
Design Metrics and Visualization Techniques for 
Analyzing the Performance of MOEAs in DSE

Toktam Taghavi, Andy D. Pimentel 
Computer Systems Architecture Group, Informatics Institute 

University of Amsterdam 
Amsterdam, the Netherlands 

 {T.TaghaviRazaviZadeh, A.D.Pimentel}@uva.nl 
 

Abstract—VMODEX is an interactive visualization tool to 
support system- level Design Space Exploration (DSE) of MPSoC 
architectures. It was initially developed to help designers to get 
insight into the search process of Multi-Objective Evolutionary 
Algorithms (MOEAs) that are typically used in the DSE process, 
and facilitates the analysis of the DSE results. In this paper, we 
extend VMODEX to help algorithm developers as well. Since 
there are many different MOEAs to search a design space and 
there is no conclusive answer regarding which algorithm is the 
best for a specific problem, finding the best optimization 
algorithm is a big challenge. However, using VMODEX, 
algorithm developers can easily evaluate and compare the results 
of different searching algorithms, for a given problem, with 
respect to their efficiency and effectiveness, in order to find the 
best optimization algorithm. Then, the best optimization results 
are delivered to the designers for analyzing the design space 
exploration process. 

Keywords-component; Design space exploration; multi-
objective evolutionary algorithms, visualization, quality metrics. 

I.  INTRODUCTION  
Modern embedded systems come with contradictory design 

constraints. On one hand, these systems often target mass 
production and battery-based devices, and therefore should be 
cheap and power efficient. On the other hand, they need to 
achieve high (real-time) performance. This wide spectrum of 
design requirements leads to complex heterogeneous multi-
processor system-on-chip (MPSoC) architectures. The 
complexity of these embedded systems forces designers to 
model and simulate systems and their components early during 
the design process to explore the wide range of design choices. 
Such design space exploration, during which multiple criteria 
should be considered simultaneously, is called multi-objective 
design space exploration. Since objectives are often in conflict, 
there cannot be a single optimum solution, which 
simultaneously optimizes all objectives. Instead, a set of 
optimal solutions denoted as the Pareto optimal set or non-
dominated set has to be found. This is the set of those solutions 
for which one objective cannot be improved further without 
causing a simultaneous degradation in at least one other 
objective. These optimal decisions provide the designer trade-
offs between the design objectives. The set of objective vectors 
corresponding to a set of Pareto optimal solutions is called 
“Pareto optimal front” or “non-dominated front”. 

In order to find a Pareto optimal set with respect to the 
design criteria, the designer should ideally evaluate and 

compare every single point in the design space. However, such 
an exhaustive search is infeasible, as in real-scale problems the 
design space is too large to be explored in an exhaustive 
manner. Therefore, heuristic search techniques, such as Multi-
Objective Evolutionary Algorithms (MOEA), are often used to 
search the design space for optimum design points using only a 
finite number of design-point evaluations. 

MOEAs evaluate a population of design points (solutions) 
over several iterations, called generations. With the help of 
genetic operators, a MOEA progresses iteratively towards the 
best possible solutions. The algorithm usually starts with a 
randomly generated population and calculates the fitness value 
for each solution within the population. The fitness function is 
problem specific and determines how good the solution is. 
Solutions with high fitness in the current population are 
selected for reproduction. Such solutions are modified 
(recombined and randomly mutated) to form a new population. 
This is motivated by the hope that the new population will be 
better than the old one. The new population is then used in the 
next iteration of the algorithm. Generally, the algorithm 
terminates when either the predefined number of generations 
has been reached, or when there is no improvement in the 
fitness values of the solutions. 

Although the goal of MOEAs is to find the Pareto optimal 
solutions with respect to the design criteria, there is no 
guarantee to reach real optimal solutions. This is because of the 
heuristic nature of the MOEAs. They try to find optimal 
solutions. However, typically they are only able to find good 
approximation of optimal solutions that are not far away from 
the true optimal solutions. Therefore, metrics are needed to 
evaluate the quality of the discovered solutions. Furthermore, 
many different MOEAs are proposed in literature, which may 
have different performance on different problems, and there is 
no conclusive answer regarding to which algorithm is the best 
for a specific problem. On top of that, MOEAs are highly 
sensitive to the parameters being used, such as mutation rate, 
crossover rate, repair strategy, individual encoding, etc. These 
parameters have major effects on the performance of the 
algorithm and have to be fine-tuned by hand. Therefore, 
coming up with the best searching algorithm, which efficiently 
and effectively explores the design space and finds high quality 
solutions is a big challenge.  

In single-objective optimization, the quality of solutions 
can be defined by measuring the values of the objective 
function; the smaller (or larger) the value, the better the 



solution. However, in the context of multi-objective 
optimization, it is difficult to define appropriate quality 
measures since it is not clear what “quality” means in the 
presence of multiple objectives. Therefore, several quality 
metrics have been proposed in the literature to assess different 
aspects of the goodness of the Pareto optimal solutions 
obtained by a MOEA. In this paper, we also propose three new 
metrics (WSGR, σmst and DFPOS), which are useful for 
comparing the performance of different algorithms or one 
algorithm with different parameter settings.  

For evaluating and comparing different Pareto optimal sets, 
the results of a quality metric are typically shown in a table or 
displayed in a 2D graph in which the value of the quality metric 
is shown to compare one Pareto optimal set to another one. 
Although these kinds of representation are useful to find out 
which Pareto optimal set is better in respect to a certain quality 
aspect, they do not provide insight on why a Pareto optimal set 
is good (bad) according to the specific metric. 

