
Signature-Based Calibration of Analytical
System-Level Performance Models

Stanley Jaddoe and Andy D. Pimentel

Computer Systems Architecture group
Informatics Institute, University of Amsterdam, The Netherlands

{vjaddoe,andy}@science.uva.nl

Abstract. The Sesame system-level simulation framework targets efficient de-
sign space exploration of embedded multimedia systems. Even despite Sesame’s
efficiency, it would fail to explore large parts of the design space simply because
system-level simulation is too slow for this. Therefore, Sesame uses analytical
performance models to provide steering to the system-level simulation, guiding
it toward promising system architectures and thus pruning the design space. In
this paper, we present a mechanism to calibrate these analytical models with the
aim to deliver trustworthy estimates. Moreover, we also present some initial eval-
uation results with respect to the accuracy of our calibration mechanism using a
case study with a Motion-JPEG encoder.

1 Introduction

The increasing complexity of modern embedded systems, which are more and more
based on (heterogeneous) MultiProcessor-SoC (MP-SoC) architectures, has led to the
emergence of system-level design. A key ingredient of system-level design is the no-
tion of high-level modeling and simulation in which the models allow for capturing the
behavior of system components and their interactions at a high level of abstraction. As
these high-level models minimize the modeling effort and are optimized for execution
speed, they can be applied at the early stages of design to perform, for example, archi-
tectural Design Space Exploration (DSE). Such early DSE is of eminent importance as
early design choices heavily influence the success or failure of the final product.

With our Sesame modeling and simulation framework [1,2], we target efficient
system-level design space exploration of embedded multimedia systems, allowing rapid
performance evaluation of different architecture designs, application to architecture
mappings, and hardware/software partitionings. Key to this flexibility is the separation
of application and architecture models, together with an explicit mapping step to map
an application model onto an architecture model.

Although Sesame’s system-level simulation allows for efficiently evaluating differ-
ent application/architecture combinations, it would fail to explore large parts – let alone
the entire span – of the design space. This is because system-level simulation is simply
too slow for comprehensively exploring the design space, which is at its largest during
the early stages of design. For this reason, Sesame uses analytical models [3,4] to pro-
vide steering to the system-level simulation, guiding it toward promising system archi-
tectures and therefore allowing for pruning the design space. These analytical models,

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 268–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Signature-Based Calibration of Analytical System-Level Performance Models 269

which include models for performance, power and cost estimation, are used for quickly
searching the design space by means of multi-objective optimization using evolution-
ary algorithms. So far, this analytical modeling stage lacked a systematic method for
deriving the model parameters that specify application requirements and architecture
capabilities. Clearly, the accuracy of these analytical models is highly dependent on the
correct determination of these parameters.

In this paper, we focus on the performance estimation part of our analytical mod-
els (i.e. the power and cost models are not addressed) and present a technique based
on execution profiles, referred to as signatures, that allows for deriving the application
and architecture specific parameters in these analytical performance models. Using a
preliminary experiment with a Motion-JPEG encoder application and an MP-SoC ar-
chitecture, we also show initial results of the accuracy of our approach by comparing
the estimations of our signature-based analytical model with those from simulation.

The remainder of the paper is organized as follows. In the next section, we introduce
the basic analytical system model [3,4] for which we want to derive the model parame-
ters. Section 3 describes how we determine application specific model parameters via a
profiling mechanism based on signatures. Section 4 describes how architecture specific
parameters are derived using a comparable mechanism. In Section 5, we put together
the pieces of the puzzle presented in Sections 3 and 4 to actually construct signature-
based analytical performance models. Section 6 presents initial results of the evaluation
of the accuracy of our approach using an experiment with a Motion-JPEG encoder ap-
plication. Section 7 describes related work, and Section 8 concludes the paper.

2 Basic Analytical System Model

In the Sesame framework, applications are modeled using the Kahn Process Network
(KPN) [5] model of computation in which parallel processes communicate with each
other via unbounded FIFO channels. By executing the application model, each Kahn
process records its actions in order to generate its own trace of application events which
is necessary for driving an architecture model. There are three types of application
events, divided in two groups: execute events for computational behavior and read and
write events for communication behavior.

The architecture models in Sesame simulate the performance consequences of the
computation and communication events generated by an application model. Architec-
ture models are constructed from building blocks provided by a library containing tem-
plate models for processing cores, and various types of memories and interconnects.

