run)

Pipeline

GPU

NPU

 Buffer

NPU

Sub-Graph1

Sub-Graph4

GPU

Serial

NPUNPU Big
CPU

Sub-Graph1

R

S

NPU Node

Python
Model

Run Script

Partition Extractor

(1) Prepare NPU Parts

NPU
Partition 1

NPU Tool

(1.a) Extract

Quantized
NPU

Partition 2

(2.a) Initializer

(2) Initialize

(2.d) Graph Manager (Setup)

Input, Receiver

Functions

Output, Sender

Input, Receiver

Functions

Output, Sender

Input, Receiver

Functions

Output, Sender

Input, Receiver

Functions

Output, Sender

NPU

CPU

NPU

GPU

Setup

Run

(2.b) Graph Creator: Create Subgraphs

G1 G2 G3

NPU CPU

P2

P2

S

P2

P2

R

P1

P1

P1

S

S

In

Run
Configuration

Quantized
NPU

Partition 1

G4

R

S

NPU Node

P1

P1

S

P1

R

NPU
Sample
Images

(1.b) Quantize & Tune

ARM Compute Library Context

(1.b) Quantize & Tune

NPU
Partition 2

(2.c) NPU Reconstructor

P3

P3

P3

Out

R

R

GPU

Initialized Subgraphs

P1 P1 P1In

P1

P3 P3 OutP2 P2

P2P2

P1 P1 P3

Target Model

 Buffer

Big
CPU Buffer

Sub-Graph2

Sub-Graph3

Sub-Graph2

Sub-Graph3

Sub-Graph4

Fig. 4. ARM-CO-UP design Flow for an example that utilizes CPU, GPU, and NPU.

GPU Backend Context. Similarly, a GPU backend context within ARM-CL manages operations speciic to
GPU devices, initiating the OpenCL scheduler to coordinate the deployment of OpenCL kernels. This context
involves identifying the GPU processor, assigning it to the OpenCL device, generating an OpenCL context, and
initializing the OpenCL queue for the associated device and context. The function factory within this context opts
for the most eicient variant of implemented OpenCL functions per node.

4 ARM-CO-UP FRAMEWORK

The ARM-CO-UP framework builds on top of the ARM-CL Library. The original ARM-CL supports CNN inference
with either CPU or GPU processors. In contrast, ARM-CO-UP focuses on the cooperative use of the available
processors simultaneously ś CPU, GPU, and NPU ś for inference. We explain next the various components in the
ARM-CO-UP framework.

4.1 Co-operative utilization

A CNN graph can execute with a CPU or GPU processor by default. The distinct backend context associated with
each processor does not allow for a collaborative execution of CNN. The ARM-CO-UP introduces the concept
of sub-graphs for simultaneous model inference with diferent processors. It deines sub-graphs that execute
on separate processors and memory spaces with separate backend contexts. Consequently, a sub-graph is free
to map to its processor for execution. Pipelining and switch mechanisms can employ sub-graphs to improve
the overall performance of the CNN using multiple processors. Therefore, it becomes necessary to manage the
transfer of intermediate data between sub-graphs and coordinate the execution of these individual sub-graphs.
The ARM-CO-UP provide Receiver and Sender nodes (and associated tensors) to extend the capabilities of the
Graph Manager. We elaborate on these components next and explain the workings of the sub-graph.

ACM Trans. Des. Autom. Electron. Syst.

8 • Ehsan et al.

Fig. 5. ARM-CO-UP partitioning of a graph into three sub-graphs to run on three diferent processors.

Sub-Graph. The ARM-CO-UP structures the model as sub-graphs rather than a comprehensive graph de-
termined by the target processor assigned to its nodes. Figure 5 demonstrates an equivalent graph of a model
and the mapping of its nodes to the target processor. Based on the layer mapping, the consecutive layers with
the same target processor constitute a sub-graph. Each sub-graph has the same target processor, and a uniied
backend context is established for the sub-graph on the target processor, overseeing their execution on that
speciic processor. ARM-CO-UP ofers users two distinct modes for inference using sub-graphs: Pipeline and
Switch mode.

Pipeline Mode. In the Pipeline mode, every sub-graph operates as a distinct stage in the overarching pipeline.
As a sub-graph concludes its workload execution, it transmits its data and either commences processing the
subsequent data in its queue or momentarily halts if the input data isn’t yet available. This mechanism ensures
that the sub-graphs, representing diferent pipeline stages, operate concurrently for consecutive input frames.
Such a methodology empowers users to harness processors collaboratively, enhancing the throughput and energy
eiciency of the inference.
Switch Mode. In the Switch mode, sub-graphs operate serially for each frame, eliminating any parallel

operation. Here, the inference process for an image switches between processors. This mode allows the lexibility
to allocate layers to the most suitable processor, optimizing energy eiciency and end-to-end latency for individual
frames.

Sender andReceiverNodes.TheARM-CO-UP creates sub-graphswithin diferent backend contexts. Therefore,
data transfer is necessary between the processors in intermediate terminal nodes of the sub-graphs. The Sender
and Receiver nodes add to the source and destination of the connection between two sub-graphs. Figure 5 shows
the Sender and Receiver nodes in the intermediate terminals of the sub-graphs. The ARM-CO-UP establishes an
edge, via an associated Sender tensor, between the last node in the source sub-graph and the attached Sender

node. Additionally, within the subsequent sub-graph, it creates an edge between the Receiver node and the irst
node and creates a Receiver tensor for it.

Sender and Receiver Tensors. The Sender and Receiver tensors, integral components within the ARM-CO-

UP framework, facilitate data transfer across processors’ backend contexts. These tensors are embedded with
attributes and mechanisms to synchronize and communicate data efectively. Speciically, the Sender tensor
holds Receiver tensors as its data transfer targets. Figure 6 shows the structure and partitioning coniguration
within the ARM-CO-UP, wherein there are two receivers for the sender of the irst sub-graph. The Sender tensor
in the irst sub-graph dispatches data to Receiver tensors located in both the second and third sub-graphs.
The Graph Manager delineates receiver nodes for each sender tensor, forming sub-graphs during the setup.

Subsequently, upon completing sub-graph node tasks, the Graph Manager triggers its senders as outlined in

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 9

Input Node 0 Node 1 Node 2 Node 3 Output

Input Node 0 Sender
Node 0 Node 1 Sender

Node 1
Receiver
Node 0

CPU GPU NPU

Node 2 Node 3 OutputReceiver
Node 1

Receiver
Node 0

CPU GPU NPU

Fig. 6. Structure and partitioning configuration where there are two receivers for sender of the first sub-graph.

Algorithm 1: Sending Data

foreach sender ∈ graph.senders do

map(sender.tensor to main memory);

foreach receiver ∈ sender.receivers do

receiver.transfer(sender.tensor);

unmap(sender.tensor);

Algorithm 2: Receiving Data

foreach receiver ∈ graph_receivers do

receiver.set_ready();

foreach receiver ∈ graph_receivers do

receiver.receive_data;

Algorithm 1 at the run-time. Each sender invokes the transfer function for its linked receiver nodes. Figure 7a
depicts the transfer function’s methodology. The methodology commences with mutex utilization to prevent
race conditions with the receiver thread of the destination sub-graph. It then ascertains receiver readiness and
bufer status. If the receiver awaits data and its bufer is vacant, the sender directly transmits its tensor data to
the receiver’s memory in a diferent processor, simultaneously notifying the receiver. Conversely, if the receiver
is preoccupied or the bufer is non-empty, the sender’s tensor data is queued in the receiver’s bufer.

The receivers in each sub-graph precede node task execution, as depicted in Algorithm 2. Each sub-graph
sets its receivers to a ready state and initiates their receive functions. This process, illustrated in Figure 7b,
involves the receiver examining the Data_ready status. If true, it indicates the sender has already populated
the receiver’s tensor memory, requiring no further action. If false and the bufer contains data, the receiver
transfers the earliest bufered data to its tensor memory. If the bufer is empty, the receiver employs a condition
variable mechanism (Condvar in C++) for eicient wait management, pending data transfer from the source

ACM Trans. Des. Autom. Electron. Syst.

10 • Ehsan et al.

Start
Input : Sender.tensor

Yes

NO
Receiver.ready?

YES
Receiver.buffer.empty?

Receiver.tensor.map
Receiver.tensor.copyFrom(Sender.tensor)

Receiver.tensor.unmap

Receiver.buffer.put(copy(sender.tensor))

unlock(_mutex)

No

lock(_mutex)

End

(a) transfer function: Transferring sender’s tensor data of

the source sub-graph into the receiver of the destination

sub-graph or its bufer

Start

No

Yes
Data_ready?

Yes
Receiver.buffer.empty?

Receiver.tensor.copyFrom(buffer.front)

End

Yes

Data_ready?

Data.ready = 0

Wait

No

No

lock(mutex)

unlock(mutex)

(b) receive function: Read data from its bufer, or wait for

transferring data from the sender of the source sub-graph

Fig. 7. The ARM-CO-UP transfer and receive functions in source and destination sub-graphs respectively.

sub-graph. Upon data transfer completion by the sender, which also sets Data_ready to true, the receiver resumes
processing.