Utilizing visualization techniques can be helpful for further 
analysis of the Pareto optimal solutions. In general, a quality 
metric encapsulates the properties of a Pareto optimal set to one 
scalar value that somehow reflects certain quality aspect. 
Therefore, some useful information may be lost because of this 
compression. However, visualizations can provide better 
understanding of the quality of the results and enable us to 
perform more accurate analysis. But, there is a significant lack 
of studies on representing and visualizing the different quality 
aspects of Pareto optimal sets. The conventional way is plotting 
the optimal solutions in the objective space. Although this 
method is simple and displays the overall quality, it is limited 
to a maximum of three objectives (maximal three dimensions) 
and does not provide a detailed description of different quality 
aspects. Ang et al. [4] proposed Distance & Distribution (DD) 
charts, in the first of which the Pareto optimal solutions are 
plotted against their distance to the true Pareto front and in the 
second of them the Pareto optimal solutions are plotted against 
the distance between each consecutive solutions. In these plots, 
only the distance values of solutions are shown and the 
objective values are not considered. So, they do not reveal any 
information about the location of the Pareto optimal solutions 
in the objective space. 

In this paper, we propose several visualization approaches, 
which enable researchers to do detailed analysis of the quality 
of Pareto optimal solutions. These visualizations provide 
insight on the reasons behind the strength/weakness of a Pareto 
optimal set with respect to a particular metric. To this end, we 
integrated various quality metrics (including both existing 
metrics and new ones) and their visualizations in our 
interactive visualization tool, VMODEX (Visualization of 
Multi-Objective Design space eXploration), which was 
proposed in [5]. VMODEX enables designers to easily 
understand how a MOEA explores the design space, where the 
optimum design points are located, how design parameters 
influence each objective, and find out the relationship between 
the different objectives. In this paper, we extend VMODEX to 
help algorithm developers as well. Using VMODEX, they can 
easily evaluate and compare the results of different searching 
algorithms, for a given problem, with respect to their efficiency 
and effectiveness in order to find the best optimization 

algorithm. Several quality metrics and their visualizations are 
provided in the extended version of VMODEX to enable 
algorithm developers to perform a comprehensive study on the 
properties of the discovered optimal solutions and evaluate the 
performance of the used searching algorithms from different 
perspectives. Therefore, if a Pareto optimal set is not good 
according to a specific metric, one can easily understand the 
reason behind this weakness. Our main contributions are: 

• Proposing three new quality metrics: WSGR, σmst and 
DFPOS. 

• Visualizing both existing and new metrics for more 
detailed and accurate analysis. 

• Presenting a case study, which demonstrates the 
usefulness of using VMODEX. 

The rest of the paper is organized as follows. Section II 
describes the goals that should be considered in multi-objective 
optimizations to yield high quality results. In Section III we 
briefly explain how VMODEX visualizes the multi-objective 
DSE process. Section IV introduces quality metrics and their 
visualization methods we have provided in VMODEX. Section 
V presents a case study in which the qualities of the outputs of 
different MOEAs for a specific problem are compared using 
various metrics. This case study illustrates the benefits of our 
tool, which integrates and visualizes different quality metrics in 
a single environment. Finally, Section VI concludes the paper. 

II. GOALS IN MULTI-OBJECTIVE OPTIMIZATION 
Usually two distinct goals are considered in multi-objective 

optimizations:  

1) Find solutions as close as possible to the true Pareto front  

 2) Discover solutions as diverse as possible. 
The first goal is essential for any optimization task. Finding 

solutions, which are far away from the true Pareto optimal set, 
is not appropriate. In most multi-objective optimization 
problems, the true Pareto front is not known. Therefore, for 
measuring the closeness, a reference Pareto front that is the 
best-known approximation of the true Pareto front, is used. The 
reference Pareto front can be made by combining all the 
optimal solutions from numerous searches and then removing 
dominated solutions from the combined set. The second goal is 
completely specific to multi-objective optimization. Diversity 
means covering the entire Pareto optimal region uniformly. 
Only with a diverse set of solutions, we can have a good set of 
trade-offs among objectives. The diversity can be divided in 
two different measures: extent (the spread of extreme solutions) 
and distribution (the relative distance between solutions).  

Since both goals are important, an efficient MOEA must 
satisfy both of them adequately. However, the multi-objective 
optimization goals are two distinct concepts. Thus, no single 
quality measure is able to indicate the performance of an 
MOEA in an absolute sense. Therefore, for measuring the 
performance of different MOEAs and comparing how well 
they achieved the multi-objective optimization goals, several 
metrics need to be used in order to assess the quality of the 
obtained Pareto fronts from different perspectives.  



III. A BRIEF INTRODUCTION TO VMODEX  
In this section, we briefly explain how VMODEX [5] 

visualizes a multi-objective design space exploration. Fig. 1 
represents an example Pareto optimal set, which is visualized 
by VMODEX. In this example, a parallel multi-media 
application is mapped to an MPSoC platform architecture. 
Here, three objectives are considered: processing time, energy 
consumption and cost of different MPSoC design instances. In 
Fig. 1 the first four levels represent the design space 
parameters, which (from top to down) are: number of 
processors, processor type, number of memories and memory 
type. In this example, the platform architecture consists of an 
Application Specific Integrated Circuit (ASIC), an Application 
Specific Instruction Processor  (ASIP), a general-purpose 
microprocessor (mP), a microcontroller (mC), two Dynamic 
RAMs (DRAM) and one Static RAM (SRAM). The fifth level 
shows the architecture cost. Since this is the first level that all 
the components are known, the cost of the architecture can be 
computed. Because the cost is an objective and not a design 
parameter, we represent it with a different shape; a circle. For a 
better view, the size of the circle becomes bigger as the cost 
increases. The next level shows Pareto optimal solutions found 
by the MOEA. Each solution represents a unique mapping of 
application tasks and communication channels onto the 
architecture components. Solutions are labeled by an index, in 
the order of increasing processing time. For each solution, its 
parents at the previous levels show its design parameters and 
cost. For instance, P7 has the following architectural 
components: two processors, of which one is an ASIP and the 
other one an mC, and one memory of the type DRAM. The size 
and color of the third dimension of a solution shows the energy 
consumption. As the energy consumption increases, the size of 
the third dimension becomes bigger and its color becomes 
darker. The color of the solution itself represents the processing 
time. Colors are varied from yellow to red with all color grades 
in between. Nodes with the lowest processing time are yellow 
and nodes with the highest processing time are red.  