Since Sesame makes a distinction between application and architecture models, it
needs an explicit mapping step to relate these models for co-simulation. In this step, the
designer decides for each application process and FIFO channel a destination architec-
ture model component to simulate its workload. This is an important step in the design
process, since the final success of the design can be highly dependent on these mapping
choices. To decide on an optimum mapping, many instances need to be considered (and
thus simulated). In realistic cases, in which the underlying architecture is also varied
during the process of design space exploration, simulation of all points in the design
space is infeasible. Therefore, analytical models are needed to prune the design space,

270 S. Jaddoe and A.D. Pimentel

steering the designer towards a small set of promising design points which then can be
simulated. The remainder of this section elaborates on the basic analytical performance
model [3,4] we use in Sesame for design space pruning, after which the subsequent
sections present our signature-based mechanism to ‘calibrate’ this analytical model.

The application models in Sesame are represented by a graph KPN = (VK ,EK) where
the set VK and EK refer to the Kahn processes and the directed FIFO channels between
these processes, respectively. For each process a ∈ VK , we define Ba ⊆ EK to be the set
of FIFO channels connected to process a, Ba = {ba1, . . . ,ban}. For each Kahn process,
we define a computation requirement, shown with αa, representing the computational
workload imposed by that Kahn process onto a particular component in the architecture
model. The communication requirement of a Kahn process is not defined explicitly,
rather it is derived from the channels attached to it. We have chosen this type of defin-
ition for the following reason: if the Kahn process and one of its channels are mapped
onto the same architecture component, the communication overhead experienced by the
Kahn process due to that specific channel is simply neglected. For the communication
workload imposed by the Kahn process, only those channels that are mapped onto dif-
ferent architecture components are taken into account. So our model neglects internal
communications and only considers external communications. Formally, we denote the
communication requirement of the channel b with βb. To include memory latencies into
our model, we require that mapping a channel onto a specific memory asks computation
tasks from the memory. To express this, we define the computational requirement of the
channel b from the memory as αb. Here, it is ensured that the parameters βb and αb are
only taken into account when the channel b is mapped onto an external memory. The
actual determination of the above model parameters, which is the contribution of this
paper, will be addressed in the next section.

Similarly to the application model, the architecture model is also represented by a
graph ARC = (VA,EA) where the sets VA and EA denote the architecture components
and the connections between the architecture components, respectively. In our model,
the set of architecture components consists of two disjoint subsets: the set of proces-
sors (P) and the set of memories (M), VA = P ∪ M and P ∩ M = /0. For each processor
p ∈ P, the set Mp = {mp1, . . . ,mp j} represents the memories which are reachable from
the processor p. We define processing capabilities for both the processors and the mem-
ories as cp and cm, respectively. These parameters need to be set such that they reflect
processing capabilities for processors, and memory access latencies for memories. The
determination of these parameters will be addressed in Section 4.

The above model needs to adhere to a number of constraints, such as that each Kahn
process has to be mapped to a processor, each channel has to be mapped to a processor
(in case of local communication) or memory, and so on. For a formal description of
these constraints, we refer to [3,4].

3 Application Requirements

As indicated in the previous section, we need to determine the model parameters for
application requirements (αa, αb and βb) and architecture capabilities (cp and cm). To
this end, we present an approach based on execution profiles of application events, re-

Signature-Based Calibration of Analytical System-Level Performance Models 271

ferred to as signatures, to determine these model parameters. In the remainder of this
section, we focus on the derivation of the model parameters – via these signatures – for
application requirements. As will become clear, our approach strictly adheres to the sep-
aration of concerns concept [6], separating application (requirements) from architecture
(capabilities) signatures.

A signature of a Kahn process represents its computational requirements. These
process signatures describe the computational complexity at a high level of abstrac-
tion using an Abstract Instruction Set (AIS). Currently, our AIS consists of the small
set of abstract instruction types as shown in Table 1(a)1. To construct a signature, the
real machine instructions that embody the computation, derived from an Instruction Set
Simulator (ISS), are first mapped onto the AIS, after which a compact execution profile
is made. This means that the resulting signature is a vector containing the instruction
counts of the different AIS instructions. The first column in Table 1(a) shows the signa-
ture (vector) index that each AIS instruction type corresponds to.