The queue bufer of the receiver plays a pivotal role, accommodating instances where the sender has readied
the data but the receiver is not prepared to accept it, often due to the ongoing processing of preceding data.
This bufer ensures continuous, seamless data low between sender and receiver tensors. Consider a scenario
where sub-graphs execute concurrently in the parallel mode across consecutive frames using a software pipeline.
A branch extends from the irst to the fourth stage (sub-graph). Figure 8 depicts sub-graphs formed based on
node-to-processor mappings. Pipeline stages process consecutive frames. While the irst stage (�����0) processes
frame � , ������ processes frame (� − �). Upon completing the execution of frame number � by the irst stage, it
sends data to the second and fourth stages. However, a direct data transfer to the fourth stage is not feasible. The
fourth stage has just concluded processing frame � − 3 and must next process frame � − 2 that the third stage has
just inished. Without a bufer for the irst stage to place data from frame � , it cannot process frame � + 1 for the
following two pipeline clocks. This lack of bufer causes two stalls in the irst stage of the pipeline during the
subsequent clocks. These stalls propagate to the end of the pipeline stages. As soon as the fourth stage receives
the frame � data from the third stage, it can be processed, and the irst stage can deliver the frame (� + 1) and
start processing the next frame (� + 2). Therefore, during each pipeline clock, the two stages experience stalls,
resulting in only two active stages, as opposed to all four. Consequently, ARM-CO-UP incorporates bufers into
Receiver tensors to minimize the pipeline stalls.
Graph Management. The ARM-CO-UP extends the original ARM-CL graph management to manage the

coordination and execution of various sub-graphs in Pipeline or Switch mode. The ARM-CO-UP equips the
Graph Manager with the list of sub-graphs, their backend contexts and workloads. The setup of a full graph is a

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 11

Stage 0 Stage 1 Stage 2 Stage 3

Frame 3 Frame 2 Frame 1 Frame 0

Stage 0

Wait for Stage 3

Stage 1 Stage 2 Stage 3

Frame 3 Frame 2 Frame 1

Stage 0

Wait for Stage 3

Stage 1

Wait for Stage 0

Stage 2 Stage 3

Stage 0 Stage 1

Wait for Stage 0

Stage 2

Wait for Stage 1

Stage 3

Frame 4 Frame 3

Frame 2Frame 3

(a) Without bufer

Stage 0 Stage 1 Stage 2 Stage 3

Frame 3 Frame 2 Frame 1 Frame 0

Stage 0 Stage 1 Stage 2 Stage 3

Frame 3 Frame 2 Frame 1

Stage 0 Stage 1 Stage 2 Stage 3

Stage 0 Stage 1 Stage 2 Stage 3

Frame 6 Frame 3

Frame 2Frame 3

Frame 3

Frame 4

Frame 4Frame 5

Frame 3Frame 4

Frame 4Frame 5

Frame 4Frame 5

(b) With bufer

Fig. 8. A pipeline configuration example necessitating the need for bufers.

time-consuming process involving the preparation of the workload and loading the layer parameters into the
memory of the target processor using the corresponding backend context. ARM-CO-UP partitions the graph into
multiple sub-graphs according to the mapping of the layers to processors. Each sub-graph has its context for
setup, so the ARM-CO-UP establishes the sub-graph conigurations concurrently, efectively reducing the overall
setup time. ARM-CO-UP exploits a multi-threaded approach for executing the sub-graph workloads on their
target processors using a host CPU for each sub-graph. A thread to manage the task execution spawns for each
sub-graph and pins to the host CPU cores. The ARM-CO-UP can select the sub-graph host(s) among the CPU
core(s). The receivers and senders are responsible for receiving and sending the data from and to the source and
destination sub-graphs, respectively.

Scheduler. A scheduler divides the workload across all available threads within the original ARM-CL library.
These threads execute across all cores in the asymmetric CPUs [13]. However, the communication cost between
diferent CPUs can be prohibitively high, even though they may share the same backend context [24]. Conse-
quently, the ARM-CO-UP establishes separate schedulers for the CPUs. Each CPU is an independent processor
tasked with processing a speciic sub-graph. The host, assigned to a particular sub-graph, invokes the relevant
scheduler, which then allocates the sub-graph to the cores within its corresponding CPU. This strategy reduces
the need for extensive communication between CPUs. Inter-CPU communication is reserved only for boundary
layers, which relay their data to the other CPU to process subsequent sub-graphs.

Figure 9 shows the performance beneits of using a separate scheduler for each CPU versus a uniied scheduler
for multiple CPUs in an asymmetric multi-core. The igure shows two distinct conigurations: one where inference
executes jointly on a combination of Little and big CPUs and another utilizing a two-stage pipeline involving
Little and big CPUs. The comparative analysis underscores the eiciency gains achieved by the two-scheduler
approach, where workload distribution and reduced inter-CPU communication contribute to enhanced system
performance.

ACM Trans. Des. Autom. Electron. Syst.

12 • Ehsan et al.

Alexnet Googlenet Mobilenet Resnet50 Squeezenet

5

10

15

T
h
ro
u
g
h
p
u
t
[F
P
S]

Little (4 cores) + big (2 cores) Uniied Two-Stage Pipeline (Little: 4 cores, big: 2 cores)

Fig. 9. Performance comparison between unified and separate scheduler designs.

 Power Profiles

Target Device

ARDUINO
PC

ARM-CO-UP

La
ye

r 0

La
ye

r 1

In
pu

t SCL

SDA

INA260

Power Supply

 Latency Profiles
Profiled

DataLa
ye

r 2

La
ye

r 3

La
ye

r 4 Read Power Sample

Write Power Sample

GPIO Signal

Fig. 10. An abstract diagram for integration of an external power-performance profiling setup with a target device using

ARM-CO-UP.

4.2 Profiling

The ARM-CO-UP provides detailed proiling for both execution time and power consumption of individual layers
while taking inter-layer communication into account. Each task within the workload tracks its execution duration.
Upon request by the Graph Manager, the average execution time across all frames is computed and relayed for
reporting purposes. The Graph Manager monitors the timing for communication, input, and output operations.
Furthermore, the ARM-CO-UP supports GPIO signals, enabling external power measurement setups. These

signals mark the commencement and conclusion of each layer’s processing, thereby facilitating layer-speciic
power measurements. Figure 10 illustrates the power measurement coniguration utilized by ARM-CO-UP for
layer-wise power consumption analysis. When power measurement activates within ARM-CO-UP, it transmits
signals to the ARDUINO board. Consequently, the ARDUINO captures power samples and tags them with these
signals. This procedure ensures ARM-CO-UP extracts the power samples for each layer’s execution cycle [2].

4.3 NPU Integration

The NPU is a dedicated Application-Speciic Integrated Circuit (ASIC) accelerator processor integrated into the
latest edge HMPSOCs to optimize power and performance for neural network inference. The NPU operates
with lower precision operation units for signiicantly higher performance and energy eiciency. Therefore, it is
essential to integrate this specialized processor with the CPU and GPU processors in embedded devices.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 13

The ARM-CL has no backend context for the NPU. Creating an NPU context presents signiicant challenges,
primarily because the libraries for the NPU are not open source. Additionally, the NPU supports the execution
of networks in various formats, adding complexity in integrating a dedicated context within ARM-CL. This
lack of a standardized, accessible backend for the NPU complicates its incorporation and utilization. However,
the ARM-CO-UP successfully incorporates NPU alongside CPU and GPU cores. The integration of NPU in the
ARM-CO-UP involves harmonizing the distinct contexts and ensuring compatibility with several accelerators,
each with speciic libraries and APIs.

ARM-CO-UP adds an interface layer to the top of the ARM-CL to achieve NPU integration. This Python-based
layer manages the sub-graphs of the pre-trained model derived from established Python-based frameworks. The
layer also allows for an eicient extraction and conversion of the relevant parts of the model, which are marked
to execute on the NPU. Concurrently, ARM-CO-UP integrates NPU generic functions, backend, and node classes
into the core of ARM-CL. This design allows deining the NPU coniguration based on the speciic NPU integrated
with their embedded device. These additions strengthen the integration of NPUs into existing CPU and GPU
environments. The goal is to ensure smooth integration and extend the capabilities of ARM-CL.
We elaborate next on this newly added interface layer and its position within the ARM-CO-UP. Additionally,

we comprehensively analyze the NPU’s generic functions, backend, and node classes, highlighting their pivotal
role in supporting accelerators without being restricted to particular contexts and libraries.