In order to easily correlate the visual form of the quality 
metrics with the multi-objective DSE visualization, the same 
metaphors are used for showing the objective values and 
solutions. Thus, one will not be confused by the different 

 

Figure 1.  An example of Pareto optimal solutions visualized by VMODEX 

representations of the same thing. For instance, in the 
visualization of quality metrics, the solution P2 in Fig. 1 is 
shown like in Fig. 2 (a). Since in the DSE tree the costs of 
solutions are shown as separate nodes at the cost level, the 
corresponding cost node is drawn above the 3D rectangle. 

It should be mentioned that although here we only show 
three objectives, VMODEX is able to easily visualize more 
than three objectives. For those objectives, which are only 
dependent on the architectural components such as weight, 
physical size, etc., extra levels can be added after the parameter 
levels (like the cost level in our example). Showing objectives 
that are dependent on the mapping is also easy. Each node has 
some attributes like shape, orientation, size, color, 
transparency, texture, border, glow, etc. Each attribute can be 
assigned to one objective. Fig. 2(b) shows an example of 
representing a solution with six objectives. In this figure texture 
density indicates average utilization, the size of the glow shows 
the temperature and the size of the trapezoid indicates the 
weight. The other three objectives are the same as Fig. 2(a). For 
a detailed study of how VMODEX visualizes design space 
parameters and objectives as a tree, the interested reader is 
referred to [5]. 

IV. QUALITY METRICS AND THEIR VISUALIZATION 
METHODS 

Particularly, in proposing visualization methods for quality 
metrics, the following challenges have to be addressed: 

• The visualization approach should not be limited to the 
number of objectives. It must be scalable to be used in 
more than three objectives problems. 

• The visualization techniques should be simple and 
straightforward. Complex approaches do not reveal 
useful information clearly and some valuable issues 
may not be discovered. Furthermore, simple methods 
enable us to easily compare two or more non-
dominated sets with each other. 

• For showing a specific objective in different 
visualization methods for different metrics, the same 
metaphor should be used. Thus, there is no confusion 
because of representing one thing in different ways.  

In this section, we first describe the different metrics 
provided in VMODEX for measuring the quality of non-
dominated sets found by a MOEA. Then, we explain the 
visualization approach developed for each metric as well as the 
benefits of such visualization. All the visualizations proposed 
in this paper satisfy the above challenges. For all metrics, the 
normalized values of objectives are used. Therefore, all 
objective values are in the range [0, 1]. 
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Figure 2. An example of representing a solution 



In the following subsections, we categorize the quality 
metrics in four groups: 1) closeness metrics to evaluate the 
distance of the obtained Pareto front to the true Pareto front, 2) 
diversity metrics to evaluate the spread or distribution of the 
solutions in the found Pareto front, 3) combined metrics to 
evaluate both the closeness and diversity of the discovered 
solutions in an implicit manner, and 4) dynamic metrics to 
show how the quality of solutions with respect to a specific 
metric is varying during MOEA execution. 

A. Closeness Metrics 
These metrics compute a measure of the closeness of a 

Pareto front found by a MOEA (PFknown) from the true Pareto 
front (PFtrue). PFtrue can either be a set of (theoretical) true 
Pareto optimal points (if known) or a reference set, which 
contains the best-known non-dominated points from a 
combination of numerous MOEA runs. 

1) Existing Metrics 
Van Veldhuizen [2] proposed two metrics for measuring 

the distance of the found Pareto optimal set to the true Pareto 
front: Error Ratio (ER) and Generational Distance (GD). These 
metrics are widely used in literature because of their simplicity. 

 The ER metric indicates the percentage of solutions in 
PFknown that are not members of the PFtrue. A smaller value of 
ER means a better approximation of the true Pareto front. This 
metric takes a value between zero and one. ER=0 means that all 
solutions of PFknown are members of the PFtrue and ER=1 means 
that no solution is a member of the true Pareto front. 

The GD metric calculates the average distance of the 
solutions in PFknown from PFtrue. The distance measure is the 
Euclidean distance (in the objective space) between a solution 
in PFknown and the nearest member of PFtrue. It is clear that a 
value of GD=0 indicates that all the solutions of PFknown are in 
PFtrue. A set having a smaller value of GD is better. 

2) Weighted Sum of True Pareto and relatively close 
points Generation Ratio (WSGR) 

Both ER and GD metrics have some drawbacks. To 
overcome those shortcomings, we propose a new metric called 
WSGR. The drawback of the ER metric can be illustrated by 
the following example: if an algorithm finds only two Pareto 
optimal solutions, of which one is in PFtrue, then its error ratio 
is 0.5. But if another algorithm finds 20 Pareto optimal 
solutions and 8 of them are in PFtrue, then the error ratio is 0.60. 
Clearly, the second algorithm performs better since it finds 
more members of the true Pareto optimal set, but the error ratio 
indicates that it performs worse. The drawback of GD is that 
when all solutions in PFknown are in the true Pareto front (GD = 
0), it does not determine how good the algorithm is in finding 
true Pareto points. For example, if an algorithm finds 3 Pareto 
optimal solutions of which all of them are in PFtrue and another 
one finds 10 Pareto optimal solutions of which all of them are 
in PFtrue, the value of GD for both of them is zero. However, it 
is clear that the second algorithm performs better. 