To illustrate the process of determining the process signatures, consider Table 1(b)
which shows an example event trace of Kahn process k1. When deriving the signature
of process k1, only the execute events in its event trace are considered. Each execute
event comes with an identifier of an operation, to indicate which operation was exe-
cuted. The signature of k1 is the sum of the signatures of the operations executed by k1.
In the example of Table 1(b), operations op1 and op2 have signatures that describe the
computational requirements of these operations. Now, assume that an ISS generates the
trace of (in this case, ARM) instructions as shown in the first column of Table 1(c) for
op1. The next step is to classify these instructions (is it a basic integer instruction, or a
memory operation, or a branch instruction, etc.). In other words, the assembly instruc-
tions have to be mapped to the AIS instructions defined for our signatures. The result
of this classification is shown in the second column of Table 1(c). Then, a signature for
op1 can be generated based on the counts of the AIS opcodes. For op1, this gives

op1.signature = [3,15,1,0,3,9,0,0] (1)

with the AIS counts ranked according to the first column of Table 1(a). Using the same
method, a signature for op2 can be generated. Assume that its signature is:

op2.signature = [8,17,8,0,2,29,2,0] (2)

Then, using these signatures we can answer the original question, that is, calculate the
signature of process k1 (i.e., αk1). According to the event trace of process k1, op1 was
executed two times, op2 one time. Thus,

k1.signature = 2op1.signature+ op2.signature = [14,47,10,0,8,47,2,0] (3)

An important thing to note is that in practice, if an operation is executed more than
once, the derived signatures for each execution of the operation may not be equal (due
to data dependencies, or pseudo-random behaviour of the operation). In that case, the
operation’s signature becomes the average signature of all executions of that operation.

1 In this paper, we focus on programmable cores as processor targets, but the AIS also consists
of a special “co-processor” instruction that can be used for modeling dedicated HW blocks.

272 S. Jaddoe and A.D. Pimentel

Table 1. Table (a) shows the currently defined AIS instructions with their index in the vector-
based process signatures. Table (b) lists the event trace of process k1, and Table (c) shows an
execution trace of op1 as obtained by an ARM ISS (left column) and the corresponding AIS
instructions (right column).

Signature index AIS opcode Description
1 AIS BMEM Block memory transfers
2 AIS MEM Memory transfers
3 AIS BRANCH Branches
4 AIS COPROC Co-proc. instructions
5 AIS IMUL Int. multiplications
6 AIS ISIMPLE Simple Int. arithmetic
7 AIS OS Software interrupts
8 AIS UNKNOWN Non-mappable instruction

(a)

read f2

execute op1
write f1

read f2
execute op2
write f1
execute op1
write f1

write f1

ARM instruction AIS opcode
bl 0x81c4; AIS BRANCH
mov ip, sp; AIS ISIMPLE
stmdb sp, fp, ip, lr, pc;! AIS BMEM
sub fp , ip , #4; AIS ISIMPLE
sub sp , sp, #12; AIS ISIMPLE
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−20]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−24]; AIS MEM
rsb r3 , r3 , r2 ; AIS ISIMPLE
str r3 , [fp , #−24]; AIS MEM
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−20]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−24]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL

ARM instruction AIS opcode
str r3 , [fp , #−16]; AIS MEM
ldr r2 , [fp , #−20]; AIS MEM
ldr r3 , [fp , #−16]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL
str r3 , [fp , #−24]; AIS MEM
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−24]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−20]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL
str r3 , [fp , #−16]; AIS MEM
sub sp , fp , #12; AIS ISIMPLE
ldmia sp, {fp, sp, pc}; AIS BMEM
mov ip, sp; AIS ISIMPLE
stmdb sp, fp, ip, lr, pc;! AIS BMEM

(b) (c)

A signature of a FIFO channel describes the load induced by the channel on memory
components (i.e., αb and βb from Section 2). This communication requirement of a
FIFO channel depends on the size of the token (in bytes) sent via the channel, and the
total number of tokens sent. In our application models, the size of the tokens sent via a
FIFO channel is fixed. The number of tokens sent via a FIFO channel can be extracted
from the Kahn process’ event trace. Each write-event in an event trace contains data
about to which communication port the token was sent. So, the signature of a FIFO
channel f is a two-element vector containing the number of tokens sent via the channel
and the size of each token:

f .signature = [ntokens,nsize] (4)

For example, assume the event trace of process k1 in Table 1(b) and a token size for
channel f1 of nsize = 12 bytes. Since process k1 writes four times a token of 12 bytes to
f1 (see Table 1(b)), the signature of f1 thus becomes:

f1.signature = [4,12] (5)

Signature-Based Calibration of Analytical System-Level Performance Models 273

4 Architectural Capabilities

Previously, the computational and communication requirements of an application have
been defined. In this section, the computational and communication capabilities of
processors and memories will be defined. These capabilities will also be encoded as
(vector-based) signatures.