Interface Layer. The ARM-CL, developed in C++, is tailored for optimal eiciency on edge devices. It provides
specialized APIs that outline the neural network’s architecture and layers. On the contrary, most neural network
models originate from Python-based libraries such as TensorFlow, Keras, Cafe, PyTorch, etc. As a result, accelerators
and NPUs predominantly interact with models from these libraries. Once these Python-centric models translate
into the accelerator-speciic format, the accelerators ofer dedicated APIs, typically in Python and C++, that handle
tasks such as model loading, input loading, inference execution, and output extraction. Therefore, an interface
layer is required to fulil several requirements. This layer segments, extracts, and prepares the parts of the model
that execute within the NPU context. Based on the layer-to-processor mapping, the interface layer extracts the
NPU partitions. It adds the input and output layers and saves the partition for the upcoming processing. Then, it
converts the extracted partition to the NPU format using the NPU-speciic tools. In this step, it quantized the
NPU partitions of the model, if required.
The interface layer, for each sub-graph, provides unique terminology based on the input and output layer

indexes. This naming convention allows the NPU node in the ARM-CO-UP to locate and load the corresponding
NPU-speciic model partition for later execution. The ARM-CO-UP can identify and retrieve the appropriate
model sub-graphs based on the speciied partition points (input and output layer indexes). The interface layer
streamlines and automates the worklow, allowing models developed in popular Python libraries to execute
efortlessly by the ARM-CO-UP.
NPU Node. ARM-CO-UP introduces an NPU node, expanding the available variety of node types within the

ARM-CL. The method used to create sub-graphs for the NPU is similar to those for CPU and GPU sub-graphs,
ensuring a consistent approach across the ARM-CO-UP framework. However, since the design and functionality of
NPU difer from the already supported CPU and GPU contexts, adjustments to the NPU sub-graph are necessary.
Therefore, as depicted in Figure 11, ARM-CO-UP reconstructs the NPU-target sub-graphs. For this purpose, it
replaces all the internal nodes in the sub-graph with the NPU node and then connects all terminal nodes and
their associated tensors to this NPU node after creating an NPU sub-graph. This approach treats the entire NPU
sub-graph as a single NPU node connected to other sub-graphs using regular edges.

The ARM-CO-UP begins by creating an NPU node. It then updates the connections to link the terminal nodes
to the sub-graph internal nodes and then connects them to the NPU node instead. Figure 11a displays a sub-graph
for the NPU, built using the ARM-CL API and context and representing the model layers. Terminal nodes, shown
as squares, include Input, Receiver, Sender, and Output nodes, while the internal nodes, which represent model

ACM Trans. Des. Autom. Electron. Syst.

14 • Ehsan et al.

Receiver
Node j

Sender
Node i+4

Sender
Node i+1

Conv Node
i

Conv Node
i+1

Conv Node
i+2

Conv Node
i+3

Conv Node
i+4

(a) NPU sub-graph initially created same as for CPU and GPU

Receiver
Node j

Sender
Node i+4

Sender
Node i+1

NPU Node i_i+4

(b) Reformed sub-graph for NPU

Fig. 11. An abstract diagram depicting the process of NPU reconstruction within ARM-CO-UP.

layers, are shown as circles. The ARM-CO-UP disconnects the connections between the terminal and internal
nodes and removes internal nodes. Then, it creates an NPU node with the name embedding the starting and
ending indices of the original nodes for naming convention. Finally, it redirects the connection from the terminal
nodes to the NPU node. Figure 11b shows the updated sub-graph after these changes. This approach allows the
creation of sub-graphs regardless of the speciic type of NPU (or accelerator) that will execute them.

The terminal nodes transfer data between the NPU and other sub-graphs. They load input data sent by other
sub-graphs into the NPU’s memory. Subsequently, they get the output from the NPU sub-graphs and pass it
on to the next sub-graphs through the tensors of the connecting edges. Since data formats and types might
difer between NPUs and CPU or GPU processors, these terminal nodes adjust the data type and format between
sub-graphs based on the ARM-CO-UP coniguration.

NPU Backend Context. When ARM-CO-UP creates a graph (or sub-graphs) for a neural network model, the
Graph Manager produces the workloads of these sub-graphs using the function factory of the associated backend
context. The ARM-CO-UP introduces the NPU backend context to manage the creation and execution of the
NPU-based model execution function. This context comes equipped with a function factory designed to craft an
NPU function speciically for the NPU node. Notably, the NPU backend context is a universal backend suitable
for all NPU varieties. It establishes a generic NPU function template, linking it to the NPU type deined.

NPU Function. The NPU function introduced in the ARM-CO-UP acts as a versatile template that builds upon
the foundational function type present in the ARM-CL. It retains the primary characteristics of the ARM-CL

functions that invoke during workload execution. This function consists of two parts: the coniguration of the
NPU by loading the model and the execution, which handles the loading of input tensors, executing the model
sub-graph, and retrieving the outputs.
The NPU function, as a template class, accommodates a range of NPU-speciic APIs. Given that diferent

NPUs possess distinct APIs for model loading and execution, this method ensures that incorporating a new
NPU type is streamlined. Users can extend support to any new NPU by merely integrating its unique API into
the pre-established template associated with a speciic NPU classiication. Consequently, when generating the
NPU function for an NPU Node, the ARM-CO-UP employs the deinitions tied to the NPU for model loading
and execution. Beyond APIs, custom binary implementations of the shared libraries accompany each NPU. The
ARM-CO-UP seamlessly manages the task of integrating these libraries into the inalized executable binary. This
integration allows easy incorporation of a new NPU variant. A user only deposits the shared libraries pertinent
to that NPU in the speciied NPU libraries directory (Libs/NPU/) in the ARM-CO-UP.

4.4 Power Manager

The ARM-CO-UP is additionally equipped with DVFS to regulate the power consumption of the CPU and
GPU during inference. ARM-CO-UP allows adjusting of processor voltage and frequency for each sub-graph or
individual layer. In sub-graph-level DVFS, users deine the DVFS levels for each sub-graph, and the ARM-CO-UP

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 15

Little CPU Big CPU GPU

ARM-CO-UP

 (0,FB,0)

Sub-Graph 0

 FB FG

 (FL,FB,FG)

 FL

 Governor

 (FL,FB,FG)
Power Manager

Sub-Graph 1 Sub-Graph 2 Sub-Graph 3 Sub-Graph 4
Big CPU GPU (Host = L) Big CPU Little CPU NPU (Host = B)

FG,FL

 (FL,0,FG) (FL,0,0) (0,FB,0) (0,FB,0)

FB FB FL FB

(a) Sub-graph-level power manager

Little CPU Big CPU GPU

ARM-CO-UP

 FB FG

 (FL,FB,FG)

 FL

 Governor

 (FL,FB,FG)
Power Manager

Big CPU GPU (Host = L) Little CPU

 (0,FB
0,0)

Layer 0
FB

0

 (0,FB
1,0)

Layer 1
FB

1

 (0,FB
2,FG

2)

Layer 2
FB

0
Layer 3

FB
0

 (FL
5,0,0)

Layer 4
FB

0

 (FL
5,0,0)

Layer 5
FB

0

 (FL
6,0,0)

Layer 6
FB

0

 (0,FB
3,FG

3)

(b) Layer-level power manager

Fig. 12. ARM-CO-UP power manager demonstration for approaches at diferent level.

power manager accordingly adjusts the frequency settings for the processor assigned to each sub-graph. ARM-

CO-UP makes this adjustment using platform-speciic system commands. These commands are conigurable
within the power manager to accommodate platform-speciic idiosyncracies. The operational modes of the power
manager vary. In Switch mode, the power manager adjusts the DVFS levels of the processors for the upcoming
sub-graph upon completion of the current one. In Pipeline mode, it operates diferently as all sub-graphs execute
simultaneously on their designated processors. ARM-CO-UP tasks each processor with a single sub-graph in the
pipeline mode. Therefore, the DVFS levels for multiple sub-graphs on the same processor should be identical.
Hence, in Pipeline mode, it is only necessary to set the processor frequency levels once during the initial setup.

Contrastingly, layer-level DVFS allows for more granular control, where users can specify DVFS levels for each
layer. The ARM-CO-UP system dynamically adjusts the DVFS level of the respective processor according to the
setting chosen for each layer during the inference process. Given the short execution time of layers, this mode
necessitates a swift DVFS mechanism to ensure minimal delay in applying the desired voltage and frequency
settings to the hardware. ARM-CO-UP incorporates a DVFS class that can interface with a kernel-level DVFS
governor. After integrating the kernel-level DVFS governor into the kernel space, the API for the user-deined
governor is responsible for setting processor frequency within ARM-CO-UP’s DVFS class. This integration
empowers ARM-CO-UP to modify processor frequency on a per-layer basis. As a practical example, a kernel-level
DVFS governor has been incorporated into ARM-CO-UP for the Rock Pi N10 board to facilitate layer-level DVFS.
Figures 12a and 12b demonstrate the DVFS mechanisms at sub-graph and layer levels, utilizing system and kernel
governors.