Both ER and GD metrics do not consider the proportion of 
the true Pareto points, which could be found by the MOEA. 
Thus, we propose a new metric that considers the percentage of 
the true Pareto optimal solutions found by the algorithm as well 

as the percentage of solutions in PFknown, which are relatively 
close to the PFtrue as follows:   
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For measuring the relative closeness, a threshold (θ) needs 
to be defined. If the minimum distance of solution i ∈ PFknown 
from PFtrue is less than the threshold, then it is considered as a 
relatively close solution and the value of its ci is one. The 
weights show the relative importance of two combined 
components of equation (1). Since finding true Pareto optimal 
points has a higher priority than discovering relatively close 
solutions, w1 should be higher than w2. A bigger value of 
WSGR means that the MOEA has obtained more solutions of 
PFtrue and also more solutions in PFknown are close enough to 
PFtrue and therefore is better. Using each element of equation 
(1) separately, as a quality metric, has some drawbacks. By 
considering only the first part, the value of the metric for two 
algorithms that could not find any solutions in PFtrue, is zero. 
So the metric does not distinguish the relative closeness. 
However, the solutions found by one algorithm may be much 
closer to PFtrue than the other ones. In the case of utilizing only 
the second term in equation (1), the performance of two 
algorithms, of which one finds solutions that all of them are in 
PFtrue, and the other one finds solutions of which all of them 
are close enough to PFtrue, but none of them is member of 
PFtrue is the same. For both of them the calculated value is one. 
By combining these two components, the above shortcomings 
can be addressed.   

WSGR= w1+ w2 indicates that all the true Pareto optimal 
solutions are found by the MOEA, and WSGR=0 means that 
none of the solutions in PFknown is close enough to the PFtrue 
and thus the performance of the MOEA, in terms of the 
closeness, is not desirable. Since we are interested in how well 
an algorithm performs, in the case of two algorithms with 
WSGR=0 we can conclude that the performance of both of 
them is not acceptable with respect to the closeness aspect. It 
does not really matter which one performs worse. However, 
our visualization method for showing closeness enables us to 
do a more detailed analysis on relative closeness between 
PFknown and PFtrue. 

3) Visualization of the Closeness  
We propose a visualization method, which simply and 

clearly illustrates the closeness relations between PFknown and 
PFtrue. Our visualization not only shows the values of different 
closeness metrics and how these values are achieved, but also 
represents some information about the outliers and fluctuation 
in the distance values (if they exist). One of the disadvantages 
of the GD metric is that if there is a large fluctuation in the 
distance values or there exist some outliers, the metric may not 
reveal the true distance. However, using our visualization, 
these properties can be recognized easily.  



Fig. 3 represents the visualization of the closeness aspect 
for the Pareto optimal set shown in Fig. 1. The solutions in the 
true Pareto optimal set (or reference set if PFtrue is not known) 
are shown in the first row and solutions of PFknown are shown in 
the second row. In the case of comparing the performance of 
different algorithms, for each of them, the solutions in its 
PFknown are drawn in a separate row (see Fig. 10). The 
background color of the true Pareto optimal solutions is blue. If 
a solution in PFknown is also a member of PFtrue its background 
color is blue as well. Otherwise, a light grey background is 
used, and a cross is displayed at the dominated solution in 
PFknown to show that a solution in PFtrue dominates this solution. 
However, if the distance of a dominated solution in PFknown is 
less than the defined threshold in WSGR metric, then the cross 
is not displayed to indicate that the solution is close enough.  

Each solution in PFknown is connected to the nearest solution 
in PFtrue, in which the Euclidian distance (in the objective 
space) between them is minimum. This minimum distance is 
the same as the distance measure used in calculating the GD 
metric. The color and thickness of each edge shows the 
distance between two connecting solutions. As the distance 
increases the edges become thinner and lighter. So the edges 
connecting true Pareto optimal solutions in PFknown to their 
corresponding solutions in PFtrue are the thickest and darkest 
since the distance is zero. This edge visualization allows us to 
easily recognize the outliers and fluctuation in the distance 
values. 

As can be seen in Fig. 3, four members of PFknown are also 
in PFtrue. For these solutions, the background color is blue and 
their edges are the thickest and darkest (black color). The other 
three solutions in PFknown are dominated by solutions in PFtrue. 
Each one is connected to the nearest solution in PFtrue that 
dominates it. The solution P1 in PFknown is close enough to 
PFtrue according to the distance threshold and therefore the 
cross is not drawn. The solution P7 in PFknown is an outlier since 
its distance value is too far from the other distance values. Its 
edge color and thickness differ a lot in comparison with other 
edges. It is much lighter and thinner than others. The 
visualization of the closeness aspect has following advantages: 

• It enables us to easily find out which solutions in 
PFknown are dominated by which solutions in PFtrue. 

• It allows us to understand which true Pareto optimal 
solutions have been found by the MOEA. 

• Since for each solution its objective values are shown 
as well, it is easy to find out in which parts of the 
objective space the obtained solutions are near to the 

true Pareto front and in which parts they are far away. 
For example, from Fig. 3 we can see that none of the 
low cost (less than 100) Pareto optimal solutions in 
PFtrue have been found.  

• It is possible to easily recognize outliers. 

• It clearly shows the fluctuation in the distance values. 