If a Kahn process k1 is mapped onto a processor p1, then the number of cycles p1 is
busy processing k1 (denoted as T (p1)) can be calculated as a function of the signatures
of k1 (the computational requirements) and p1 (the processor capabilities):

T (p1) = f (k1.signature, p1.signature) (6)

The aim is to find or define both p1.signature and the function f in (6). With these, we
can calculate the number of cycles a processor is busy processing the execute events
emitted by Kahn processes mapped onto the processor.

Using an ISS, we can measure how many cycles a certain operation takes when
executed on a specific processor (like an ARM). If this is repeated for many operations,
a training set can be built. Using this training set, the computational capabilities of
a processor (i.e., its signature) can be derived by, for example, linear regression, or
techniques used in the field of machine learning.

Using the example from the previous section, a (very small) training set can be made.
This training set consists of the signatures of op1 and op2 and the associated cycle
counts. Let us assume that executing op1 took 185 cycles, and that op2 took 369 cycles
when executed on an ARM processor. Since a training set consists of a list of vectors
(operation signatures), and a list of cycle counts, this problem can be solved using
the least-squares method. For example, let SM be the matrix with the signatures of
operations op1 and op2 as rows, p1.signature be the weight vector we want to calculate
for processor p1, and c be the vector with cycle counts for each row in SM. Then,
SM · p1.signature = c is solved using the least squares method.

(
3 15 1 0 3 9 0 0
8 17 8 0 2 29 2 0

)
· p1.signature =

(
185
369

)
(7)

The signature of p1 is the the vector consisting of weights for each AIS instruction. The
unit of the elements in the vector is ‘cycles per instruction’. Note that these weights can
be adapted in order to perform high-level architectural design space exploration for the
given processor (e.g., make multiplications more/less expensive, etc.).

p1.signature = [2.19,7.11,1.62,0.0,1.19,7.4,0.33,0.0] (8)

Given an operation signature s that is not included in the training set, the estimated num-
ber of cycles on p1 for that signature is simply the inner product of s and p1.signature.

The signature (and thus the communication capability) of a memory component
(i.e., cm) is a two-element vector [rread,rwrite] that only consists of the (average) read
and write latencies. So far, in contrast to processor signatures, we have not developed
any methods to get reliable memory signatures. Instead, a designer may use values from
memory data sheets to create a memory signature.

274 S. Jaddoe and A.D. Pimentel

5 Analytical Performance Estimation

In the previous sections, portions of a (signature-based) analytical performance model
were presented. In this section, these portions will be forged together to get an analytical
performance model for an architecture.

T c(p) ← 0
foreach k ∈ Xp do

foreach f ∈ FIFOChannelsk,ext do
b ← f .signature[ntokens] · f .signature[nsize]
m ← M (f)
if f is an incoming channel of k then

T c(p) ← T c(p)+b/m.signature[rread]
end
if f is an outgoing channel of k then

T c(p) ← T c(p)+b/m.signature[rwrite]
end

end
end

Algorithm 1. Calculation of T c(p)

First, some definitions have to be made. The set Xp is the set of processes that are
mapped onto processor p. A similar definition applies to Xm, the set of channels mapped
onto memory m. M (f) denotes the memory onto which channel f is mapped and
FIFOChannelsk,ext is the set of channels of process k that are mapped onto an exter-
nal memory.

The time T e(p) a processor p is spending on executing operations is the inner prod-
uct of the sum of the signatures of all processes mapped on p, with the signature of p.

T e(p) =

〈(
∑

k∈Xp

k.signature

)
, p.signature

〉
(9)

The time T c(p) the processor is communicating depends on the number of bytes sent
and received via FIFO channels that are mapped on an external memory. This quantity
can be calculated by Algorithm 1.