5 ARM-CO-UP METHODOLOGY (WORKFLOW)

This section delves into the methodology and worklow of the ARM-CO-UP framework. The ARM-CO-UP

framework irst prepares the NPU partitions of the model, adapting them based on user-deined mapping. Second,
it conigures the DVFS and power management components for the CPU/GPU. Subsequently, the creation of
sub-graphs ensues, structured according to node mapping. Finally, ARM-CO-UP performs careful coniguration
of processors and their associated sub-graphs. It then executes these sub-graphs in their predetermined modes.
Central to ARM-CO-UP is the Run Command, which encapsulates all user-deined conigurations for the

inference procedure. The users do not need to manually adjust the model, ARM-CO-UP, or processor settings

ACM Trans. Des. Autom. Electron. Syst.

16 • Ehsan et al.

with this feature. Instead, they can directly utilize the Run Command options to perform inference according to
their preferences.

$./graph_alexnet_co_up --threads=4 --threads_little=2 --n=60 --cores=2 --cores_little=4 --order=BBLGGNNN --

mode=pipeline --frequency=7-4-6-[3,2]-[4,4]-1-1-1

Table 2 provides a comprehensive list of coniguration options for executing the inference. The options encom-
pass mapping model layers to speciic processors, choosing between pipeline or switch modes, designating the
number of threads for CPUs, electing appropriate hosts for GPU and NPU devices, modulating processor frequen-
cies, and determining the proiling level. Finally, ARM-CO-UP executes these sub-graphs in their predetermined
modes. We delve deeper into each stage: Pre-Setup, Sub-Graph Creation, Setup, and Run Inference.

5.1 Pre-Setup

The ARM-CO-UP framework begins its operational sequence by preparing the model according to the desired
mapping. Initially, it identiies and transforms the segments of the model designated for the NPU via the interface
layer. It achieves this by isolating the speciied segments from the original Python-basedmodel and then appending
them with necessary input(s) and output(s). It then translates these isolated segments into a format compatible
with the target NPU. During this transformation phase, it applies an optional quantization step depending on
the user preferences. It saves each process segment under a distinctive naming convention to ensure seamless
identiication in subsequent phases. The naming comes from the starting and ending layers. This systematic
naming approach facilitates ARM-CO-UP’s ability to locate swiftly the pertinent segments.
Beyond model preparation, ARM-CO-UP also undertakes system-level initialization. ARM-CO-UP then con-

igures the DVFS governor and activates power measurement components. If the user opts for additional
coniguration capabilities, ARM-CO-UP spawns a DVFS object instance, empowering users to tweak the DVFS
settings of the processors. Concurrently, it also establishes the GPIO pins earmarked for signal transmission.

5.2 Sub-Graph Creation

Following the model preparation and power management coniguration, ARM-CO-UP initializes sub-graphs
by the chosen mapping per model layer. When adding the layers, a corresponding node is instantiated and
incorporated into the designated sub-graph. The ARM-CO-UP framework takes charge of this node addition
process, ensuring that each node is aptly placed within its relevant sub-graph and automatically creates the
required interconnections.

The ARM-CL algorithm uses a single graph for the entire model containing all nodes and edges. In contrast, the
ARM-CO-UP allows adding nodes and edges to speciic sub-graphs and automatically creates interconnections
between diferent sub-graphs. ARM-CO-UP examines the input nodes associated with the node before adding it to
a sub-graph. If an input node is missing in the current sub-graph, an interconnection is established between the
source node and the new node, even if they belong to diferent sub-graphs. ARM-CO-UP appends a Sender node
to the source node (in the source sub-graph) and inserts a Receiver node before the new node (in the target
sub-graph) to achieve this. The address of the Sender tensor (with the Sender node) is in the Receiver tensor
(with the Receiver node). It saves the address of the Sender tensor in the Receiver tensor associated with the
Receiver node. This step ensures data communication and synchronization between these nodes during run-time.
ARM-CO-UP tracks the mapping of nodes to their Sender and Receiver nodes. Subsequent nodes can directly
use this existing Receiver node for interconnection, rather than creating a new one, if the Receiver node for an
input node already exists in the current sub-graph. This automated, model-independent graph creation process
enables the algorithm with new models without signiicant additional efort. Furthermore, this mechanism is
efective even for complex models with branches and shortcuts, such as in Figure 5.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 17

Table 2. Configuration Atributes for Inference Run Commands

Attribute Purpose Details

order Maps layers to processors
Determine the processor type for each layer. ‘L’ for Little CPU, ‘B’ for
big CPU, ‘G’ for GPU, and ‘N’ for NPU.

mode Deines execution mode Either ‘Pipeline’ or ‘Switch’

threads Number of threads for big CPU
Number of threads within big CPU, that distribute tasks of a layer to
them (from 1 to the number of big cores)

cores
Number of cores in big CPU of the plat-
form

For platforms with diferent number of cores in big CPU

threads_little Number of threads for Little CPU
Number of threads within Little CPU, that distribute tasks of a layer to
them (from 1 to number of Little cores).

cores_little
Number of cores in Little CPU of the plat-
form

For platforms with diferent number of cores in Little CPU

n Number of frames
To set the number of frames that run the inference (is useful for mea-
suring the average performance metrics)

frequency Frequency of the layers/sub-graphs Frequency indexes separated with ‘-’ for layers/sub-graphs
host_gpu The host processor for GPU device Either ‘B’ or ‘L’ that means big or Little CPU, respectively
host_npu The host processor for NPU device Either ‘B’ or ‘L’ that means big or Little CPU, respectively

proile Set the level of proiling
The possible proiling levels are Level 0: reporting the overall latency
and throughput, Level 1: execution and transfer time of the sub-graphs,
and Level 2: execution and transfer time for each layer

ARM-CO-UP provides scalable and eicient sub-graph management by creating sub-graphs within the core of
the ARM-CL. Consequently, introducing new models becomes straightforward, eliminating any need to alter
the existing model code. ARM-CO-UP reines the NPU sub-graph once it has established the sub-graphs. It
accomplishes this by substituting its internal nodes with a singular NPU node.

5.3 Sub-Graph Management

Graph Manager within ARM-CO-UP sets up and executes the sub-graphs. Original ARM-CL works with a single
graph representing the model. However, in ARM-CO-UP, multiple sub-graphs are set up on diferent processor
types, and these sub-graphs can execute in Pipeline or Switch mode.
Setup. In the setup phase, after setting up the backend context, the Graph Manager creates and initializes all

tensors associated with each edge of the sub-graph on their respective target processors. It generates a Memory

Manager for each processor and tasks the manager to handle the tensors bufer within the corresponding backend
context. Meanwhile, for each node, ARM-CO-UP leverages the function factory of the backend context, creating
optimized functions tailored for individual nodes. This meticulous process generates a speciic workload for each
sub-graph. Further, the NPU backend creates the function for the NPU node based on the user-deined NPU type.

enum class NPUTypes{

RockPi,

Khadas,

};

const NPUTypes selectedNPU = NPUTypes::RockPi;

create_npu_function<NPU<selectedNPU>>(node);

ARM-CO-UP adds the execution tasks represented by node function input and output tensors to the workload.
The input tensor’s accessor handles the loading and pre-processing of the input data (image), while the output
tensor accessor is responsible for post-processing and interpreting the output. ARM-CO-UP extends the workload
by adding the Receiver and Sender tensor of the Receiver and Sender nodes, respectively. These extended
objects facilitate the synchronization and transfer of data. The subsequent phase involves memory allocation for
Constant tensors, which house essential parameters such as weights and biases. Once allocated, ARM-CO-UP

begins the loading process for these trained static parameters. These static parameters require a one-time load

ACM Trans. Des. Autom. Electron. Syst.

18 • Ehsan et al.

during the setup phase, preparing the system for inference across varied input images. Since ARM-CO-UP sets up
sub-graphs in parallel, it reduces the loading time.
In parallel, ARM-CO-UP addresses the NPU segments of each sub-graph (extracted earlier in the pre-setup

phase). Leveraging the distinctive naming convention, the pertinent NPU node Ð tasked with executing that
speciic segment Ð identiies and retrieves its associated segment. With the workloads for each sub-graph now
deined and the model’s static parameters duly loaded, ARM-CO-UP stands poised to execute inference on the
provided input images.
Run the Inference. ARM-CO-UP framework loads the input data and executes the inference workload

functions in the run step. In terms of execution, the graph management run component of the ARM-CO-UP

includes the execution of inter-connection tensors involving the receiver and sender. Each sub-graph host, pinned
to a speciied CPU core, handles the sub-graph workload autonomously. This host thread activates the tensor
accessors for input and receivers, ensuring data is seamlessly fetched from the primary input or dispatched from
sender sub-graphs, as needed. ARM-CO-UP systematically schedules the workload functions of the sub-graph on
the target processor once it has prepared all data elements. Subsequently, it engages the tensor accessor for all
outputs and senders, facilitating the post-processing of output results and the data forwarding to the receiving
sub-graphs to continue the inference. The run procedure extends to the execution of the receiver-tensor function
at the beginning (in addition to the input tensor functions) and the sender-tensor function at the end of each
sub-graph (in addition to the output-tensor function). The Receiver and Sender tensors transfer data between
sub-graphs and synchronize their execution due to the dependencies. The sender-tensor holds the address of the
receiver tensors to which it sends the data. Once the data is ready, the sender-tensor calls the send_data function
of all associated receiver tensors and passes the data as an input argument. This function checks if the receiver
can receive the data. If it is ready, then the sender-tensor transfers data to the receiver-tensor. If the receiver is
unprepared, the sender-tensor places the data in the bufer of the receiver-tensor before returning the function.
On the other hand, the Graph Manager initiates the execution of a sub-graph by calling the functions of the

Input and Receiver tensors. The Receiver tensor then calls the receive_data function, which checks if data is
in the bufer. If data is available, the Receiver tensor fetches it; otherwise, the Receiver tensor sets the ready lag
and waits for the sender to send the data. Though the execution of each sub-graph is managed by a separate host
thread, harnessing a multi-threaded approach, these sub-graphs represent sequential segments of the complete
model, necessitating consecutive execution. This structure precludes parallel execution of sub-graphs for a single
input image. However, the design does permit simultaneous processing of successive input images, leveraging a
pipeline structure.
By incorporating these enhancements, ARM-CO-UP enables eicient and collaborative utilization of various

processor types, enhancing performance, energy eiciency, and lexibility.