B. Diversity Metrics 
The Diversity metrics can be divided into two groups: 1) 

metrics evaluating the spread of solutions along the Pareto 
front and 2) metrics evaluating the distribution of solutions. In 
this section, we explain one metric for each group. 

1) ∇-metric (for measuring spread) 
The ∇-metric [3] calculates the volume of a hyperbox 

formed by the extreme objective values observed in the Pareto 
optimal set: 
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Where M is the number of objectives, 

€ 

fm
max and 

€ 

fm
min are 

the maximum and respectively minimum values of the mth 
objective in the Pareto optimal set. A bigger value spans a 
larger portion and therefore is better. This metric does not 
reveal the exact distribution of intermediate solutions, so we 
have to use another metric for evaluating the distribution. 

Visualization of the spread: For each objective, a 
horizontal axis from 0 to 1 is drawn and colored like the color-
coding technique used for showing that particular objective in 
the multi-objective DSE visualization. For example, in our 
case, colors from yellow to red are used for representing the 
performance of design points (in terms of processing time); 
therefore, this color scheme is used for coloring the 
corresponding axis in the spread visualization. However, for 
representing the cost of design points, instead of the color, the 
size of the node in the visualization tree is used. Thus, the cost 
axis in our spread visualization is colored with a solid color, 
which is the same as the cost nodes in the DSE tree. 

For each axis, the range between the minimum and 
maximum value of the corresponding objective in the Pareto 
optimal set is determined and shown above the (color-coded) 

 

 
Figure 4. Visualization of the spread 

Figure 3. Visualization of the closeness 
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∇ = 0.98 × 0.46 × 0.71 = 0.32



objective axis. Fig. 4 represents the visualization of the spread 
for the Pareto optimal set shown in Fig. 1. As can be seen in 
Fig. 4, the Pareto optimal set has an almost perfect extent in 
processing time and its spread in terms of cost is fairly good. 
However, only a small portion of the energy consumption is 
covered by the solutions in this Pareto optimal set. As a result, 
the value of ∇-metric is relatively small and indicates that this 
set does not have a good extent. The spread visualization has 
the following advantages: 

• It is not limited to the number of objectives. Only one 
axis is added for each objective. 

• For each objective, it can easily be seen that solutions 
are located in which part of the objective space. Both 
in terms of spread width (difference between the 
minimum and maximum) and objective values (the 
value of the minimum and maximum). For example, in 
Fig. 4 the spread width of the energy consumption is 
small. However, the covered portion is located near the 
optimum part of this objective space.   

2) σmst - metric (for measuring distribution) 
In [6], the well-known Schott’s Spacing metric (SS) is 

proposed which tries to assess how evenly the non-dominated 
solutions are distributed. It is based on computing the shortest 
distance between solutions. The drawback of this metric is that 
in the case that solutions are clustered in small groups along the 
Pareto front, the distance between the groups are not 
considered since only the shortest distances are computed. 
More specifically, it considers some information more than 
once (distance between solutions inside a group) while ignoring 
some useful distribution information such as the distance 
between the groups. Therefore, for measuring the distribution 
of solutions in a Pareto optimal set, we propose a new metric, 
σmst, which is the standard deviation of the edges’ weights in 
the Minimum Spanning Tree (MST) generated by Pareto 
optimal solutions. The weights of the tree edges are the 
Euclidian distances (in the objective space) between solutions.  

A minimum spanning tree is a subgraph of a weighed 
graph, which is a tree and contains all of the graph’s nodes and 
a subset of its edges, such that all nodes are connected and the 
total weight of the edges is minimal. We define the procedure 
of constructing an MST from a Pareto optimal set as follows: 

Algorithm 1: constructing MST from a Pareto set 
 

1. Compute the Euclidian distance (in the objective 
space) between any two solutions in the Pareto 
optimal set 

2. Create a fully connected weighted graph (G) in such 
a way that each solution in the Pareto optimal set 
indicates a node in the graph G and the edge weight 
between two nodes is the Euclidian distance between 
the corresponding solutions 

3. Generate a minimum spanning tree for the graph G 
(Prim’s algorithm): 
(a) Let MST be an empty tree 
(b) Select a random node in G and add it to MST 
(c) While MST has fewer nodes than G do: 

i. Find the smallest edge connecting a node 
in MST to a node in G-MST 

ii. Add the corresponding edge and node to 
the MST 

When the MST is made, σmst can be computed as follows: 
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σmst =
1

E −1
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E
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Where |E| is the number of edges in the MST, wi is the 
weight of the ith edge and 

€ 

w  is the average weight of the edges 
in the MST. The σmst metric measures the standard deviation 
of the edges’ weights in the MST. The edges’ weights denote 
the minimum distances between connecting solutions. 
Therefore, a smaller value indicates that the distribution of 
solutions is closer to the uniform distribution and thus is better. 

Visualization of the distribution: We propose a 
visualization method, which clearly shows how discovered 
Pareto optimal solutions are distributed in the objective space. 
For visualizing the distribution, the constructed MST is drawn 
in such a way that the length of the edge between two nodes 
(solutions) represents the edge weight (the Euclidian distance 
between two solutions). A longer edge implies a larger 
distance. Therefore, if in a Pareto optimal set all the edges have 
almost the same length, then this means that the solutions are 
distributed (nearly) uniformly. Each node in the MST, which 
indicates a solution in the Pareto optimal set, is drawn in such a 
way that its objective values can be seen as it is shown in Fig 2. 

For better viewing and analyzing the distribution of 
solutions, it is possible to cluster the nodes (solutions) in the 
MST according to their edge weights (distance). If the distance 
between a solution and its parent is less than a certain threshold 
(determined by the user) then it is in the same cluster as its 
parent. Otherwise, it becomes a member of a new cluster. The 
solutions in the same cluster have the same background color. 
A Pareto optimal set with a smaller number of clusters has a 
better distribution. For a better view, the edges connecting two 
different clusters are drawn by dashed lines. 