The total time processor p is busy processing read, write, and execute events is

T (p) = T e(p)+ T c(p) (10)

The number of cycles T (m) a memory m is busy sending or receiving data is calculated
in Algorithm 2, in a similar way as T c(p).

The maximum processing time of an architecture with a certain mapping depends
on the architecture component with the largest processing time. Therefore, we need to
solve

minmax

(
max
p∈P

T (p),max
m∈M

T (m)
)

(11)

Signature-Based Calibration of Analytical System-Level Performance Models 275

6 Experimental Results

In this section, mapping exploration results of the signature-based analytic method will
be compared to simulation results using a Motion-JPEG (M-JPEG) encoder applica-
tion. The target MP-SoC architecture we used in this experiment consists of four ARM
processors with local memory and a crossbar interconnect. The design space we con-
sidered for this experiment consists of all possible mappings of the M-JPEG tasks (i.e.
processes) on the processors in the MP-SoC platform.

b ← 0
foreach f ∈ Xm do

b ← b+ f .signature[ntokens] · f .signature[nsize]
end
T (m) ← b/m.signature[rread]+b/m.signature[rwrite]

Algorithm 2. Calculation of T (m)

Before the M-JPEG application model was mapped on the architecture model, the
application was compiled using an ARM C++ compiler, and executed within the SimIt-
ARM instruction set simulator environment [7]. The generated ARM instruction traces
were used to create the application and architecture signatures. These signatures were
subsequently used for determining the parameters in our analytical performance model,
as was previously explained. Note that this process is only a one-time effort.

Since the design space in our experiment is relatively limited (consisting of 4096
different mappings), it was possible to evaluate all of these mappings, both analytically
as well as by simulation using our Sesame framework. The analytical and simulation
results are shown in Figure 1. Note that only the first fifty mappings are depicted due to
space limitations (to avoid cluttering in the graph). Each mapping gets a certain index.
The order of the mappings in Figure 1 is more or less arbitrary. Mappings with succes-
sive indices are not necessarily related to each other. In this experiment, we measured
an average relative error of our analytical model compared to simulation of only 0.1%,
with a standard deviation of 0.2. From this, it can be concluded that the performance es-
timates of our analytic method are promising since they show small errors with respect
to the simulation-based estimates.

It should be noted however that this is only a preliminary evaluation, using some
simplified assumptions and circumstances: we obtained the signatures by training with
the application itself, and the application used in this case study is still a fairly static,
pipeline-based application of which the workload is well suited for prediction. Also,
the application does not cause any contention on the interconnect. In an additional ex-
periment, we artificially generated excessive network contention for the M-JPEG appli-
cation. As a result, the error increased to an average of 14% with a standard deviation
of 26. But since in this case the analytical estimates were optimistic and still showed
the correct performance trends, we believe that these results are still very promising in
the scope of high-level design space pruning (the pruning does not throw away possi-
ble good candidate mappings). We also stress that the evaluation time of our analytical
performance models is several orders of magnitude smaller as compared to Sesame’s
system-level simulations.

276 S. Jaddoe and A.D. Pimentel

1.05 · 10
9

1.10 · 10
9

1.15 · 10
9

1.20 · 10
9

1.25 · 10
9

1.30 · 10
9

P
ro

ce
ss

in
g

ti
m

e
(c

y
cl

es
)

0

2.0 · 10
−3

4.0 · 10
−3

6.0 · 10
−3

8.0 · 10
−3

0 10 20 30 40 50

R
el

a
ti

v
e

er
ro

r

Mapping index

Analytic method Sesame simulation

Fig. 1. Comparison between simulation and analytical methods of M-JPEG mappings on a
crossbar-based multiprocessor architecture