6 VALIDATION

Determining the optimal mapping of every layer to the appropriate processor is crucial in achieving desired
performance outcomes within the constraints of a given application. ARM-CO-UP ofers a versatile set of features
to navigate this massive search space efectively while enabling the ine-tuning of inference performance for
speciic targets. The key feature of the ARM-CO-UP is the ability to map layers to processors, allowing for desired
allocation and optimization based on application objectives. The proiling functionality is the foundation for
exploring the mapping search space in the ARM-CO-UP framework. In addition, ARM-CO-UP provides options
for selecting the running mode (Pipeline or Switch) to facilitate cooperative processor utilization, adjusting
processor frequencies at a granular level for power management, specifying the number of threads for CPUs, and
designating the host CPU for GPU and NPU devices.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 19

Table 3. Details for the experimental setup.

Experimental Setup

Board Rock Pi N10

SoC RK3399PRO

CPU ARM big.Little

Little CPU Dual-core ARM Cortex-A72+

Little CPU L1 cache 48 KB/32 KB I/D cache
Little CPU L2 cache 1MB
big CPU Quad-core ARM Cortex-A53

big CPU L1 cache 32 KB/32 KB I/D cache
big CPU L2 cache 512 KB
GPU Quad-core ARM Mali-T860 MP4 GPU
GPU L2 cache 256 KB
Main NPU Rockchip NPU
Interconnect CCI500

Memory LPDDR3 3GB (NPU 1GB + CPU 2GB)
OS Android 8.1
Framework ARM-CL v18.03

Table 4. Extra-functional characteristics of AlexNet in Pipeline mode.

Layers Mapping Host Frequency (GHz) Time (ms) Energy (mJ)
GPU (G) NPU (N) Little CPU (L) big CPU (C) GPU (G)

GLNNNNNN B L 1.2 1.416 0.6 34.99 243.46
GNNNNNNB B L 0.408 1.608 0.6 40.26 226.39
GNNNNNNL B L 0.816 1.2 0.4 42.88 208.89
NNNNNNNB B L 0.6 1.008 0.2 47.21 191.55

6.1 Evaluation

We assess the performance and eiciency of the ARM-CO-UP framework on a real platform running popular CNNs.
Table 3 details the Rock Pi N10 embedded board used in this work. Our measurements inherently encapsulate
all performance and power overheads. However, we make a deliberate efort to delineate these overheads in a
dedicated section to provide a clearer understanding.
ARM-CO-UP framework seamlessly integrates the NPU with the CPUs and GPU, ofering versatility across

both Pipeline and Switch modes. In Pipeline mode, we demonstrate the integration of the non-quantized NPU
with Little CPU, big CPU, and GPU to boost throughput and energy eiciency. In Switch mode, we highlight
the integration of the Little CPU, big CPU, and GPU to enhance energy eiciency. ARM-CO-UP also supports
quantized NPU in Pipeline and Switch modes, introducing potential accuracy trade-ofs. However, our primary
focus is not to explore all possible trade-ofs but to showcase the framework’s capabilities.

We aim to demonstrate the framework’s eicacy in enhancing performance and power eiciency across various
CNN models. We begin by leveraging Pipeline mode to boost throughput and energy eiciency, followed by
latency and energy eiciency in Switch mode. Our evaluation also includes a comparative analysis with the
Pipe-it [24] framework to provide context. Throughout our assessment, we showcase performance and energy
eiciency results using the GA algorithm, emphasizing the framework’s efectiveness. It’s important to note that
while we provide insights into the framework’s capabilities, we do not explore all trade-ofs comprehensively in
this paper. Instead, we ofer capabilities for researchers to analyze trade-ofs in performance, energy eiciency,
and accuracy, facilitating the discovery of optimal solutions.

6.1.1 Pipeline mode. In Pipeline mode, the ARM-CO-UP framework empowers users to map desired graph
segments onto designated processors and execute them concurrently across successive frames. Users deine
the mapping, and the framework autonomously manages execution, including partitioning, NPU preparation,
data transfer, and inter-processor conversion. Building upon this framework, we employ a multi-objective

ACM Trans. Des. Autom. Electron. Syst.

20 • Ehsan et al.

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

10

20

30

T
h
ro
u
g
h
p
u
t
[F
P
S]

Little CPU big CPU GPU NPU (Non-Quantized) Pipeline Mode

(a) Throughput

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

1,000

2,000

3,000

E
n
er
g
y
P
er

Fr
am

e
[m

J]

(b) Energy Consumption

Fig. 13. Pipeline mode versus single-processor inference comparison for diferent CNNs.

Table 5. Comparison of top-1 accuracy and inference time between non-quantized and INT8-quantized models for diferent

image classification CNNs running on NPU.

CNN
Top-1 Accuracy (%) Inference Time (ms)

Non-Quantized INT8-Quantized Non-Quantized INT8-Quantized
AlexNet 56.072 55.912 [-0.160] 139.8 29.7
GoogleNet 67.912 67.796 [-0.116] 129.2 26.7
MobileNet 68.362 67.354 [-1.008] 136.5 29.4
ResNet50 68.266 67.768 [-0.498] 181.0 38.8
SqueezeNet 56.984 56.592 [-0.392] 119.0 25.5

genetic algorithm NSGA-II) to explore the design space, varying mapping (partitioning and mapping) and power
settings to identify near-optimal solutions for throughput and eiciency. The multi-objective genetic algorithm
leverages the power and performance proile feature of ARM-CO-UP to evaluate a design space encoded within
chromosomes. It commences with a random population of 100 design points, executing conigurations on the
platform using ARM-CO-UP. It then evaluates each point with measurements obtained through ARM-CO-UP’s
power and performance proiling features. Subsequently, it selects eicient population points and generates
ofspring using mating operations.

Table 4 presents the pipeline results for the AlexNet, presenting layer-to-processor mappings (L, B, G and N for
Little CPU, big CPU, GPU, and NPU, respectively), host selection for GPU and NPU devices, DVFS settings for each
processor, and the resulting throughput and energy eiciency. We assess the Pipeline mode across ive CNNs in
Figure 13. Figures 13a and 13b illustrate the throughput and energy eiciency of the pipeline in these CNNs, along
with the throughput of each processor. The framework explores the design space to discover near-optimal pipeline
solutions within this expansive landscape. Despite the overheads, the Pipeline mode signiicantly enhances both
throughput and energy eiciency.
We primarily present the pipeline results obtained from non-quantized models on the NPU. The framework

supports the utilization of quantized models on the NPU in both pipeline and switch modes. Users can select

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 21

Table 6. Comparison of mean mAP and inference time between non-quantized and INT8-quantized YOLO-V3 model for

object detection task running on NPU.

CNN
mAP (%) Inference Time (ms)

Non-Quantized INT8-Quantized Non-Quantized INT8-Quantized
YOLO-V3 68.780 64.709 [-4.070] 3328.1 438.1

Table 7. Processing time of GoogleNet layers on Litle CPU, Big CPU, GPU, and best processor amongst them.

Layer Little CPU Time (ms) Big CPU Time (ms) GPU Time (ms) Minimum Time (ms)
0 57.6 35.0 40.2 35.0
1 34.5 23.9 31.2 23.9
2 12.9 13.3 10.2 10.2
3 24.1 28.6 23.3 23.3
4 9.0 10.8 7.8 7.8
5 10.1 12.9 8.3 8.3
6 11.0 13.6 10.0 10.0
7 11.8 14.5 10.6 10.6
8 16.3 20.5 14.5 14.5
9 7.5 8.0 7.1 7.1
10 10.8 11.7 10.1 10.1
Sum 205.4 192.8 173.1 160.7

Table 8. Switching overhead in the Switch mode.