Fig. 5 shows the visual representation of the distribution for 
the Pareto optimal set shown in Fig. 1. In this figure, 
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w +σmst is 
chosen as a threshold for clustering the solutions. Here, the 
solutions are distributed into two clusters, since there are two 
different background colors. Excluding the solution labeled by 
“P3”, all the other solutions are in the same cluster, which 
means that the distance between them is less than the threshold 
and therefore their distribution is fairly uniform. However, the 
large distance between P3 and its parent causes the value of the 
σmst metric to become slightly bigger and thus indicates that 
the distribution of solutions is suboptimal. Using distribution 
visualization has the following advantages: 

 
Figure 5. Visualization of the distribution 



• For each two consecutive solutions, besides the 
distance value, the amount of difference between their 
objective values can be seen. Therefore, it is easy to 
find out which objective value(s) have a high impact 
on the distance value. For example, in Fig. 5, solutions 
P2 and P4 have exactly the same cost and their energy 
consumption is almost the same too. But their 
difference in processing time is significant. Thus this 
objective has the highest impact on the distance value. 

• It can be easily used for problems with more than three 
objectives because objective values are shown by node 
attributes (see Fig. 2).  

• By clustering the solutions, it is easy to understand 
which parts of the objective space are properly covered 
by well-distributed Pareto optimal solutions and in 
which parts the coverage and distribution is poor. 

C. Combined Metrics 
The combined metrics evaluate both multi-objective 

optimization goals in a combined sense. They provide a 
measure of closeness as well as diversity in an implicit manner. 

1) Hypervolume 
This metric [1] measures the hypervolume of the objective 

space covered by members of a Pareto optimal set and a 
reference point. The hypervolume represents the size of the 
region dominated by the solutions in the Pareto optimal set. 
The reference point can simply be found by constructing a 
vector of worst objective values. The hypervolume metric is 
interesting because it is sensitive to the closeness of solutions 
to the true Pareto optimal set as well as the distribution of 
solutions across the objective space. The hypervolume value is 
calculated by summing the volume of hyper-rectangles 
constructing the hypervolume. A Pareto optimal set with a 
large value for the hypervolume is desirable. 

Visualization of the Hypervolume: As we mentioned 
before, one of the main challenges of proposing a visualization 
method for a performance metric is that it can be used for 
problems with more than three objectives. The visualization of 
the hypervolume metric, which is typically used in literature, is 
limited to three objectives. However, we propose a new 
visualization method, which is not restricted to the number of 
objectives. To do that, we divide the m–dimensional objective 
space to m-1 two-dimensional spaces. One certain objective 
(determined by the user) is chosen as a base and is a member of 
all 2D spaces, while all the other objectives are in separate 2D 
spaces. For each two-dimensional space, an x-y graph is drawn 
in which the x-axis shows the base objective and therefore is 
the same in all graphs and the y-axis represents the other 
objective. In each x-y graph the colored region shows the 
dominated part. As an example, consider a problem with three 
objectives: f1, f2 and f3. We divide this 3-dimensional objective 
space to two 2D spaces and represent them with two x-y 
graphs: f2 versus f1 and f3 versus f1. Here, f1 is chosen as the 
base objective. 

By dividing the objective space to two-dimensional spaces, 
each m-dimensional hyper-rectangle in the hypervolume 
region, is divided into m-1 rectangles (two dimensional hyper-

rectangle). Each rectangle is drawn in its corresponding x-y 
graph. The base objective (x-axis) constructs the width of the 
all m-1 rectangles and each of the other objectives constructs 
the height of its corresponding rectangle (y-axis). To 
distinguish the divided rectangles of a particular hyper-
rectangle in different x-y graphs, they are colored with the 
same color in all graphs. If two or more hyper-rectangles have 
overlap in some spaces, textures are used. Each hyper-rectangle 
has a specific texture. Therefore, the overlapping areas contain 
several textures. 

Fig. 6 shows an example of hypervolume visualization for a 
Pareto optimal set containing three solutions: S1={0.1,0.5,0.2}, 
S2={0.3,0.3,0.4}, S3={0.5,0.1,0.1}. Small black circles in the 
graphs display the Pareto optimal solutions. The reference 
point (W) is {1,1,1}. As can be seen in this figure the 
hypervolume region consists of four hyper-rectangles, which 
are denoted by numbers from 1 to 4. For each hyper-rectangle, 
the values of its axis in each dimension and its volume are 
written at the bottom of the visualization with the same color as 
its corresponding rectangles in x-y graphs. For instance, in Fig. 
6, the volume of the hyper-rectangle denoted as 1 is 
0.2*0.5*0.8=0.08 

The second and third hyper-rectangles have overlap in the f3 
versus f1 graph. Therefore, textures are used. The texture of the 
second hyper-rectangle is horizontal lines and the texture of the 
third hyper-rectangle is vertical lines. Thus, the overlapping 
area has both textures. The hypervolume value is calculated by 
summing the volume of hyper-rectangles, as shown in Fig. 6. 
This type of visualization enables us to clearly see the 
dominating area of each objective surface separately. Since the 
x-axis is the same in all surfaces, the comparison between them 
can be made easily. For instance, in the example shown in Fig. 
6, we can see that the size of the dominating region in the f3- f1 
surface is bigger than the dominating area in the f2- f1 surface. 