7 Related Work

Much work has been performed in the area of software performance estimation [8],
including methods that use profiling information, typically gathered at the instruction
level. For example, in [9] a static software performance estimation technique is pre-
sented which uses profiling at the instruction level and which includes the modeling
of pipeline hazards in the timing model. In [10], a source-based estimation technique
is proposed using the concept of ”virtual instructions”. These are similar (albeit a bit
more low level) to our AIS instructions, but which are directly generated by a com-
piler framework. Software performance is then calculated based on the accumulation of
the performance estimates of these virtual instructions. The idea of convolving applica-
tion and machine signatures, where the signatures contain coarse-grained system-level
information, has also been applied in the domain of performance prediction for high-
performance computer systems [11]. In [12], a workload modeling approach based on
execution profiles is discussed for statistical micro-architectural simulation. Because
they address micro-architectural simulation, their profiles include much more details
(such as pipeline and cache behavior), while we address the system level at a higher
level of abstraction. In [13], the authors suggest to derive a linear model from a small
set of simulations. This method tries to model the performance of a processor at a meso-
scopic level. For example, cache behaviour and pipeline characteristics are taken into
account. The significance of all cache and pipeline related parameters is determined by
simulation-based linear regression models. This may be comparable with the ‘weight’
vector discussed in Section 4. Another interesting approach is presented in [14], in
which the CPI for in-order architectures is predicted using a Monte Carlo based model.

Signature-Based Calibration of Analytical System-Level Performance Models 277

8 Conclusions

In this paper, we presented a technique for calibrating our analytical performance mod-
els used for system-level design space pruning. More specifically, we introduced the
concept of application and architecture signatures, which can be related with each other
to obtain performance estimates. Using a preliminary case study with a Motion-JPEG
encoder application, we showed that our signature-based analytical performance model
shows promising results with respect to accuracy. But since this application still is rel-
atively static in its behavior, we need to extend our experiments in the future to also
include more dynamic applications. Moreover, we need to further study the (off-line)
generation of training sets for deriving processor signatures, as well as to investigate
extending our signatures to better capture micro-architectural behavior.

References

1. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans. on Computers 55, 99–112 (2006)

2. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level mod-
eling and simulation of embedded systems architectures. EURASIP Journal on Embedded
Systems (2007) doi:10.1155/2007/82123

3. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: A multiobjective optimization model for ex-
ploring multiprocessor mappings of process networks. In: Proc. of the int. conference on
Hardware/Software Codesign & System Synthesis (CODES+ISSS), pp. 182–187 (2003)

4. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design.
IEEE Trans. on Evolutionary Computation 10, 358–374 (2006)

5. Kahn, G.: The semantics of a simple language for parallel programming. Information
Processing 74, 471–475 (1974)

6. Keutzer, K., Malik, S., Newton, A., Rabaey, J., Sangiovanni-Vincentelli, A.: System level
design: Orthogonalization of concerns and platform-based design. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 19 (2000)

7. Qin, W., Malik, S.: Flexible and formal modeling of microprocessors with application to
retargetable simulation. In: Design, Automation and Test in Europe (DATE) Conference, pp.
556–561 (2003)

8. Bammi, J.R., Harcoun, E., Kruijtzer, W., Lavagno, L., Lazarescu, M.: Software performance
estimation strategies in a system level design tool. In: International Conference on Hardware
Software Codesign (CODES), pp. 82–87 (2000)

9. Beltrame, G., Brandolese, C., Fornaciari, W., Salice, F., Sciuto, D., Trianni, V.: An assembly-
level execution-time model for pipelined architectures. In: Proc. of Int. Conference on Com-
puter Aided Design (ICCAD), pp. 195–200 (2001)

10. Giusto, P., Martin, G., Harcourt, E.: Reliable estimation of execution time of embedded soft-
ware. In: Proc. of the Design, Automation, and Test in Europe (DATE) Conference, pp. 580–
588 (2001)

11. Snavely, A., Carrington, L., Wolter, N.: Modeling application performance by convolving
machine signatures with application profiles. In: Proc. of the IEEE Workshop on Workload
Characterization, pp. 149–156 (2001)

278 S. Jaddoe and A.D. Pimentel

12. Eeckhout, L., Nussbaum, S., Smith, J., De Bosschere, K.: Statistical simulation: adding effi-
ciency to the computer designer’s toolbox. IEEE Micro 23, 26–38 (2003)

13. Joseph, P., Vaswani, K., Thazhuthaveetil, M.: Construction and Use of Linear Regression
Models for Processor Performance Analysis. In: Proc. of the Int. Symposium on High-
Performance Computer Architecture, pp. 99–108 (2006)

14. Srinivasan, R., Cook, J., Lubeck, O.: Performance Modeling Using Monte Carlo Simulation.
IEEE Computer Architecture Letters 5 (2006)

	Introduction
	Basic Analytical System Model
	Application Requirements
	Architectural Capabilities
	Analytical Performance Estimation
	Experimental Results
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