Graph AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
Best Mapping GGGGGGGG GGBBBBBBBBB BBBBBBBBBBBBBB BBLLLLLLLLLLLLLLLL GGGGGGGGLL

Inference Time 120.5ms 161.5ms 106.8ms 381.7ms 100.0ms
Switching Time Overhead 0 0.8ms (0.5%) 0 1.3ms (0.3%) 0.6ms (0.6%)

Inference Energy 740mJ 1047mJ 678mJ 2215mJ 618mJ
Switching Energy Overhead 0 4mJ (0.4%) 0 7mJ (0.3%) 5mJ (0.8%)

quantization for speciic NPU partitions, enabling the NPU tools to perform quantization during the NPU
preparation step. While quantization enhances run-time performance, it may incur a trade-of with a reduction
in accuracy. We evaluate the accuracy and inference time for quantized and non-quantized models running on
the NPU. Table 5 illustrates the top-1 accuracy and inference time for image classiication using quantized and
non-quantized models. Model quantization to INT8 occurs with the vendor-speciic conversion tools available
from Radxa. We assess accuracy using 50,000 images from the ImageNet validation set, while inference time is
measured during model execution on the NPU using the ARM-CO-UP framework. Furthermore, Table 6 presents
the mean Average Precision (mAP) and inference time for object detection using the YOLO-V3 model. We assess
accuracy here using the COCO validation dataset with 5,000 images.

6.1.2 Switch mode. We present latency results by comparing the inference performance with the best single
processor for the entire CNN in Switch mode. Table 7 delineates the execution time of each layer of GoogleNet
on both the big CPU and GPU, highlighting variability in layer performance across the processors. Some layers
exhibit faster execution on the big CPU, while others perform better on the GPU. Moreover, Table 7 identiies the
quickest processor for each layer. Switch mode necessitates a switch for executing each layer with the optimal
processor, transitioning to the GPU from the third layer. The sum row of the last column represents the summation
of layer execution times on their respective best processors, totalling 160.7 ms for GoogleNet.
Subsequently, we perform inference with the desired mapping using the run command option within the

framework to assess the overall inference time and energy per frame, incorporating switching overhead. These
outcomes encapsulate synchronization and transfer overheads during processor transitions. Table 8 delineates
the overall inference time and energy per frame, alongside switching time and energy overhead. As depicted in

ACM Trans. Des. Autom. Electron. Syst.

22 • Ehsan et al.

Alexnet Googlenet Mobilenet Resnet50 Squeezenet

1

1.2

1.4

N
o
rm

al
iz
ed

L
at
en
cy

Little CPU big CPU GPU Switch Mode

(a) Latency

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet

0.5

1

1.5

2

N
o
rm

.P
o
w
er

E
i
ci
en
cy

(b) Energy Consumption

Fig. 14. Switch mode versus single-processor inference comparison for diferent CNNs

the table, the execution time for GoogleNet amounts to 161.5 ms, incurring a 0.8 ms switching overhead for data
transfer from the second to the third layer on the GPU.

ForAlexNet andMobileNet, the optimal mapping entails running all layers on the GPU and big CPU, respectively,
obviating switching. Conversely, SqueezeNet exhibits minimal switching overhead compared to other networks.
We attribute this observation to switching occurring in the inal layers, which entail smaller data sizes for
transmission.

Figure 14 compares the switching method and the best single processor inference. Figure 14a shows an overall
latency improvement despite the synchronization and data transfer overheads. In addition to latency, we delved
into the power eiciency of the Switch mode to achieve a target latency. Initially, we harnessed the proiling
feature of theARM-CO-UP framework to analyze the time and power consumption during layer execution and data
transfer. We developed models to predict inference time and power consumption using the data. Subsequently,
employing a GA, we navigated the design space to identify the near-optimal power-eicient (using DVFS)
coniguration for a target latency. Using time and power models within the GA framework signiicantly expedites
the exploration of design points, ensuring thorough coverage. Figure 14b illustrates the power eiciency of the
switch mode compared to the power eiciency attained when utilizing a single processor for inference. This
analysis provides valuable insights into the eicacy of the Switch mode in enhancing power eiciency.

6.1.3 DVFS Setings. ARM-CO-UP integrates an internal power manager to oversee the voltage and frequency
conigurations for processors, supporting DVFS in both per-processor and per-layer modes. Through accessible
APIs and command options, users can specify DVFS settings, which ARM-CO-UP implements at setup- and
run-time for per-processor and per-layer modes, respectively. The per-processor DVFS feature allows users to
explore settings across pipeline stages. At setup time, ARM-CO-UP conigures frequency and voltage settings for
the Little CPU, big CPU, and GPU. Leveraging this capability, we investigated the impact of DVFS on performance
and energy consumption. Table 11 presents inference time and energy consumption per frame across various
DVFS settings for the processors using a ixed layer mapping. The mapping and host selection remain ixed,

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 23

Table 9. The available DVFS levels for diferent processors.

index
Litle CPU big CPU GPU

Frequency (MHz) Voltage (mV) Frequency (MHz) Voltage (mV) Frequency (MHz) Voltage (mV)

1 408 800 408 800 200 800

2 600 800 600 800 300 800

3 816 850 816 825 400 825

4 1008 925 1008 875 600 925

5 1200 1000 1200 950 800 1100

6 1416 1125 1417 1025

7 1608 1100

8 1800 1200

Table 10. The min and max DVFS delay for DVFS-capable processors when transitioning to higher (up) and lower (down)

frequency levels.

Transition PE Min Delay (�s)
Frequency

Max Delay (�s)
Frequency

i i+1 i i+1

Up

L 296 0 1 4211 0 2

B 193 0 1 3811 6 7

G 657 0 1 4461 2 4

Down

L 109 4 3 193 3 0

B 91 7 3 1413 4 1

G 670 4 1 1464 4 2

Table 11. Extra-functional analysis of AlexNet running in Pipeline mode.

Layers mapping
Host Frequency (GHz)

Time (ms) Energy (mJ)
GPU NPU Little CPU big CPU GPU

GNNNNNNL B L 1.008 1.608 0.6 40.45 224.67
GNNNNNNL B L 0.6 1.608 0.6 40.5 224.42
GNNNNNNL B L 1.2 1.416 0.6 40.52 220.68
GNNNNNNL B L 0.816 1.416 0.6 40.57 220.22
GNNNNNNL B L 0.816 1.2 0.6 40.95 214.92
GNNNNNNL B L 1.2 1.416 0.4 41.14 212.99
GNNNNNNL B L 1.008 1.008 0.6 41.37 211.18
GNNNNNNL B L 0.6 1.008 0.6 41.54 210.43
GNNNNNNL B L 0.816 1.008 0.6 41.58 209.77
GNNNNNNL B L 0.6 1.2 0.4 42.8 209.39
GNNNNNNL B L 0.816 1.2 0.4 42.88 208.89

allowing for focused analysis of DVFS efects on the GPU, Little CPU (irst and third stages), and big CPU (second
stage) processors.

The efect of DVFS on each pipeline stage hinges on whether the stage serves as a bottleneck. Decreasing the
frequency could reduce energy consumption per frame when a stage is not a bottleneck. Conversely, if a stage
acts as a bottleneck, decreasing the frequency may increase energy consumption due to prolonged inference
times per frame. This nuanced understanding underscores the importance of considering pipeline dynamics
and workload characteristics when optimizing DVFS settings within the ARM-CO-UP framework. Users can
efectively improve energy consumption and performance by discerning bottleneck stages and adjusting DVFS
settings.
In per-processor mode, DVFS incurs no overhead on inference as settings are conigured once at setup time

and remain constant throughout run-time. This stability ensures eicient management of DVFS without run-time
adjustments, thus streamlining the optimization process within the ARM-CO-UP framework. The per-layer DVFS

ACM Trans. Des. Autom. Electron. Syst.

24 • Ehsan et al.

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

1

2

N
o
rm

al
iz
ed

Im
p
ro
v
em

en
ts

Throughput Power Eiciency

Fig. 15. Throughput and power eficiency of ARM-CO-UP normalized to Pipe-it [24] for diferent CNNs.

feature enables dynamic voltage and frequency adjustments during run-time and is especially beneicial for
Switch mode operations. At the start of each layer, the framework triggers the requested DVFS settings for
the underlying processor in a non-blocking approach. Experimental observations have revealed a slight delay
between the triggering of the DVFS settings and the actual change in the hardware, as detailed in Table 10 for
transitions to higher or lower frequency settings in the GPU and CPUs.

This delay does not disrupt the inference process or incur additional waiting overhead due to the non-blocking
procedure. Inference continues seamlessly, with the computation smoothly transitioning to the requested DVFS
settings as they apply gradually to the hardware. This mechanism ensures uninterrupted operation and facilitates
the examination of DVFS efects on inference.

6.1.4 Comparative Evaluation. Figure 15 shows the CNN inference throughput and power eiciency for ARM-CO-

UP compared with Pipe-it [24]. ARM-CO-UP and Pipe-it work on top of ARM-CL. However, Pipe-it supports only
the Little and big CPU. Therefore, we limit the results in Figure 15 to only ARM big.Little asymmetric multi-core
CPU in Rock PI N10. Figure 15 shows ARM-CO-UP provides, on average, 1.67x and 1.49x higher throughput
and power eiciency over Pipe-it, respectively. The throughput and power eiciency gains originate from more
eicient sub-graph-based implementation in ARM-CO-UP, which induces much less overhead than the thread
migration-based implementation in Pipe-it.