D. Dynamic Metrics 
Previous metrics described in this section are used to assess 

the quality of the obtained Pareto optimal set at the end of the 
MOEA execution. However, dynamic performance metrics 
show how an MOEA achieves the final quality during its 
execution. They also illustrate how the quality of solutions is 
varying during MOEA execution. Such information provides 
insight in the working of the algorithm and allows detailed 
evaluation of the strengths and weaknesses of the algorithm. 
Moreover, these metrics are especially useful when the quality 
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of the end results of compared algorithms do not differ 
significantly; however, the way that these results are achieved 
may provide valuable information such as how fast a certain 
search algorithm converges to the Pareto optimal set. The 
output of dynamic metrics is not a single value. Instead, a set of 
values is computed that shows the dynamic behavior of the 
algorithm. In VMODEX, three dynamic metrics are available: 
1) dynamic hypervolume 2) dynamic closeness 3) the dynamic 
process of finding final Pareto optimal solutions. 

It should be mentioned that the examples depicted here to 
illustrate the dynamic metrics, are captured from the case study 
results explained in the next section. In our case study, the 
performance of two MOEAs using different repair mechanisms 
(intensive-repair and moderate-repair) is compared with 
various quality metrics described in this paper. To save space, 
the results of the comparison with respect to the dynamic 
metrics are shown in this section.  

1) Dynamic Hypervolume (DH) 
This metric shows how the value of the hypervolume 

metric evolves over the evaluations. If an algorithm can reach 
to a desirable hypervolume with fewer evaluations, this means 
its optimization speed is faster and therefore its performance is 
better. As we mentioned before, the hypervolume metric 
measures both the closeness and diversity of obtained solutions 
in an implicit manner. Therefore, this metric provides an 
overall evaluation of how the MOEA finds better 
approximations of Pareto optimal solutions during its 
execution.  For showing this metric, the hypervolume value is 
drawn versus the number of evaluations. Fig. 7 represents this 
metric for our case study. The hypervolume value for zero 
evaluations indicates the hypervolume for the initial 
population, which has been generated randomly. As can be 
seen in Fig. 7, both algorithms reach to almost the same 
hypervolume at the end of the execution. However, the 
intensive-repair approach attains this value within 5500 
evaluations whereas moderate-repair reaches this hypervolume 
after 9000 evaluations. Furthermore, we can see that intensive-
repair has a significant improvement after approximately 1000 
evaluations, after which the hypervolume only slightly 
increases in subsequent evaluations. However, the behavior of 
moderate-repair is quite different as it has a much smoother 
improvement. 

2) Dynamic Closeness (DC) 
This metric is similar to the dynamic hypervolume, except 

that one of the closeness metrics is used. Therefore, it shows 
how fast the found Pareto front converges towards the true 
Pareto front. In Fig. 8, the generational distance is used for 
evaluating the dynamic closeness of the two aforementioned 
MOEAs. Since, the true Pareto front is not known in our case 
study, a reference set is used. It can be seen that at the end of 

the execution as well as during the evaluations, the solutions 
found by intensive-repair are much closer to the reference set. 
Moreover, the most significant improvement for both 
algorithms is achieved after approximately 500 and 1000 
evaluations. However, the amount of this improvement for 
intensive-repair is more significant than for moderate-repair. 
After 1000 evaluations, both algorithms only slightly improve.  

3) Dynamic process of Finding final Pareto Optimal     
      Solutions (DFPOS) 

We propose a new dynamic metric, called DFPOS, which 
shows the progress of the algorithm in finding the final Pareto 
optimal solutions. A final Pareto optimal solution is a solution 
that will not be dominated by any other solution during the 
MOEA execution. This metric represents a set of generation 
numbers in which a final Pareto optimal solution is found for 
the first time. Thus, it is easy to understand in which 
generations the algorithm has found a new final Pareto optimal 
solution. Note that this metric can be calculated, when the 
MOEA execution is terminated. The benefit of this metric is 
illustrated by our case study results later in this section. 

We also propose a visualization method for showing the 
results of the DFPOS metric, which is shown in Fig. 9. For 
each generation a line is drawn. If within a generation a new 
final Pareto optimal solution is found, then the color of the line 
representing that generation is blue. Otherwise, a gray line is 
used. For better viewing, these lines are shown as radiuses of a 
circle in which the angle between any two lines is the same. In 
Fig. 9, moderate-repair has found some new Pareto optimal 
solutions in the last generations. So, it is more likely to find 
other Pareto optimal solutions by running this algorithm for 
more generations and improve the quality of the obtained 
solutions. However, in intensive-repair there is no new Pareto 
optimal solution after 54th generation. Therefore, by evaluating 
more solutions, it will probably not find a new Pareto optimal 
solution and the quality of the results will not improve. Thus, 
we can reduce the number of generations in order to decrease 
the computational cost. 

V. CASE STUDY 
There are various multi-objective evolutionary optimizers 

known from literature such as SPEA2, NSGA-II, etc. Thus, for 
solving a multi-objective problem, it is important to choose an 

 
Figure 7. Comparing performance with DH metric 
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appropriate optimization technique that provides the best 
Pareto optimal set. Quality metrics can be used to compare the 
outcomes of different multi-objective optimizers in a 
quantitative manner. The purpose of these quality metrics is to 
reveal the strengths and weaknesses of each optimization 
approach and indentify the most promising techniques. As we 
mentioned in the introduction, the performance of MOEAs is 
highly dependent on their parameter settings. So, the quality 
metrics can be used for investigating the effect of different 
parameter settings for a single algorithm as well. 

In our case study, we map a motion-JPEG (M-JPEG) 
encoder to an MPSoC platform architecture consisting of a 
general-purpose microprocessor (mP), a microcontroller (mC), 
an application specific instruction processor (ASIP), two 
Application Specific Integrated Circuits (ASICs), one SRAM 
and two DRAMs. For solving the mapping decision problem, 
the SPEA2 [3] multi-objective evolutionary optimizer is used 
to achieve a set of the best alternative mapping decisions under 
three criteria: the processing time, energy consumption and 
cost of the architecture. Due to the randomness in MOEAs (in 
initialization, recombination and mutation steps), they are 
prone to violating the problem constraints and producing 
infeasible mappings. Therefore, we use a repair mechanism to 
handle constraint violations. In order to examine the effect of 
repair usage on the MOEA performance, we utilize two 
different repair strategies. The quality of the Pareto optimal set 
found by each strategy is measured and visualized by 
VMODEX with a variety of metrics described in Section IV. 

With respect to repair, we apply two strategies [3]. (1) A 
moderate-repair strategy (MR) in which at the end of each 
generation all invalid individuals are repaired. This allows 
infeasible individuals to enter the mutation step, and therefore, 
may help to explore new feasible areas over unfeasible 
solutions. This is especially important for problems in which 
the feasible regions may not be connected. (2) An intensive-
repair strategy (IR) in which all invalid individuals are repaired 
immediately after creation. Hence, all individuals entering 

mutation are feasible. For each repair strategy, we run SPEA2 
for 100 generations with 100 individuals per population. In the 
following, we compare the results of these repair strategies 
with different quality metrics. 

Closeness metrics: Since in our case study the true Pareto 
front is not known, we use a reference set to evaluate the 
closeness of discovered Pareto optimal solutions. For 
estimating the reference Pareto front, we first combined the 
results of running SPEA2 for 1000 generations for both repair 
strategies. The results of our case study are also combined. 
Then we removed the dominated solutions from the combined 
set. As a result, we found 18 Pareto optimal solutions that are 
used as an estimation of the true Pareto optimal solutions. The 
visualization of closeness metrics for both repair strategies is 
shown in Fig. 10. As can be seen in this figure, the IR strategy 
has found 66% (12 out of 18) of solutions in the reference set. 
The MR has only found 22% (4 out of 18) of the reference 
Pareto optimal solutions. From the visualization we can see that 
all the cheap solutions (less than 100) in the reference set are 
found by the IR strategy and none of the solutions in the 
reference set with high-energy consumption are found by the 
MR. With respect to the ER metric, except one solution (P1), all 
other solutions of IR are in the reference set. However, P1 is 
close enough to the reference set with respect to the distance 
threshold. But, more than half of the solutions found by MR are 
dominated by the solutions in the reference set. Furthermore, 
solutions in IR are more than 18 times closer to the reference 
set than those in MR (according to the GD metric). Moreover, 
we can see that in the Pareto optimal set found by MR there is 
one outlier (P10). As a result, the IR performs much better than 
moderate-repair with respect to the all closeness metrics. 

∇-Metric: The visualization of the ∇-metric for each repair 
strategy is shown in Fig. 11. As can be seen in this figure, both 
repair strategies have almost the same extent in processing time 
and cost. However, the IR (red line) has a much better extent in 
energy consumption, and thus, in general performs better in 
terms of ∇-metric. 

 

Figure 10. Comparing performance with closeness metrics 

 
∇ (Intensive-Repair) = 0.66 × 0.95 × 0.59 = 0.3688        ∇ (Moderate-Repair) = 0.66 × 0.46 × 0.65 = 0.1964 

Figure 11. Comparing performance with ∇ metrics 
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σmst-Metric: Fig. 12 shows the visualization of the σmst-
metric for both repair strategies. In this figure, 
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w +σmst of the 
reference set is chosen as a threshold for clustering the 
solutions. All the Pareto optimal solutions found by MR are in 
the same cluster which indicates that the distances between 
connecting solutions is less than the threshold and therefore the 
distribution is nearly uniform. However, the solutions of the IR 
are distributed into four clusters. Solutions with high-energy 
consumption (P8, P6, P12) are grouped in different clusters and 
all the other solutions are in the same cluster. Thus, we can 
conclude that in the part of the objective space containing high-
energy consumption the distribution of solutions is poor and in 
the other parts the distribution is relatively uniform. 

Hypervolume Metric: Fig. 13 represents the visual form of 
the hypervolume metric for both repair strategies. As can be 
seen in this figure, in both intensive and moderate repair, a 
large portion of objective space is dominated by Pareto optimal 
solutions. However, the size of the dominating area in the 
processing time-energy consumption surface is bigger than the 
processing time-cost surface.  

The comparison of the performance between repair 
strategies in terms of dynamic metrics is discussed in the 
previous section. As a result, the moderate-repair performs 
better in only finding well-distributed solutions (σmst-metric) 
while for all the other quality aspects, the intensive-repair 
obtains more preferable Pareto optimal solutions. 

VI. CONCLUSION 
In this paper, we have extended VMODEX to allow 

algorithm developers to evaluate and compare the performance 
of different MOEAs that are used for searching the design 
space. Several metrics (from literature and new ones) and their 
visualizations are provided to enable algorithm developers to 
assess the quality of the discovered Pareto optimal solutions 
from different perspectives. The visualization techniques can 
reveal some useful and interesting information, which has been 
hidden in the quantitative representation of a quality aspect. 
Therefore, by using VMODEX, algorithm developers can 
easily examine different optimization algorithms for exploring 
the design space and find the best one for their specific 
problems. Then, the results of the best algorithm are delivered 
to designers for further analysis. VMODEX is helpful for 
designers as well. They can use VMODEX [5] to gain insight 
into the landscape of the design space and understand how the 
design space is searched by a heuristic search algorithm. 
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Figure 13. Comparing performance with HV metrics 
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Figure 12. Comparing performance with σmst metrics 
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