6.2 Case Study

We leverage the capabilities of the ARM-CO-UP framework to present intuitive analytical results. Our case study
analysis focuses on the timing and power consumption of theMobileNet CNN, utilizing the proiling feature of the
framework. The analysis applies to other CNNs in a similar manner. Initially, we delve into the power eiciency
(Frames Per Second per Watt - FPS/Watt) of individual layers for exploring various DVFS levels through the
ARM-CO-UP power manager. Subsequently, we conduct a comparative analysis of the execution time, energy
consumption, and power eiciency across diferent processors for each layer. This comparative study sheds light
on the performance and eiciency of processors concerning diverse layers within the MobileNet architecture.
Users can utilize these results to facilitate the identiication of the optimal inference coniguration based on the
speciic objectives and constraints of their application.
Figure 16 illustrates the power eiciency of MobileNet layers across various frequency levels for the Little

CPU, big CPU, GPU, and NPU. Notably, for the NPU, the exploration is conducted concerning the host (big
CPU) frequency, given that the NPU lacks DVFS level adjustment capabilities (see Figure 16d). This experiment
leverages the proiling feature at the layer granularity, coupled with the power manager, to measure the time and
power consumption of layers under diferent DVFS settings. Subsequently, we calculate the power eiciency of
each layer.

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 25

Fig. 16. Power eficiency vs. Frequency forMobileNet layers.

The results reveal a general trend across the Little CPU (Figure 16a), big CPU (Figure 16b), and GPU (Figure 16c),
wherein increasing the frequency enhances the power eiciency of layers. We attribute this phenomenon to the
reduction in time, which outweighs the increase in power, resulting in higher power eiciency and reduced inal
energy consumption. However, the dynamics difer for the NPU (Figure 16d). Given that the explored frequency
is not that of the NPU itself but rather the host CPU (big CPU), the results indicate that, when running layers on
the NPU, the optimal choice for maximizing power eiciency is to minimize the frequency of the host CPU.

In the context of the NPU, it is crucial to delineate the distinct role of the host CPU, particularly the Big CPU
cluster, which orchestrates the loading of input data into the NPU and initiates its execution. It is important to note
that altering the frequency and voltage settings of the host CPU does not directly impact the execution time of a
layer on the NPU. Instead, any increase in the CPU frequency and voltage settings ampliies the HMPSoC’s power
consumption, as the CPU voltage heightens during NPU execution, consequently increasing power consumption
and compromising overall power eiciency.

ACM Trans. Des. Autom. Electron. Syst.

26 • Ehsan et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

101

102

Layer

T
im

e
[m

s]

Little CPU big CPU GPU NPU (Quantizied)

(a) Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13

101.5

102

102.5

Layer

E
n
er
g
y
[m

J]

(b) Energy

0 1 2 3 4 5 6 7 8 9 10 11 12 13

100.5

101

101.5

Layer

P
o
w
er

E
i
ci
en
cy

[F
P
S/
W
at
t]

(c) Power Eficiency

Fig. 17. Diferent characteristics of MobileNet layers on diferent HMPSoCs processors.

In the subsequent assessment, we delve into the eiciency of the Little CPU, big CPU, GPU, and NPU across
diferent layers of the MobileNet, with the results of this comparative analysis presented in Figure 17. For this
analysis, 60 random images were drawn from the ImageNet dataset for evaluation and proiling by ARM-CO-UP.
We then averaged the results to generate the graphs. We use each image for inference individually, i.e. with the
batch size setting as one. This analysis encompasses the examination of execution time (Figure 17a), energy
consumption (Figure 17b), and power eiciency (Figure 17c). The examination of execution time depicted in
Figure 17a reveals that, in most cases, the NPU exhibits the highest performance, signiicantly outperforming
other processors. The irst layer is an exception, where the NPU’s superiority is mitigated by the substantial
contribution of loading and preparing input data. The NPU efectiveness is reduced by the overhead of transferring
data, especially for initial layers with large data sizes. Furthermore, the results indicate comparable performance
between the CPU and GPU, with the CPU outperforming in some layers and the GPU excelling in others. This

ACM Trans. Des. Autom. Electron. Syst.

ARM-CO-UP: ARM COoperative Utilization of Processors • 27

0 1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

Layer

T
im

e
[m

s]

Big to Little Little to big GPU to Little GPU to big Little to GPU big to GPU

Fig. 18. Inter-processor transfer times forMobileNet layers

nuanced performance distinction underscores the intricacies of layer-speciic computational requirements and
the adaptability of the processors to varying tasks within the MobileNet architecture.
The results for energy consumption (Figure 17b) and power eiciency (Figure 17c) underscore that the NPU

not only surpasses the CPU and GPU in terms of performance (execution time) but also exhibits optimal energy
consumption and power eiciency. This observation implies that the NPU is the most efective processor for
performance and power eiciency. However, when the target is throughput, using the Pipelinemode, incorporating
both the CPU and GPU contributes to increased throughput compared to utilizing only the NPU. A trade-of exists
between accuracy and performance/power eiciency, even in the Pipeline mode. This observation is because NPU
computations are executed in a quantized version, leading to a drop in accuracy. Striking a balance between these
factors becomes pivotal in optimizing the overall system performance based on speciic application requirements
and objectives.
Figure 18 investigates the transfer time between diferent source and destination processors for MobileNet

layers. These timings serve as a measure of overhead incurred during the switching process between diferent
processors. Notably, the transfer time is contingent upon the data transfer size. The data transfer involves direct
movement, conducted in switch mode (without bufering), from the output of one layer in the source processor
to the input of the next layer in the target processor. This process encompasses synchronization overhead,
accentuating the communication overhead during the transition between successive layers. Figure 18 illustrates
that this transfer time tends to decrease as we progress deeper into the network. This observation stems from
the fact initial layers typically involve larger data sizes for transfer, while deeper layers exhibit a decrease in
data size. Observations suggest that transitioning to other processors in deeper layers, especially for those with
higher switching costs, is more advantageous.

Furthermore, the transfer time for MobileNet ranges approximately from one to ive milliseconds, as depicted
in Figure 18. This range, when compared to the order of execution times for layers on processors (Figure 17a),
indicates that tolerating overhead for switching between processors every couple of layers could be beneicial.
The relatively low overhead associated with switching stems from the integrated nature of these processors on
a single chip. This insight into transfer times provides valuable guidance for optimizing the layer distribution
across processors, accounting for the trade-of between computational eiciency and the cost of inter-processor
communication.

A comprehensive examination of the execution costs at various layers enables seamless integration with design
space exploration algorithms. This examination underscores the adaptability of the framework, empowering users
to customize the inference process according to their speciic application requirements through optimization and
search algorithms.

ACM Trans. Des. Autom. Electron. Syst.

28 • Ehsan et al.

7 CONCLUSION AND FUTURE WORK

We have presented ARM-CO-UP, an advanced framework that addresses the limitations of existing inference
frameworks for edge devices. By cooperatively utilizing ARM asymmetric multi-core CPUs, GPU, and NPU,
ARM-CO-UP achieves optimal inference performance and energy eiciency. ARM-CO-UP overcomes drawbacks
of state-of-the-art, such as no support for accelerators and CNNs with complex models. It introduces a reined
implementation within the core of ARM-CL, extending it extensively. It supports ine-grained partitioning at the
layer level, allows layer-level DVFS, automatically handles branches within partitions, and includes a generic
NPU node for efortless integration of desired accelerators. These features make ARM-CO-UP a promising solution
for deep learning workloads on resource-limited embedded devices.

REFERENCES

[1] Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj Pathania. 2022. CPU-GPU Layer-Switched Low Latency CNN Inference. In 2022

25th Euromicro Conference on Digital System Design (DSD). 324ś331. https://doi.org/10.1109/DSD57027.2022.00051

[2] Ehsan Aghapour, Dolly Sapra, Andy D. Pimentel, and Anuj Pathania. 2023. PELSI: Power-Eicient Layer-Switched Inference. In

2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). 12ś17. https:

//doi.org/10.1109/RTCSA58653.2023.00011

[3] Hung-Yang Chang, Seyyed Hasan Mozafari, Cheng Chen, James J. Clark, Brett H. Meyer, and Warren J. Gross. 2023. PipeBERT:

High-throughput BERT Inference for ARM Big.LITTLE Multi-core Processors. Journal of Signal Processing Systems 95, 7 (01 Jul 2023),

877ś894. https://doi.org/10.1007/s11265-022-01814-y

[4] Jessie Y. C. Chen and Jennifer E. Thropp. 2007. Review of Low Frame Rate Efects on Human Performance. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans 37, 6 (2007), 1063ś1076. https://doi.org/10.1109/TSMCA.2007.904779

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and

Arvind Krishnamurthy. 2018. TVM: end-to-end optimization stack for deep learning. arXiv preprint arXiv:1802.04799 11, 20 (2018).

[6] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. 2023. Automated Exploration and Implementation of Distributed CNN Inference

at the Edge. IEEE Internet of Things Journal 10, 7 (2023), 5843ś5858. https://doi.org/10.1109/JIOT.2023.3237572

[7] Jussi Hanhirova, Teemu Kämäräinen, Sipi Seppälä, Matti Siekkinen, Vesa Hirvisalo, and Antti Ylä-Jääski. 2018. Latency and Throughput

Characterization of Convolutional Neural Networks for Mobile Computer Vision. In Proceedings of the 9th ACM Multimedia Systems

Conference (Amsterdam, Netherlands) (MMSys ’18). Association for Computing Machinery, New York, NY, USA, 204ś215. https:

//doi.org/10.1145/3204949.3204975

[8] Alexander Hofman, Anuj Pathania, Philipp H. Kindt, Samarjit Chakraborty, and Tulika Mitra. 2020. BrezeFlow: Uniied Debugger for

Android CPU Power Governors and Schedulers on Edge Devices. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1ś6.

https://doi.org/10.1109/DAC18072.2020.9218542

[9] Eunjin Jeong, Jangryul Kim, and Soonhoi Ha. 2022. TensorRT-Based Framework and Optimization Methodology for Deep Learning

Inference on Jetson Boards. ACM Trans. Embed. Comput. Syst. 21, 5, Article 51 (oct 2022), 26 pages. https://doi.org/10.1145/3508391

[10] EunJin Jeong, Jangryul Kim, Samnieng Tan, Jaeseong Lee, and Soonhoi Ha. 2022. Deep Learning Inference Parallelization on Heteroge-

neous Processors With TensorRT. IEEE Embedded Systems Letters 14, 1 (2022), 15ś18. https://doi.org/10.1109/LES.2021.3087707

[11] Andreas Karatzas and Iraklis Anagnostopoulos. 2023. OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under

Multi-DNN Workload. In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 1ś6.

[12] Andreas Karatzas and Iraklis Anagnostopoulos. 2023. OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under

Multi-DNNWorkload. In 2023 60th ACM/IEEEDesign Automation Conference (DAC). 1ś6. https://doi.org/10.1109/DAC56929.2023.10247989

[13] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas. 2004. Single-ISA Heterogeneous

Multi-Core Architectures for Multithreaded Workload Performance. In Proceedings of the 31st Annual International Symposium on

Computer Architecture (München, Germany) (ISCA ’04). IEEE Computer Society, USA, 64.

[14] Tyrone Tai-On Kwok and Yu-Kwong Kwok. 2008. On the design, control, and use of a reconigurable heterogeneous multi-core system-

on-a-chip. In 2008 IEEE International Symposium on Parallel and Distributed Processing. 1ś11. https://doi.org/10.1109/IPDPS.2008.4536165

[15] Zhaoying Li, Dhananjaya Wijerathne, Xianzhang Chen, Anuj Pathania, and Tulika Mitra. 2022. ChordMap: Automated Mapping of

Streaming Applications Onto CGRA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 2 (2022), 306ś319.

https://doi.org/10.1109/TCAD.2021.3058313

[16] Xiangzhong Luo, Di Liu, Shuo Huai, Hao Kong, Hui Chen, and Weichen Liu. 2021. Designing eicient DNNs via hardware-aware neural

architecture search and beyond. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 6 (2021), 1799ś1812.

[17] Svetlana Minakova, Dolly Sapra, Todor Stefanov, and Andy D Pimentel. 2022. Scenario based run-time switching for adaptive CNN-based

applications at the edge. ACM Transactions on Embedded Computing Systems (TECS) 21, 2 (2022).

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1109/DSD57027.2022.00051
https://doi.org/10.1109/RTCSA58653.2023.00011
https://doi.org/10.1109/RTCSA58653.2023.00011
https://doi.org/10.1007/s11265-022-01814-y
https://doi.org/10.1109/TSMCA.2007.904779
https://doi.org/10.1109/JIOT.2023.3237572
https://doi.org/10.1145/3204949.3204975
https://doi.org/10.1145/3204949.3204975
https://doi.org/10.1109/DAC18072.2020.9218542
https://doi.org/10.1145/3508391
https://doi.org/10.1109/LES.2021.3087707
https://doi.org/10.1109/DAC56929.2023.10247989
https://doi.org/10.1109/IPDPS.2008.4536165
https://doi.org/10.1109/TCAD.2021.3058313

ARM-CO-UP: ARM COoperative Utilization of Processors • 29

[18] Svetlana Minakova, Erqian Tang, and Todor Stefanov. 2020. Combining Task- and Data-Level Parallelism for High-Throughput CNN

Inference on Embedded CPUs-GPUs MPSoCs. In Embedded Computer Systems: Architectures, Modeling, and Simulation, Alex Orailoglu,

Matthias Jung, and Marc Reichenbach (Eds.). Springer International Publishing, 18ś35.

[19] Dolly Sapra and Andy D Pimentel. 2020. Constrained evolutionary piecemeal training to design convolutional neural networks. In Trends

in Artiicial Intelligence Theory and Applications. Artiicial Intelligence Practices: 33rd International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020, Proceedings 33. Springer,

709ś721.

[20] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse Park. 2021. SLO-aware inference scheduler for heterogeneous

processors in edge platforms. ACM Transactions on Architecture and Code Optimization (TACO) 18, 4 (2021), 1ś26.

[21] Mingwen Shao, Junhui Dai, Jiandong Kuang, and Deyu Meng. 2021. A dynamic CNN pruning method based on matrix similarity. Signal,

Image and Video Processing 15, 2 (2021), 381ś389.

[22] Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, and Chunyuan Zhang. 2018. Towards a Uniform Template-Based

Architecture for Accelerating 2D and 3D CNNs on FPGA. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (Monterey, CALIFORNIA, USA) (FPGA ’18). Association for Computing Machinery, New York, NY, USA,

97ś106. https://doi.org/10.1145/3174243.3174257

[23] Dawei Sun, Shaoshan Liu, and Jean-Luc Gaudiot. 2017. Enabling embedded inference engine with arm compute library: A case study.

arXiv preprint arXiv:1704.03751 (2017).

[24] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania, and Tulika Mitra. 2020. High-Throughput CNN

Inference on Embedded ARM Big.LITTLE Multicore Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 39, 10 (2020), 2254ś2267. https://doi.org/10.1109/TCAD.2019.2944584

[25] Siqi Wang, Anuj Pathania, and Tulika Mitra. 2020. Neural Network Inference on Mobile SoCs. IEEE Design & Test 37, 5 (2020), 50ś57.

https://doi.org/10.1109/MDAT.2020.2968258

[26] Dhananjaya Wijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, and Lothar Thiele. 2022. HiMap: Fast and Scalable High-Quality

Mapping on CGRA via Hierarchical Abstraction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 10

(2022), 3290ś3303. https://doi.org/10.1109/TCAD.2021.3132551

[27] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia,

Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong

Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, and Peizhao Zhang. 2019. Machine Learning at Facebook:

Understanding Inference at the Edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). 331ś344.

https://doi.org/10.1109/HPCA.2019.00048

[28] Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui, Dongliang Xie, and Yi Shan. 2019. A High-Performance CNN Processor

Based on FPGA for MobileNets. In 2019 29th International Conference on Field Programmable Logic and Applications (FPL). 136ś143.

https://doi.org/10.1109/FPL.2019.00030

[29] Hsin-I Wu, Da-Yi Guo, Hsu-Hsun Chin, and Ren-Song Tsay. 2020. A Pipeline-Based Scheduler for Optimizing Latency of Convolution

Neural Network Inference over Heterogeneous Multicore Systems. In 2020 2nd IEEE International Conference on Artiicial Intelligence

Circuits and Systems (AICAS). 46ś49. https://doi.org/10.1109/AICAS48895.2020.9073977

[30] Sean Young, Zhe Wang, David Taubman, and Bernd Girod. 2021. Transform Quantization for CNN Compression. IEEE Transactions on

Pattern Analysis and Machine Intelligence (2021).

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1145/3174243.3174257
https://doi.org/10.1109/TCAD.2019.2944584
https://doi.org/10.1109/MDAT.2020.2968258
https://doi.org/10.1109/TCAD.2021.3132551
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/FPL.2019.00030
https://doi.org/10.1109/AICAS48895.2020.9073977

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 ARM-CL Library

	4 ARM-CO-UP Framework
	4.1 Co-operative utilization
	4.2 Profiling
	4.3 NPU Integration
	4.4 Power Manager

	5 ARM-CO-UP Methodology (Workflow)
	5.1 Pre-Setup
	5.2 Sub-Graph Creation
	5.3 Sub-Graph Management

	6 Validation
	6.1 Evaluation
	6.2 Case Study

	7 Conclusion and Future Work
	References

